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Abstract—The proliferation of false information on social media has profound negative impacts across various 

aspects of people's lives. To mitigate these effects, numerous studies have focused on developing automated fact-

checking systems aimed at enhancing the accuracy and reliability of news and information. Claim detection, recognized 

as the initial stage in constructing such systems, has been explored in several languages. In our paper, we introduce a 

corpus of Persian tweets annotated with 11 labels derived from linguistic analysis, representing different types of claims. 

Additionally, we establish a baseline claim detection model to assess the dataset. This study frames claim detection as a 

classification task and employs a transformer-based approach to train a multi-label classifier capable of identifying 

various types of claims in Persian texts. 
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I. INTRODUCTION 

Social media has become the most crucial platform 
for quickly and easily disseminating information today. 
It enables people to share content in various formats, 
such as texts, pictures, videos, and audios, in the 
shortest possible time. Users can access different news 
sources with a cellphone and effortlessly share them 
with others. 

Despite the numerous benefits of technological 
advancements, they have also introduced significant 
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disadvantages. The internet hosts a vast amount of 
information, some of which is incorrect or biased, 
presenting only one side of contentious issues. This 
problem is recognized as a growing concern in public 
[3], [4], as incorrect information can manipulate 
people's perceptions of reality, influence conscious and 
unconscious attitudes, and alter behaviors [5]. This 
misinformation leads to mistrust in various domains 
[6], especially during crises [7], affecting areas such as 
health behavior [8], [9], [10], [11], political attitudes 
and voting behaviors [12], [13], financial markets [14], 
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[15], [16], and cognitive psychology [17], [18], [19]. 
Journalists and fact-checkers work diligently to verify 
and correct misinformation. Given the potential of AI-
based tools to reduce the burden and time required for 
these activities, various studies have focused on 
developing fact-checking tools [20], [21], [22]. Fact-
checking provides accurate and unbiased analysis of 
claims to enhance individuals' understanding of 
important issues [23], [24]. A claim is a statement or 
assertion typically made without providing evidence, 
forming the central part of an argument [25], [26]. 
Claim detection is the first step in the automated fact-
checking process [27]. Although extensive research has 
been conducted on fact-checking under different names 
like disinformation detection, fake news detection, or 
rumor detection, claim detection is a relatively new area 
in natural language processing (NLP) that has gained 
researchers' attention in recent years. 

As Twitter is a prominent platform for the 
dissemination of fake news and no prior research has 
focused on Persian tweets, our primary emphasis was 
on exploring the content on this platform. The main 
objective of this study is to devise an automated system 
for detecting claims on Twitter. By identifying these 
claims, we can further analyze their stance and evaluate 
their veracity or falsity in subsequent stages. To 
accomplish this, we curated a dataset of Persian tweets 
and employed an annotation schema that effectively 
encompasses various types of claims and non-claims, 
relying on linguistic analysis. The dataset consists of 
4,910 tweets, annotated by two individuals. This corpus 
played a pivotal role in developing an automated claim 
detection system based on transformers. 

The rest of the paper is organized as follows: 
Section 2 reviews previous work related to this study. 
Section 3 discusses the different types of claims used to 
classify Persian tweets. Section 4 introduces our 
methodology and corpus information. Section 5 
presents the experimental reports, including evaluation 
metrics, error analysis, and results. Finally section 6 
concludes the study and suggests future directions in 
this area. 

II. LITERATURE REVIEW 

Claim detection is considered a sub-task within the 
broader fields of argumentation mining (AM) [30] and 
fact-checking [32]. In these tasks, analyzing claims is 
crucial for providing structured data for computational 
models of arguments and reasoning engines [31] (in 
AM) and for assessing the truthfulness of claims (in 
fact-checking) [32]. The automated fact-checking 
process, particularly in the context of computational 
journalism, has been extensively discussed by [33], 
[34], [35]. This study has also gained significant 
attention in the field of NLP. 

In AI-based research, the automated fact-checking 
process typically consists of three stages, the first of 
which is claim detection [36]. While some methods 
assume that a claim is provided as input, fully 
automated fact-checking must identify claims within 
articles or social media comment sections. Therefore, 
the initial step is to determine what constitutes a claim 
[37]. 

Recent studies on claim detection have been 
conducted in a limited number of languages, including 

English [48], [49], [50], [51], Arabic [52], Turkish [53], 
[55], and Dutch [56]. Most of these studies have framed 
claim detection as a classification task. For instance, 
[48] employed a multi-class SVM classifier, [57] 
utilized a deep model with a Feed-Forward Neural 
Network (FNN) as the final layer to rank labels, and 
[58] and [59] used transformer-based models. 
However, some works have applied sequence labeling 
techniques [60], [61] and an unsupervised learning 
approach [62]. 

These studies have generally applied two 
approaches to annotated datasets. The first approach 
relies on the concepts of check-worthiness and claim 
importance, defining three labels to classify sentences: 
1) claim, 2) non-claim, and 3) unimportant claim. The 
second approach avoids subjective concepts of check-
worthiness or importance, leaving this determination to 
fact-checkers. Researchers linguistically analyzed 
sentences and defined multiple labels to identify 
different types of claims [26]. 

For Persian, which is considered a low-resource 
language, there has been no prior research on automatic 
claim detection. Related studies have focused on stance 
detection [64], fake news detection [65], and rumor 
verification [69]. This paper aims to address this gap by 
focusing on Persian claim detection and developing a 
dataset for this purpose for the first time. 

III. DATASET DESCRIPTION 

To provide annotation guidance for labeling our 
corpus, we used 4,910 Persian tweets and conducted a 
linguistic analysis. Unlike some studies that rely on the 
concept of the check-worthiness of claims, resulting in 
subjective interpretation, we decided to leave the 
judgment of importance to fact-checkers and 
journalists. Instead, we categorized tweets using 10 
labels for different types of claims and one label for 
non-claims.  

Drawing inspiration from prior research, such as 
[27], which identified 19 sub-categories for claim types, 
we have simplified the categorization by defining 10 
labels for the most frequent claim types observed in 
Persian tweets. Additionally, we classify less frequent 
claim types under the "other claim" label. This 
approach ensures a more manageable and practical 
classification scheme while capturing the essential 
variations in claim types encountered in the dataset. 

Since a tweet can contain multiple sentences or 
different types of information, it can be annotated with 
multiple labels. In the next section, we introduce the 
sub-categorization of claims. 

The sub-categorization of claims 

To categorize claims, we utilize linguistic features 
and define 10 classes based on syntactic, semantic, and 
pragmatic analysis. These classes are: 

1. Action: Statements describing actions or events. 

2. Prediction: Statements predicting future events or 
outcomes. 

3. Support/Oppose: Statements expressing support or 
opposition. 

4. Causation/Correlation: Statements indicating a 
cause-and-effect or correlation relationship. 
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5. Quantity: Statements involving numerical data or 
quantities. 

6. Comparison: Statements making comparisons 
between entities or events.  

7. Quote: Statements quoting another source or 
individual. 

8. Trait: Statements describing characteristics or 
traits. 

9. Law/Rule: Statements about laws, rules, or 
regulations. 

10. Other Claim: Statements that don't fit into the 
above categories but still constitute a claim. 

A non-claim label is also defined for statements that 
do not constitute a claim. Below, we will describe each 
category in detail.  

1) Action claims 
The action claim type pertains to statements 

describing actions that have been carried out in the past, 
are presently occurring, or are anticipated to take place 
in the near future. This category encompasses a broad 
range of expressions involving events and activities. 
The below examples respectively show the past (as 
shown in example 1 and 4), present (as in example 2), 
and future tenses (as seen in example 3) in Persian that 
are annotated by the action claim label. 

(1) 500 pezes̄k sāle gozas̄te māliyāt pardāxt 

nakardand. 

“500 doctors did not pay tax last year” 

(2) In kes̄varhā dar hāle tote'ec̄ini barāye hamle be su-

riye hastand.  

“These countries are planning to attack Syria.” 

(3) Fardā tahrimhā e`māl  xāhad  s̄od. 

“Sanctions will be imposed tomorrow.” 

(4) Agar budje be s̄erkat taxsis miyāft, sāzmān 

vars̄ekast nemis̄od. 

“If the budget had been allocated to the company, 

it would not have gone bankrupt.” 

In addition to the above structures, claims can be 
made in the forms of presuppositional structures. 
According to 6 different types of presupposition [72], 
active presupposition and lexical presupposition consist 
of words (such as ‘know’, ‘regret’, ‘realize’, ‘start’, 
‘stop’, ‘again’ etc.) showing an assumption about 
taking an action in the past. Examples 5 and 6 
presuppose actions taken only in the past. 

(5) In kes̄var mojaddad e`māle tahrimhā rā elayhe 

Irān āgāz kard. 

“This country again imposing sanctions against 

Iran starts” 

(6) Dolat digar be panāhandegān ejāzeye vorud 

nemidahad. 

“The government no longer allows refugees to en-

ter.” 

2) Prediction claims 
Prediction claims include syntactic and semantic 

structures predicting events in the future. These kinds 
of simple and complex sentences (exemplified in 7 to 
9) can contain adverbs for future (such as by the end of 
this week/month/year, soon, in 2 days, etc.). Moreover, 

some expressions or words showing a prediction or an 
expectation (such as it is predicted/ expected that..., it 
is possible/likely...., etc.) given in 10.  Future tense (as 
seen in 7), present tense (illustrated in 8 and 9), and 
subjunctive forms (as shown in 10 and 11) are used for 
Persian verbs to show taking actions in the future.  

(7) Mo`āmelāte bāzāre sahām tā pāyāne sāle jāri tahte 

ta`sire tavarrom qarār xāhad gereft. 

“Stock market transactions will be affected by in-

flation by the end of this year.” 
(8) Bā taxsise budje ta 2 māhe āyande proje rā be 

etmām miresānim. 

“By allocating the budget, we will complete the 

project in the next 2 months.” 

(9) Agar budje taxsis yābad, tā 2 māhe āyande proje 

rā be etmām miresānim. 

“If the budget is allocated, we will complete the 

project in the next two months.” 

(10) Pi`s̄bini mis̄avad pis̄rafte in proje emsāl be bis̄ az 

60% beresad. 
“The progress of this project is expected to reach 

more than 60% this year.” 

(11) Ehtemāl dārad  āmrikā dar  āyandeye nazdik bā 

jange dāxeli movājeh s̄avad.  

“It is possible America face a civil war in the near 

future.” 

3) Support/Oppose claims 
This type of claim encompasses statements that 

either support, oppose, or remain neutral regarding a 
particular issue or an individual's opinion. Such claims 
play a crucial role in expressing different perspectives 
on a subject matter and can have varying degrees of 
impact on the overall argument. By presenting 
viewpoints that align with or contradict a given 
position, support/oppose claims contribute significantly 
to the discourse surrounding the topic under 
consideration (in 12 to 14). 

 

(12)  Rand Paul moxālefe tavāfoqe haste`i bā Iran ast. 

“Rand Paul opposes the nuclear deal with Iran.” 

(13) Demokrāthā be lāyeheye zirsāxtha ra`ye moxālef 

dādand. 

“Democrats voted against the infrastructure bill.” 

(14) Donald Trump farmāne ejrā`i e`māle tahrimhāye 

jadid alayhe Irān rā emzā kard. 

“Donald Trump signed an executive order impos-

ing new sanctions on Iran.” 

4) Causation/Correlation claims 
This type of claim aims to capture sentences 

asserting at least 2 events occurring. In causation 
claims, one event causes occurring another one (as 
shown in 15 to 17). In correlation claims, there is a 
correlation between two events (as given in 18). To 
make this claim, if-then structures, prepositional 
phrases to express one of the events, and causative 
verbs can be used in Persian. 

(15) Agar budje be s̄erkat taxsis miyāft, sāzmān 

varsekast nemisod. 
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“If the budget had been allocated to the company 

last year, it would not have gone bankrupt.” 

 

Figure 1.  The distribution of 11 classes labeled by annotator 1 and annotator 

 

(16) 40% az s̄erkathā bā e`māle tahrimhā vars̄ekast so-

dand. 

“40% of companies have gone bankrupt due to 

sanctions.” 

(17)  Vāksane koronā bā`ese nābārvari mis̄avad. 

“Covid-19 vaccine causes infertility.” 

(18)  Har zamān haddeaqal hoquq rā afzāyes̄ dādim, 

ros̄di dar mas̄āqel mos̄āhede s̄od. 

“Every time we've increased the minimum wage, 

we've seen a growth in jobs.” 

5) Quantity claims 
This subcategory encompasses ratio and 

percentage, ranking, date, and numerical and statistical 
analyses. The below examples (19 to 22) show this kind 
of claim. 

(19) Nerxe bikāri dar Irān sale gozas̄te 9.5 darsad bud. 

“Last year, unemployment rate was 9.5 percent in 

Iran.” 

(20) Mā dovvomin sāderkonandeye naft dar jahān 

hastim. 

“We are the second oil exporter in the world.” 

(21) Ānhā 10 sāl māliyāt pardāxt nakardeand. 

“They have not paid taxes for 10 years.” 

(22) Tahrimhā 40 miliyārd dolār manābe`e arzi rā 

masdud kard. 

“Sanctions froze $ 40 billion worth of foreign cur-

rencies.” 

6) Comparison claims 
This subcategory includes all comparative 

structures such as the comparison between 2 or more 
things (as seen in 23), relationship between qualities 
in/over time (in 24), uniqueness (as given in 25), 
similarity and difference (exemplified in 26). 

(23) Espāniyā bis̄tarin tedāde javānāne bikār rā dārad. 

“Spain has the most unemployed young people.” 

(24) Nerxe bikāri dar dolate fe`li kamtar az dolate 

qabli ast. 

“The unemployment rate in the current govern-

ment is lower than that in the previous govern-

ment.” 

(25) Āmrikā tanhā kesvari ast ke nerxe bikāri dar ān 

sefr ast. 

“America is the only country where the unemploy-

ment rate is zero." 

(26) Bar xalāfe dolate qabli Nerxe bikari dar dolate 

fe`li xeili pāyin ast. 

“Unlike the previous government, the unemploy-

ment rate in the current government is very low.”  

7) Quote claims 
This class encompass claims that repeat or 

paraphrase what an entity said. The following examples 
show a quote claim and its paraphrase. 

(27) Trump goft: tahrimhāye  jadid bānke melli Irān rā 

emruz e`māl mikonim.” 

“Trump said: we impose new sanctions against 

Iran's national bank today.” 

(28) Ra`is jomhure āmrikā e`lām kard tahrimhāye 

jadidi alayhe bānke melli Irān emruz e`māl 

mis̄avad. 

“The president of America said new sanctions 

against Iran's national bank will be imposed today.” 

8) Trait claim 

This type of claim covers different properties of an 
entity such as strength, weakness, capability, 
qualification etc. using especial verbs such as “able, be 
capable, can (as seen in 29) and modifiers such as 
adjective phrases (as in 30). 

(29)  In kes̄var qāder ast dar āyandeh`i nazdik be 

selāhe haste`i dast yabad. 
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“This country is capable of acquiring nuclear 

weapons in the near 

future.” 

(30) Is̄ān za'iftarin ra'is jomhure tārixe in kesvar has-

tand. 

“He is the weakest president in the history of this 

country." 

9) Law/Rule claim 
This type of claim contains statements that express 

laws and regulations and consider actions permissible 
and impermissible. Examples 31 and 32 show this kind 
of claim. 

(31) Dolat be s̄erkathāye xāreji ejāze midahad dar 

bāzar mos̄ārekat konand. 

“The government allows foreign companies to par-

ticipate in its market.” 

(32) Sāxtosāz dar in rustā qeire qānuni ast. 

“The constructions of this village are illegal.” 

10) Other claims 
This type of claim contains statements that do not 

fit into any of the previous categories (as given in 33 
and  

(33) Āmāre bikārān c̄āles̄barangiz va negarānkonande 

ast. 

“Unemployment statistics are challenging and 

worrying.” 

(34)  Hadafe mā jang nist. 

“Our goal is not war.” 

11) Non-claim 
There are some tweets such as people's personal 

opinion, personal experiences, advises, poems etc. that 
are not considered as claim. We define a non-claim 
label to annotate these sentences (as exemplified in 35 
and 36). 

(35) Sāle no mobārak. 

“Happy new year.” 

(36)  Inbār behtarin tajrobeye safaram ra dās̄tam. 

“I had the best travel experience this time.” 

 

Figure 2.  Distribution of binary class (claim/non-claim) 

 

IV. METHODOLOGY 

To ensure diversity in our dataset, we initially 
sampled tweets from 120 accounts. We filtered these 
tweets to include only those in Persian, excluding any 

containing non-Persian texts. Additionally, we applied 
a length threshold, removing sentences with fewer than 
8 words. We selected tweets with significant 
engagement, specifically those with over 30 retweets 
and 30 likes. Finally, we included tweets from the 60 
most followed public figures on Twitter in Iran, 
encompassing politicians, news and television 
presenters, actors, and popular social media influencers. 
This dataset comprises tweets posted between May 
2016 and January 2020. 

The shortest and longest tweets in the corpus consist 
of 8 and 70 tokens, respectively, with an average tweet 
length of approximately 40 tokens. In this study, we 
employed classification techniques for the claim 
detection task, exploring both binary and multi-label 
classification approaches. Subsequent sections will 
provide detailed information on corpus statistics and the 
model used. 

A. Data and Annotation 

To annotate tweets, we utilized Doccano, an open-
source data labeling tool tailored for machine learning 
practitioners. This platform supports collaborative 
annotations and accommodates various languages. 
Initially, we developed a preliminary annotation 
guideline based on linguistic analysis of 200 tweets. We 
refined this guideline through three iterations to 
establish the final annotation criteria. Two annotators 
were provided with the guideline, detailed 
explanations, and examples for 11 categories of claims. 

The agreement percentage among labels was 
33.90%, while the agreement percentage for at least one 
label was 64.69%. For the binary claim/non-claim 
annotation task, Cohen's Kappa statistic [73] was 
calculated to be 0.58, and Krippendorff's alpha [74] was 
also computed, resulting in a value of 0.57. These 
metrics demonstrate a significant improvement over 
[27]. Unlike their approach of mapping some claim 
types into the non-claim category to achieve higher 
agreement metrics, we categorized all types of claims 
as claims in our binary classification.  

Figure 1 illustrates the distribution of the 11 
annotated classes by annotators 1 and 2, showcasing 
high agreement in distinguishing claim classes from 
non-claim classes. Figure 2 displays the distribution of 
tweets in the binary claim class. The figures highlight 
that while there is substantial agreement between 
annotators, most disagreements occurred in 
categorizing the causation/correlation class. 

V. EXPERIMENTS 

We begin by training a model to differentiate 
between claims and non-claims within the dataset, 
considering both binary and multi-label classifications. 
This section starts with a discussion on the model and 
experimental setup. Following this, we present the 
outcomes of each classifier under both binary and 
multi-label conditions. Lastly, we delve into the model's 
errors, paving the way for future studies on the topic. 

 Model 

 We utilized a transformer-based model, ParsBert 
[76], for conducting experiments on both binary and 
multi-label classification tasks. ParsBert, a monolingual 
language model tailored for the Persian language, 
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shares its architecture with Bert [77]. It was initially 
pre-trained on various texts including news, novels, and 
scientific documents. We fine-tuned ParsBert 

specifically using the claim tweet corpus, augmenting it 
with a fully-connected network to align ParsBert's 
outputs with the tag space.  

TABLE I.  THE RESULTS FOR CLAIM DETECTION EXPERIMENTS, SEPARETD INTO BINARY MULTILABEL 

EVALUATIONS. THE BEST RESULT IS BOLDED 

Experimental Setting 

The corpus consists of 197,480 tokens and 4,910 
tweets. We divided the corpus into training (60%), 
validation (20%), and test (20%) sets. The model was 
optimized using Adam [78] with a learning rate of 5e-

05, a batch size of 32, and trained for 10 epochs. 
Implementation was done using the TensorFlow library 
[79]. Hyperparameters were tuned based on 
performance metrics on the validation set, aiming for 
the highest F1-score. A dropout rate of 0.1 was applied, 

and the output layer utilized 11 sigmoid functions to 
predict tweet labels. Binary cross-entropy served as the 
loss function.  

 Results 

Table 1 presents the results for both binary and 
multi-label classifications on the test set. For the binary 
classification task, we assessed two sets of gold tags: 
one comprising the union and the other the intersection 
of annotators' labels. In the multi-label classification 
task, we compared predicted labels against each 
annotator's tag set. 

The results indicate that the intersection label 
approach achieved a more balanced precision and 
recall, yielding the highest F-score in the binary setting 
at 89.34%. Similarly, in the multi-label classification, 
the intersection label approach outperformed the union 
label approach by 0.45%. 

In the intersection dataset, the number of reference 
tags per instance ranged from 0 to 4, averaging 1.12 tags 
per instance. In contrast, the union dataset exhibited a 
wider range of gold tags, ranging from 1 to 6 tags per 
instance, averaging 2.26 tags per instance. 

Notably, our primary dataset is the union dataset, 
which includes all tags identified by each annotator. 
This approach ensures a more comprehensive and 
diverse representation of claim types present in the data. 
By aggregating tags from multiple annotators, we 
capture a richer spectrum of claim categories and their 
occurrences within tweets. 

Analysis 

Based on the model's optimal performance in both 
binary and multi-label contexts, we infer that the model 
effectively identified sentences containing advisory 
content and correctly classified them as non-claims, as 
shown in (a). 

(a) Din ādam rā mostaqel bār miāvarad va u rā ros̄d 

midahad. 

“Religion makes a person independent and develops 

him.” 

Transformer-based models benefit from 
contextualized embeddings that effectively capture 
syntactic relationships [80, 81]. Moreover, these 

models demonstrate proficiency in recognizing various 
syntactic structures. They accurately identify causative 
structures and future tenses, correctly classifying them 
as causation and prediction claims. 

Causative structures typically denote actions caused 
to occur, prompting the model to assign the action claim 
label to such sentences. For instance, the model 
correctly labeled sentence (b) as involving 
causative/correlation and action claims.  

(b)Vaz'iyate bohrāni dar in s̄ahr natijeye adame tava-

joh be hos̄dārhā ast! 

“The critical situation in this city is the result of not 

paying attention to the warnings!” 

Furthermore, the model effectively utilizes 
morphological features to discern comparative and 
superlative adjectives, accurately categorizing 
sentences as comparison claims (c). 

(c)Tasmimāte ra'is jomhure fe'li bohrāne eqtesādi rā 

badtar mikonad. 

“The current president's decisions are worsening eco-

nomic crisis.” 

Additionally, the model adeptly identifies words 
and punctuation indicating quotations or paraphrases, 
enabling it to accurately recognize quote claims, as 
demonstrated in sentences (d) and (e). 

(d) Irnā: 30% as bimārāne viruse koronā dar in s̄ahr 

mosāfer hastand. 

“Irna: 30% of COVID-19 patients in this city are trav-

elers.” 

(e) Keyhān neves̄t ke xabarnegāre panāhande eslāhāt 

talab ast. 

“Kayhan wrote that the refugee journalist is a reform-

ist.” 

The model also demonstrates strong capability in 
detecting Law/Rule claims, effectively recognizing 
words that express rules within tweets (f).  

(f) Tarhe dolat barāye sāderāte xodro tasvib sod. 

“The government's plan to export cars was approved.” 
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The model  adeptly captures words that express 
support and opposition, as evidenced in sentence (g). 

(g) Namāyandegān az tarhe jadide dolat hemāyat 

kardand. 

“Members of parliaments supported the government's 

new plan.” 

The model effectively captures tense as a syntactic 
feature, significantly aiding in the detection of 
prediction claims, exemplified in (h). 

(h) In kes̄var az haqe mardome xod darbāreye 

mozākerāte haste'i kutāh naxāhad āmad. 

“This country will never step back from the rights of 

their people in nuclear negotiations." 

In spite of the aforementioned points, there are some 
frequent and important errors in the performance of the 
model. Although the attention heads in transformer-
based models could well capture the syntactic structures 
of sentences [80, 81], the model made several errors: 

1. Considering morphological features, the model la-

beled some tweets containing ordinal numbers as quan-

tity claim. For instance, (i) is not a claim but the model's 

tag is quantity claim. 

(i) Emruz noxostin ruze qarne pānzdahom ast. 

“Today is the first day of the 15th century." 

2. As we mentioned in section 3.1.4, causative struc-

tures can be formed by if-then structures in Persian. 

However, all if-then structures are not causative. The 

model incorrectly labeled (j) as causation/correlation 

claim. 

(j) Agar tavāne moqābele ba vaz'iyate bohraniye fe'li 

ra nadārid, este'fā dahid. 

“If you cannot cope with the current critical situation, 

resign." 

3. There are some tweets incorrectly labeled by annota-

tors. However, the model could correctly label them. 

For instance, the model correctly tagged (k) as trait 

claim. 

(k) Modire bānk ideye eqtesādi nadārad. 

“The bank manager has no economic idea.” 

VI. CONCLUSION AND FUTURE WORK 

We've devised the initial annotation schema for 
Persian claim detection, grounded in linguistic analysis. 
Our annotated dataset comprises sentences extracted 
from Persian tweets by Iranian public figures. Using the 
transformer-based ParsBert model, we conducted 
experiments on binary and multi-label claim detection 
tasks. The results demonstrate the model's adeptness in 
capturing syntactic features to identify claim types. 
However, the model exhibits weaknesses in 
semantically analyzing sentences to discern claim types 
with identical syntactic structures. 

Our overarching goal is to develop a fact-checking 
tool tailored for Persian tweets. The claim detection 
model serves as a foundational element for subsequent 
tasks, including stance detection and fake news 
identification. By harnessing this model, we aim to 
facilitate thorough and precise analyses in verifying 
tweets and assessing information credibility. 
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