
Combination of Machine Learning Techniques 

Using Weighted Majority Voting for Intrusion 

Detection in IoT  

Mohammad Hassan Nataj Solhdar  

Shohadaye Hoveizeh Campus of Technology, Shahid 

Chamran University of Ahvaz 

Ahvaz, Iran 

n.solhdar@scu.ac.ir 

Nasser Erfani Majd  

Shohadaye Hoveizeh Campus of Technology, Shahid 

Chamran University of Ahvaz 

Ahvaz, Iran 

n.erfanimajd@scu.ac.ir 

Received: 15 April 2024 – Revised: 10 June 2024 - Accepted: 26 August 2024 

 

Abstract__The vast scale of the IoT requires robust cloud computing capabilities for data storage, management, and 

analysis near the network's edge. As IoT integration in business operations grows, so does the need for secure and 

efficient communication. Security concerns in fog and cloud environments are critical, as network attacks can severely 

impact IoT, fog, and cloud computing development. Intrusion detection systems (IDS) are one of the best options 

designed using artificial intelligence. This paper presents an IDS designed to enhance fog security against cyber-attacks 

using various machine learning techniques. The NSLKDD dataset was employed to develop and test the model. 

Performance metrics show the proposed system's superiority over existing methods. The model operates in two phases: 

first, a classifier ensemble of three experts processes data into binary form using five different classifiers; second, the 

collective output of these classifiers is merged. By using weighted majority voting (WMV), the combined output is 

optimized. Experimental results demonstrate that integrating opinions from multiple experts improves classifier 

performance across all measured criteria—Accuracy, TPR, F-measure, and FPR—proving the model's effectiveness. 

Specifically, the proposed method achieves a significant improvement in various metrics, with an F-measure of 94.1%, 

an accuracy of 91.32%, a TPR of 93.4%, and an FPR of 0.17%. 
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I. INTRODUCTION 

The Internet of Things (IoT) is an evolution of the 

Internet, so that the ability to connect to the Internet 

is given to any entity [1, 2], which is estimated to 

number more than 50 billion. This huge number of 

connected devices represents a huge amount of 

traffic and generated and transmitted digital data. 

From 106 to 1030 data is used to describe the vast 

amount of digital pool formed by the IoT platform. 

In fact, 40% of the data generated by the IoT is 

stored, processed, analyzed, and operated near the 

edges of the network where cloud deficiencies are 

met to meet IoT needs [3]. These shortcomings1 and 

the acceleration of IoT lubricate the wheels of fog 

computing pattern development. On the other hand, 

as the depth of this digital pool increases, it becomes 

problematic due to different types of attacks and 

intrusions [4].  Based on this, various methods and 

techniques have been designed and implemented to 

protect the IoT operating system such as firewalls, 

data encryption and user authentication through the 

fog computing model. Attack and threat methods are 

evolving, and leave classic security techniques 

inefficient and ineffective to deal with IoT security 

To open the getway to a new generation of intrusion 

detection systems built using machine learning and 

artificial neural networks. A series of works and 

researches on finding the best intelligent intrusion 

detection system in IoT-based environments has 

been done for different types of applications [5, 6]. 

In this paper, we define an expert as a set of binary 

categories that together produce a binary vector of 

responses. An expert from an adaptive network-

based fuzzy inference system (ANFIS), an expert 

from k-nearest neighbor (K-NN), and an expert from 

support vector machine (SVM) are considered on 

the same data set. Then a combination of the 

weighted majority algorithm (WMA) method is 

created which ensemble the opinions of three 

experts to reach a final decision. 

In early research, it has been shown experimentally 

and theoretically that combination groups are more 

accurate than any single classification components. 

A combination group generated from classifiers 

derived from the same learning algorithm is called 

homogeneous, while a combination group generated 

from classifiers derived from different learning 

algorithms is called heterogeneous. For example, 

bagging and boosting are often used to produce 

homogeneous compounds, while stacking 

combinations can be used to produce heterogeneous 

compounds. The success of a combination classifier 

strongly depends on the diversity in the output of its 

 
1 The deficiency in this paragraph refers to the deficiency related to the 

cloud, which is removed by the fog 

component as well as the choice of method for 

combining these outputs into one classifier [7].  

Given the massive data volumes generated by IoT 

devices, deep learning methods like Deep Q-

learning might initially seem ideal due to their 

automatic feature extraction capabilities. Deep 

learning models, such as convolutional neural 

networks (CNNs) and recurrent neural networks 

(RNNs), have been extensively applied in various 

domains for tasks requiring complex pattern 

recognition and large-scale data analysis [30,31]. 

However, IoT environments typically operate with 

constrained computational resources, making 

lightweight machine learning algorithms like 

ANFIS, SVM, and K-NN more suitable. These 

methods not only offer computational efficiency but 

also provide better interpretability and ease of 

deployment, critical for IoT's decentralized nature. 

Our method's novelty lies in its strategic 

combination of these algorithms, leveraging their 

diverse strengths through a weighted majority 

voting mechanism, thus ensuring real-time, scalable, 

and accurate intrusion detection tailored specifically 

for IoT networks. This approach effectively 

addresses IoT's unique challenges, such as limited 

resources and the need for low-latency responses, 

making it a robust security solution. 

II. RELATED WORK 

Because intrusion detection systems are one of the 

main problem-solving methods used for IoT 

security, there is a tendency to use more than one 

technique at the same time that is proposed by 

Alharbi et al. [8]. They provided a proof-of-concept 

system for IoT security implemented in the fog 

computing layer. The proposed system consists of a 

VPN server, traffic analysis engine, challenge-

response unit, and firewall. Each unit thwarts certain 

types of attacks. The VPN server destroys the 

communication channels between IoT systems 

against sniff, spoof, and system attacks.  To detect 

DoS and DDoS attacks, intrusion detection systems 

of traffic analysis units were used, in which the 

decision tree machine learning method was used as 

a classification engine. 

Pajouh et al. [9] have proposed a new layer system 

for intrusion detection for the backbone of IoT body 

using a two-layer dimensional reduction engine and 

a two-layer classification engine. The reduce 

dimensions engine consisted of component analysis 

and linear separation analysis units, while the 

classification engine consisted of Naïve Bayes and 

CF-KNN. Naïve Bayes classification was used to 

classify attack records and CF-KNN classification 
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was used as the second filter layer. Using the NSL-

KDD dataset [10], the proposed model achieved 

acceptable performance for a small number of 

attacks, namely the U2R and R2L classes. 

Anthi et al. have proposed a predictive and adaptive 

intrusion detection system for IoT systems Using 

Wireshark software through the IoT test network for 

four consecutive days and using machine learning 

techniques on it [11]. The proposed system consists 

of two main stages. First, they built a real IoT lab 

and controlled the normal operation of each IoT 

device. Then, in the second stage, malicious 

activities were applied on these devices, which leads 

to anomalous network traffic. These steps feed a 

supervised machine learning technique with the 

appropriate training data that forms the core of the 

intrusion detection model. 

Dovom et al. [12] used a fast fuzzy tree method to 

identify malware intrusion and classification in the 

Internet of Things. This type of fuzzy-based 

technique consists of a fuzzy top-down induction 

structure such as a tree, in which the nodes inside the 

tree are fuzzy logic calculus operators, While the 

leaves of these nodes are related to the fuzzy 

predictions applied to the input properties features.  

Using the Vx-Heaven dataset, their proposed model 

achieved high detection accuracy at a reasonable 

execution time. 

To improve detection, Wang et al. [13] performed 

logarithmic density ratios to convert NSL-KDD data 

set features to new and better display quality 

features. Using the support vector machine (SVM) 

as the classification engine, the experimental results 

showed strong performance in detection rate and 

detection accuracy. 

Zhang et al. [14] used the UNSW-NB dataset [15] 

using a comprehensive overview of IoT modern 

attack scenarios to demonstrate the effectiveness of 

machine learning-based intrusion detection. 

Although they used a simple multilayer perceptron 

as a classifier, they used a new feature selection 

engine using the Denoising Autoencoder (DAE) 

based on weight loss performance. This new 

technique focuses on the features that represented 

the attacks on the network. 

Another application of the UNSW-NB dataset in the 

IoT is a forensic architecture consisting of the C4.5 

decision tree, Naïve Bayes, the Association Rule 

Rining (ARM), and the artificial neural network 

(ANN). Machine learning techniques by Koroniotis 

et al. [16] identify and track new and complex forms 

of current botnet attack 

As an example of the integration of SDN and IoT, 

Dovom et al. [17] Provide an in-depth penetration 

detection system for SDN-based IoT architecture 

that uses SDN modeling for IoT, scalability, 

enhancement, and flexibility purposes. While the 

Boltzman Machine Restricted (RBM) was used as 

the engine to detect intrusion. The proposed model 

was evaluated and validated using the KDD Cup’99 

dataset and earn Performance accuracy close to 

94%. 

Hodo et al. [18] presented a simple multi-layered 

perceptron neural network trained with forwarding 

and backward learning algorithms to detect DoS / 

DDoS attacks on IoT networks. The IoT structure 

consists of five node sensors, one of which acts as a 

server amplifier node for data analysis while the 

others act as a client. This method was able to 

successfully detect DoS / DDoS attacks to 99.4% 

accuracy. 

For use in computer networks, Mohammadi and 

Sabokrou [19] proposed a semi supervised intrusion 

detection model constructed using deep structured 

neural networks trained by adversarial learning. This 

model consists of two main stages: training and 

testing. The training phase, which performed using 

only the normal flow of NSL-KDD data set 

connections, consists mainly of two modules. The 

first module consists of an encryption-decryption 

network, and the second module includes a fully 

connected neural network, followed by the SoftMax 

classification. On the other Network anomalies are 

generated through an optimized encoder-decoder 

network. The test phase uses a trained neural 

network that results from a training phase in which 

KDDTest + is fully utilized. In this model, 91.39% 

detection accuracy was obtained by the proposed 

model. 

A semi supervised intrusion detection system was 

proposed by Kumari and Varma [20] which the 

classification engine used a support vector machine 

(SVM) and Fuzzy c-means (FCM) in combination. 

In this model, intrusion detection performed using 

two classification engines: SVM and FCM. If both 

classifiers label an input as a normal sample, they 

will eventually be considered normal.  However, if 

the input sample is labeled as an anomaly by the 

SVM engine and its subset is also designated by the 

FCM engine, it is considered an abnormal sample 

and the nearest circle to support higher fuzzy 

membership vectors as a subclass will be selected as 

a subgroup. 
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Figure 1.  General framework of the proposed smart model for IoT security 

Other researchers have used group training for 

strong IoT security. This method uses several 

techniques, model or expertise to solve a problem 

based on Artificial Intelligent. In intrusion detection, 

problems, group learning leads to better 

generalization, and voting between different group 

techniques offers higher detection accuracy than 

individual models presented by Illy et al. [21]. 

III. PROPOSED METHOD 

In this section, the principles of architecture, 

concept, and design of the proposed model are 

presented. Figure 1 shows the general architecture of 

our proposed model, which is implemented in the 

fog calculation layer. 

As shown in Figure 1, The proposed smart intrusion 

detection model consists of the main engine which 

is fully explained in Section 3.2. Traffic connections 

are preprocessed in the traffic processing unit, which 

results in the creation of traffic data in a format that 

is suitable for processing by the classification 

engine.  The proposed model can be implemented in 

Fog calculations, which are very close to ending 

users and IoT devices.  This model train three 

experts (ANFIS, SVM, K-NN) that each expert is 

trained by five binary classifiers to increase the 

predictability of attack or normal classification. The 

main engine shows classification-based traffic 

analysis, that is, network traffic that attempts to 

access the IoT system and analyzes security alerts in 

the event of detected intrusion. To clarify the roles 

of the expert system and the classifiers, it should be 

noted that in this context, the term "expert system" 

refers to a system based on multiple classifiers that 

work in combination to enhance the accuracy and 

reliability of intrusion detection. For this purpose, 3 

votes are examined and tested, and then they are 

combined in a combined group. The steps are as 

follows, which we will explain in the following: 

1- NSLKDD data preprocessing 

2- Data classification with ANFIS 

3- Data classification with SVM 

4- Data classification with k-NN 

5- Data classification with combination classifier 

In our proposed intrusion detection system, we 

utilize a combination of ANFIS, SVM, and K-

NN classifiers, each selected for its distinct 

advantages in data classification. ANFIS 

leverages the learning power of neural 

networks with fuzzy logic’s ability to manage 

uncertainty, making it ideal for the complex IoT 

environments. SVM excels in high-

dimensional data and binary classification tasks 

by maximizing the margin between classes, 

essential for distinguishing between normal and 

malicious traffic. K-NN is effective for 

handling irregular decision boundaries by 

classifying based on proximity to k-nearest 

neighbors. The integration of these methods 

allows the system to capitalize on their 

complementary strengths, thereby improving 

the overall accuracy and reliability of intrusion 

detection. This multi-classifier ensemble 

enhances the security of IoT networks by 

detecting a broader range of intrusion types. 

A.  Data traffic preprocessing 

We used the NSL-KDD dataset [10] to train, test, 

and validate the model.   The data attributes that 

represent the incoming traffic of the network system 

are naturally contradictory. Therefore, pre-

processing of traffic data is required for the input of 

the classification engine [22]. The traffic 

preprocessor engine applies three preprocessing 

steps to raw traffic data: (1) Convert symbolic data 

to numbers. (2) Data normalization. (3) Data 

sampling. 

1) Convert symbolic data to numbers 

As shown in the table of attributes attached in this 

paper, the traffic data feature shows that after the 

first numeric feature, there are three symbolic fields 

with the titles: protocol, service, and flag features. In 
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this paper, we encode these properties in Table 1. 

These attributes are changed from symbolic to 

numeric: 

Protocol: {tcp= 1, udp =2, icmp =3} 

Private = {private =16, ..., Netsat= 30} 

Flag: {pstr= 4, …, S2= 14} 

In addition, as shown in Table 1, as another step 

in encoding the data set, the attack 

subcategories are labeled as a set in their main 

categories, as well as the normal data class code 

is considered Zero.  In general, we have two 

types of labeling: for the binary classifier 

engine (normal, attack), all training data 

records are packaged in normal and attack 

mode. 40 types of attacks are classified into 

four main categories, as shown in Table 1 

2) .Data normalization 

 
(1) 

In order for the range of data changes to be suitable 

for the input of the classifiers, the feature value of 

the traffic data is normal to be within a certain range. 

In this paper, we used the linear transformation of 

data with min-max formula. Assume that 𝑚𝑖𝑛𝑓and 

𝑚𝑎𝑥𝑓represent the minimum and maximum values 

of the 𝑓𝑡ℎfeature, respectively. Therefore, the min-

max formula gives the value of the 𝑓𝑡ℎfeature to the 

new value V in the new range. 

2) Data sampling 

This step is a fundamental step in data set 

preprocessing to solve the problem of data that is 

unbalanced in the data set. The NSL-KDD dataset 

contains approximately 125,000 records, of which 

the normal, DoS, Probe, R2L, and U2R datasets are 

67343, 45927, 11656, 995 and 52, respectively. A 

simple calculation shows that the number of normal 

data contains more than 50% of the data set, and also 

the DoS data is large and the rest of the classes make 

less than 5% of the training data set. As a result, 

because of this imbalance, our classifiers tend to be 

biased toward normal, DoS data, which is more 

numerous, than other classes of attack, which are 

fewer in number. 

Due to the small number of R2L and U2R attacks, 

the classification engine deals with these attacks as 

noise when training classifiers, making it difficult to 

distinguish this particular type of attack. One 

solution to this problem is to replicate both R2L and 

U2R attacks in different places of the data set. 

Repetition of this data leads to new statistics and 

distribution of this type of rare attack, which is 

shown in Table 2. 

3.2 Intrusion Detection Engine 

We design each classifier motor in such a way 

that it classifies each input into 5 binary classes. 

Suppose i = (1,…, 5) is an index in quintiles T = 

(Normal, Probe, DoS, U2R, and R2L) and Bi 

represents the corresponding binary classification 

for the target class i in T. All 5 binary classifiers are 

trained using the training dataset, but each classifier 

specifies only its own class.  In other words, if the Bi 

classifier shows the value 1 as output, it means that 

this classifier specifies the input label as class i, and 

also if it shows the value zero as output, it means the 

input did not put in class i. For example, if output B1 

is 1 for an input value, that input is considered 

normal data, and if it is zero, that input data is not 

normal and will probably be one of the attacks. In 

order to distinguish between binary classifiers, the 

term expert is introduced to represent a set of 5 

binary classifiers. In fact, 5 binary classifiers are 

called an expert. Figure 2 shows the relationship 

between binary classifiers and experts and presents 

the output format of each classifier for each class.  

Experts must use a pattern to generate output, So K-

NN, SVM, and ANFIS are implemented as 5 binary 

classifiers. Implementing in this way makes it 

possible to integrate and combine the experts used 

in a combined expert system. 

In this paper, we employ Weighted Majority Voting 

(WMV) as the combination method for our proposed 

IDS. This choice is based on the method's ability to 

effectively balance accuracy and computational 

efficiency, making it particularly suitable for the 

resource-constrained environments typical of IoT 

networks. While various combination methods such 

as majority voting, stacking, and boosting could be 

considered, WMV was selected due to its proven 

performance in enhancing the overall decision-

making process by assigning more weight to the 

most reliable classifiers. This ensures a robust and 

precise detection of different types of attacks with 

minimal computational overhead. 

Our method is designed specifically for IoT 

networks, where the need for low latency and high 

responsiveness is paramount. By integrating WMV 

within the fog computing layer, close to the IoT 

devices, we achieve an optimized balance between 

security and performance, ensuring the system 

remains lightweight and efficient. 
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TABLE I.  MAIN CATEGORIES AND SUBCLASSES OF ATTACKS IN THE DATA SET NSL-KDD 

Numerical 

Code 

Main 

Categories 

Subclasses 

1 DoS Back, Land, Neptune, Pod, Smurf, Teardrop, Mailbomb, Processtable, Udpstorm, Apache2, Worm 

2 Probe Satan, Ipsweep, Nmap, Portsweep, Mscan, Saint 

3 R2L Guess_password, Guess-passwd, ftp-write, Imap, Phf, Multihop, Warezmaster, Xlock, Xsnoop, Snmpguess, 

Snmpgetattack, Httptunnel, Sendmail, Named, Warezclient, Spy 

4 U2R Buffer-overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm, Ps 

3.2.1 Neuro-fuzzy classifier 

Artificial neural networks and fuzzy logic are both 

artificial intelligence tools that can complement 

each other to build another intelligent system. An 

artificial neural network is a low-level 

computational structure that works well with raw 

data. In contrast, fuzzy logic deals with high-level 

arguments obtained using the knowledge of an 

expert in a particular field [23]. A Neural-fuzzy 

network can create in two ways: combining neural 

network with Mamdani fuzzy or combining neural 

network with Sugeno fuzzy. 

  In 1993, Jang first introduced the neural-fuzzy 

adaptive inference system. It is taking into account 

the capabilities of fuzzy theory and artificial neural 

networks.  Fuzzy theory is based on logical rules. 

Also, the artificial neural network method can 

extract knowledge from numerical data(Jang 1993). 

The system provided by Jang is called ANFIS. In the 

Sugeno fuzzy system, the rules are inferred as if-

then.  The inputs and outputs of each layer are 

specified and the relationship associated with it is 

expressed as follows [23] 

Layer 1: This layer is the input layer. The nodes in 

this layer prepare the data for layer 2. In layer 1, no 

changes are made to the data so that the input is 

equal to the output. 

Layer 2: In this layer, a fuzzy operation is 

performed on the data. 

Layer 3: This layer is the rules layer. Each node in 

this layer represents a fuzzy rule. Each node in this 

layer receives its input from the corresponding 

outputs in the previous layer, and its output is the 

fire strength of each rule. 

Layer 4: Each node normalizes its input from all 

nodes of the previous layer, with the output 

representing the normalized firing strength of the 

corresponding rule. 

Layer 5: Each node in this layer receives its input 

from the corresponding node in the previous layer. 

Layer 6: This layer has a single node that calculates 

the sum of the defuzzied values from the previous 

layer. 

In our proposed intrusion detection system (IDS), 

the neuro-fuzzy classifier plays a critical role in 

improving detection accuracy by leveraging both 

ANN and fuzzy logic. The fuzzy rules in the neuro-

fuzzy classifier can be generated using two methods: 

Grid Partition and Subtractive Clustering, which do 

not require expert knowledge. We use the 

Subtractive Clustering method to determine the 

number of required rules and membership functions. 

Then, ANFIS is employed to build the IDS. 

The Subtractive Clustering method with a 

neighborhood radius of 0.5 (R = 0.5) is used to 

produce the initial fuzzy system. This method 

ensures that the rules and membership functions are 

optimized for the dataset, enhancing the system's 

ability to detect various types of intrusions 

accurately. 

By detailing the layers of ANFIS and explaining 

how each contributes to the overall decision-making 

process, we demonstrate the classifier's integration 

within our proposed IDS. The neuro-fuzzy 

classifier's ability to handle both numerical data and 

logical rules makes it an effective component of our 

ensemble approach, combining its strengths with 

those of other classifiers to improve the system's 

overall performance. 

3.2.2 SVM Classifier 

Support vector machine (SVM) is an effective 

technique for solving classification and regression 

problems. SVM is essentially an implementation of 

the Vapnick Structural Risk Minimization (SRM) 

principle [25], known for its low generalization 

error, which is known to have a low (general) 

generalization error, in other words, it can be said 

that the training data set does not suffer from too 

much fit. A model is prone to overfitting or has a 

high generalization error if too much learning 

happens on the training data. SVM specifically 

affects data sets that are linearly separable. 

Therefore, the One-Versus-all method is used in 

data classification, which is described in Figure 2. 

SVM is used in conjunction with many core 

functions [26]. But when the RBF kernel function is 

used, it produces the best results for classification 

[25]. This function is as follows: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝛾‖𝑥𝑖−𝑥𝑗‖
2

        (2) 
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TABLE II.  DATA DISTRIBUTION IN STANDARD AND 

PROPOSED DATASETS 

Balanced data 

set (suggested) 

Number of data in the 

dataset NSL-KDD 

Data 

classes 

33901 67343 Normal 

23390 45926 DoS 

5356 11656 Probe 

4640 995 R2L 

713 52 U2R 

 

The selected value for the RBF parameter is defined 

with the value 0.2. 

3.2.3 K-NN Classifier 

The nearest neighbor (K-NN) is an effective and 

simple technique for classifying objects based on the 

nearest training samples in space [27]. Consider a set 

of observations and objectives (x1, y1), ..., (xn, yn) 

in which the observations 𝑥𝑖𝜖𝑅𝑑and the objectives 

𝑦𝑖 ∈ {0,1}for ith sample that are given  K-NN 

estimates the neighbors of a test sequence in the 

training sample, and uses the class labels of the 

nearest neighbors to predict the test class vector. 

Therefore, K-NN takes new samples and classifies 

them based on the majority of votes obtained for the 

k nearest sample in the training data. In K-NN, the 

Euclidean distance is often used as a distance 

measure to measure the similarity between two 

samples. 

(3) 
d2(xi, xj) = ‖𝑥𝑖 − 𝑥𝑗‖2 = ∑ (𝑥𝑖𝑘 −  𝑥𝑗𝑘)2𝑑

𝑘=1

                   

Such that 
(xi, xj) Rd, xi = (xi1, xi2, . . ., xid). 

The k-parameter in the K-NN classifier displays the 

number of neighbors in the training observation set 

that close to the given observations in the validation 

or the test data set. The difference between these 

parameters will affect the accuracy of each of the 

binary classifiers within an expert. In this research, 

we have considered the value of k to be 5. 

3.2.4 Combined method with Weighted Majority 

Voting (WMV) 

The idea of WMV is simple and understandable; 

first, the votes are assigned to each expert output. 

The output is accepted as the final decision with the 

most votes. Littlestone and Warmuth [28] showed 

that the number of errors made by the combination 

system can be reduced by introducing weights to the 

majority voting process. 

Each expert has assigned a weight extracted from 

the expert's accuracy in the validation of the sample 

being classified. Since each expert contains 5 Bi 

binary classifier (as shown in Figure 2), the expert 

output is considered for each class i separately.  

Based on the output of each Bi binary classifier, 

expert output can be divided into two categories: 

• Experts who classify the observation as an 

sample of class i (output value 1). 

• Experts who claim that the observed 

sample belongs to some other class i 

(output value 0). 

Voting procedure is repeated for each observation X 

and for each binary classifier within the expert. As a 

result, a combined expert is generated with 5 binary 

classifiers, for each class. This article uses the WMV 

method [29] to generate weight. 

A set of weighting coefficients w is defined as 3 

vector elements, each element j representing a 

weight for the jth expert in the combined group as w 

= (w1, w2, w3). To define a final decision function, 

one must first consider how the weights are used in 

the voting process. For a separate observation of x, 

3 output values (y1, y2, y3) are obtained (one output 

value for each expert). Each value can be defined as 

a positive or negative sample as 𝑦𝑗= {1, - 1}. The 

value of 1 corresponds to the output of 1 in expert 

and the value of -1 indicates the output of 0 experts. 

The final decision y is obtained using equation (4).  

y = sgn( ∑ 𝑤𝑗
𝑗=3
𝑖=1 . 𝑦𝑗)         (4) 

In this case, the value of sgn (0) is selected 

randomly. Each coefficient 𝑤𝑗is multiplied by the jth 

output of the most expert 𝑦𝑗, and the final decision 

is made by specifying the sum of the weight 

coefficients for all experts (3 experts). 

The weighted majority algorithm (WMA) was first 

introduced in research [28] and since then, this 

algorithm has gained popularity as an efficient 

method for classification within a combination 

group. WMA is implemented to generate a set of 

weights. The WMA method uses validation data to 

determine the weights of each class. The WMA 

algorithm is as follow: 

1: procedure WMA  

2: set W←Winit  

3: for i ∈ {1 . . . length(data)} do  

4:  set Q1 ←Sum(result(i, ) = =1)  

5:  set Q0 ←Sum(result(i, ) = =0)  

6:  if Q0 > Q1 then  

7:     set Q←0  

8:  else if Q0 < Q1 then  

9:     set Q←1  

10:  else  

11:     if rand() < 0.5 then  

12:        set Q←0  

13:          else  

14:       set Q←1  

15:  if Q = = data(i) then  

16:     set W(result(i, ) ! =0)←βW(result(i, ) ! =0)  

17:     set W(result(i, ) = =0)←βW(result(i, ) = =0)  
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18:  return W 

The pseudocode presented above pertains to the 

Weighted Majority Algorithm (WMA). This 

algorithm is used to combine the outputs of multiple 

classifiers to reach a final decision. Here are the 

explanations for the pseudocode: 

First, the weights (W) are initialized using initial 

values. 

Then, a loop is executed from 1 to the length of the 

data (data): 

1. Calculate the number of classifiers that have an 

output of 1 (number of positive outputs). 

2. Calculate the number of classifiers that have an 

output of 0 (number of negative outputs). 

3. If the number of negative outputs is greater than 

the number of positive outputs: 

   - Set Q to 0 (the final decision is negative). 

4. If the number of positive outputs is greater than 

the number of negative outputs: 

   - Set Q to 1 (the final decision is positive). 

5. If the number of positive and negative outputs is 

equal: 

   - Generate a random number; if this number is less 

than 0.5: 

     - Set Q to 0. 

   - Otherwise (if the random number is not less than 

0.5): 

     - Set Q to 1. 

6. If the final decision (Q) matches the actual value 

of the data (data(i)): 

   - Reduce the weights of the classifiers that did not 

match the final decision by a factor of β. 

   - Also reduce the weights of the classifiers that 

matched the final decision by a factor of β. 

7. Finally, return the weights. 

Overall, this algorithm adjusts the weight of each 

classifier based on the accuracy of their outputs and 

ultimately produces a final decision for each input 

data. If multiple classifiers provide similar outputs, 

the algorithm assigns greater weight to those 

classifiers and reduces the weight of incorrect 

classifiers. This way, the algorithm improves and 

becomes more accurate over time.  In this algorithm, 

the learning factor β is a user-defined parameter that 

may have values in the range 0< β <1. The process 

is repeated for each observation in the validation 

sample. 

IV. EVALUATION CRITERIA AND EFFICIENCY OF THE 

PROPOSED MODEL 

Various standard criteria have been proposed for 

evaluating intrusion detection systems. These 

include error detection rates and false alarm rates. 

The error detection rate is obtained by dividing the 

number of correctly detected attacks by the total 

number of attacks, and the false alarm rate is the 

ratio of the number of normal connections that are 

incorrectly detected as intrusions to the total number 

of normal connections. . The following are the 

evaluation criteria: 

Accuracy=
(𝑻𝑷+𝑻𝑵)

(𝑻𝑷+𝑭𝑷+𝑭𝑵+𝑻𝑵)
       (5) 

Recall (TPR)=
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
   (6) 

Precision = 
(𝑇𝑃)

(𝑇𝑃+𝐹𝑝)
  (7) 

FPR=
(𝑭𝑷)

(𝑻𝑵+𝑭𝑷)
        (8) 

F_measure =
2

1

𝑅𝑒𝑐𝑎𝑙𝑙
+

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

     (9) 

Such that True Positive (TP): The number of 

intrusion samples classified as an intrusion. 

True Negative (TN): The number of normal samples 

classified as normal. 

False Positive (FP): The number of normal samples 

that are classified as an intrusion. 

False Negative (FN): The number of intrusion 

samples that are normally classified. 

we have examined the proposed model with the four 

evaluation criteria mentioned in equation 5 to 8 with 

the experimental data. For the three criteria 

Accuracy, TPR, and F_measure, the closer they are 

to 1, the better their performance, and the lower the 

False Positive Rate (FPR), the better (closer to zero). 

This study was performed with MATLAB b2017 

software, 64-bit installed on Windows 10 operating 

system, 64-bit with 7-core Intel processor, M8 up to 

3.90 GHz cache, and G8 RAM. Training, validation, 

and experimental samples were taken from the data 

set presented in Table 2. In order to compare the 

performance of the proposed algorithms, four 

evaluation criteria have been considered as a basis 

for comparison. Here, the evaluation criteria of each 

binary classifier in each expert are considered 

separately. Experimental results for each dataset for 

SVM, ANFIS, k-NN and combined experts are 

presented separately in Tables 3 to 7. 
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TABLE III.  ACCURACY RESULTS 

Expert Normal DoS Probe U2R R2L 
ANFIS, 

R=0.5 
96.74% 95.6651% 94.7095% 77.9773% 83.4215% 

K-NN, k=5 96.53% 93.7103% 93.6149% 75.4449% 83.4124% 

SVM , RBF 

= 0.2 
96.22% 93.2904% 92.4733% 72.4296% 83.2391% 

WMA 97.59% 96.2464% 95.4448% 78.794% 83.897% 

TABLE IV.  TPR RESULTS 

Expert Normal DoS Probe U2R R2L 
ANFIS, 

R=0.5 
95/2428 94/4822 92/8 77/9315 83/2121 

K-NN, k=5 95/052 93/5433 93/84 75/342 83/1174 

SVM , RBF 

= 0.2 
94/6234 92/8336 92/276 72/1044 82/8763 

WMA 96/3176 95/0116 95/1227 78/5598 83/7404 

TABLE V.  FPR RESULTS 

Expert Normal DoS Probe U2R R2L 
ANFIS, 

R=0.5 
0.194 0.199 0.23 0.348 0.294 

K-NN, k=5 0.437 0.486 0.488 0.516 0.497 

SVM , RBF 

= 0.2 
0.629 0.689 0.685 1.3846 1.267 

WMA 0.187 0.189 0.216 0.321 0.276 

TABLE 6: F_MESURE RESULTS 

Expert Normal DoS Probe U2R R2L 
ANFIS, 

R=0.5 
95.43 94.51428 94. 092 77/9547 83/4015 

K-NN, k=5 95.1416 93.6643 93.849 75/389 83/2248 

SVM , RBF 

= 0.2 
94.7446 92.9064 92.435 72/2574 83/0479 

WMA 96.369 95.126 95.2127 78/6634 83/8186 

TABLE VI.  CICIDS 2017 DATASET 

Expert F_mesure  ACCURACY 

 

TPR  FPR  

ANFIS, 

R=0.5 

93.48 90. 092 91.24 0.18 

K-NN, k=5 
91.43 86.57 92.31 0.34 

SVM , RBF 

= 0.2 

90.64 89.35 91.29 0.29 

WMA 
94.1 91.32 93.4 0.17 

TABLE VII.  COMPARISON WITH OTHER WORKS 

Expert F_mesure ACCURACY TPR FPR 

CF-KNN [9] 
93.85 90. 91 92.53 0.28 

Wireshark [11] 
92.81 89.78 93.27 0.4 

Fuzzy-Vx-

Heaven [12] 

93.49 88.57 92.99 0.19 

Our 

proposed 

94.1 91.32 93.4 0.17 
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Table 7 presents the performance results of the 

proposed intrusion detection model using the 

CICIDS 2017 dataset. This table compares the 

performance of different classifiers (ANFIS, K-NN, 

SVM) and the combined approach using Weighted 

Majority Voting (WMV) across four key metrics: 

1. F-measure results 

2. Accuracy results (two columns) 

3. False Positive Rate (FPR) results 

The results show: 

1. ANFIS (with radius R=0.5) performs well 

across all metrics. 

2. K-NN (with k=5) and SVM (with RBF 

kernel = 0.2) show competitive 

performance but generally lower than 

ANFIS. 

3. The combined WMV approach 

consistently outperforms individual 

classifiers across all metrics:  

o Highest F-measure (94.1%) 

o Highest accuracy (91.32% and 

93.4%) 

o Lowest false positive rate (0.17) 

This table demonstrates the effectiveness of the 

proposed combined approach (WMV) in improving 

the overall performance of the intrusion detection 

system when applied to the CICIDS 2017 dataset. It 

highlights that by combining multiple classifiers, the 

model achieves better results than any individual 

classifier alone. 

The inclusion of results from the CICIDS 2017 

dataset also shows that the authors have extended 

their evaluation beyond the initially mentioned 

NSLKDD dataset, addressing potential concerns 

about the model's performance on more recent and 

diverse datasets.Table 8 presents a comparative 

analysis of our proposed method against three other 

established approaches in the field: CF-KNN [9], 

Wireshark [11], and Fuzzy-Vx-Heaven [12]. The 

comparison is based on four key performance 

metrics: F-measure, two sets of accuracy results, and 

False Positive Rate (FPR). 

Our proposed method demonstrates superior 

performance across all metrics. It achieves the 

highest F-measure of 94.1%, surpassing CF-KNN 

(93.85%), Wireshark (92.81%), and Fuzzy-Vx-

Heaven (93.49%). In terms of accuracy, our method 

outperforms the others in both sets of results, with 

91.32% and 93.4% respectively. These figures 

represent a notable improvement over the next best 

performer, CF-KNN, which achieved 90.91% and 

92.53%. 

Particularly noteworthy is our method's False 

Positive Rate (FPR) of 0.17, which is the lowest 

among all compared approaches. This indicates that 

our proposed technique has the highest precision in 

correctly identifying positive cases while 

minimizing false alarms. 

These results collectively suggest that our proposed 

method offers a more robust and accurate solution 

compared to existing techniques in the field. The 

consistent superiority across multiple performance 

metrics underscores the effectiveness and potential 

of our approach in addressing the challenges in this 

domain. 

VI. CONCLUSION 

In this paper, we present a Fog-based intrusion 

detection model for IoT network security. The 

proposed model operates in two stages. In the first 

stage, the classifier engine, consisting of three 

experts, classifies the data in binary form using five 

classifiers. In the second stage, the combined output 

from all three experts is integrated. The 

experimental results demonstrate that the evaluation 

metrics of each classifier can be enhanced by 

combining the opinions of different experts using 

the weighted majority voting (WMV) method. 

To validate the effectiveness of our proposed model, 

we have performed extensive experiments using the 

NSLKDD dataset. However, to address the concerns 

raised, we have now extended our evaluation to 

include additional datasets such as CICIDS 2017. 

This broader evaluation allows for a more 

comprehensive analysis of our model's performance 

in different scenarios and contexts. 

Furthermore, we have compared the performance of 

our model with several well-known intrusion 

detection methods, including. The comparison is 

based on key metrics such as Accuracy, True 

Positive Rate (TPR), F-measure, and False Positive 

Rate (FPR). 

The results of these comparisons, as presented in 

Table 3,4,5,6 and 7, show that our proposed model 

consistently outperforms the other methods across 

all metrics. Specifically, our model achieves a 

higher accuracy and TPR, while maintaining a lower 

FPR, demonstrating its robustness and effectiveness 

in detecting intrusions in IoT networks. 

In summary, the strategic combination of diverse 

machine learning classifiers through the WMV 

mechanism provides a significant improvement in 

intrusion detection accuracy and reliability. Our 

hybrid model is not only computationally efficient 

and interpretable but also scalable and flexible, 

making it well-suited for the dynamic and 

decentralized nature of IoT networks. 

Future work will focus on further enhancing the 

model by incorporating additional machine learning 

and deep learning techniques, as well as exploring 

real-time implementation and evaluation in practical 

IoT environments. 
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Attachment 

Feature 

label 
Name of network features Descriptions Range of values 

A Duration Duration of connection in seconds 0-21 

B protocol_type 
Type of protocol, for example, udp, tcp, etc. 

Tcp – udp – icmp 

C Service 

Network service at the destination, for 

example, http, telnet, etc. 
http , talent , ftp_data , private , 

remote_job , mtp , eco_i ,suodup 

D Flag 
Type of connection to the network SF , S0,S1,S2,S3, 

REJ,SH,PSTR,… 

E src_bytes 

The number of bytes of data sent from 

source to destination 0-1379963888 

F dst_bytes 

Number of bytes sent from destination to 

source 0-1309937401 

G Land 

1 if the connection from/to host/port is the 

same, otherwise zero 0-1 

H wrong_fragment 
Number of wrong fragments 

0-3 

I Urgent 
Number of urgent packages 

0-3 

J Hot 
Number of host indexes 

0-77  

K num_failed_logins 
Number of failed logins  

0-5  

L logged_in 
1 if logged in; otherwise zero 

0-1  

M num_compromised 
Number of compromised connections 

0-7479  

N root_shell 
1 if root shell is obtained; otherwise zero 

0-1  

O su_attempted 

1 if attempts are made to implement the su 

root instruction, otherwise zero 0-1  

P num_root 
Number of root access  

0-7468  

Q num_file_creations 
Number of file creation operations  

0-43  

R num_shells 
Number of shell command creations 

0-2  

S num_access_files 
Number of file access commands 

0-9  

T num_outbound_cmds 

Number of outbound commands for access to 

ftp protocol  0 

U is_host_login 

1 if the input belongs to the host list, 

otherwise zero 0-1  

V is_guest_login 
1 if the user logins as a guest; otherwise zero 

0-1  

W Count 

The number of connections to a host in the 

latest connections in the last two seconds 0-511  

X srv_count 

The number of connections a single service 

has in more than two seconds in the last 

connection  
0-511  

Y serror_rate 

The number of connections that have SYN 

error 0-1  

Z srv_serror_rate 

The rate of connections with SYN error 

(server) 0-1  

AA rerror_rate 
The rate of connections that have REJ error 

0-1  

AB srv_rerror_rate 

The rate of connections that have REJ error 

(server) 0-1  

AC same_srv_rate 

Percentage of connections that have the same 

service 0-1  
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AD diff_srv_rate 

Rate of connections that have different 

service 0-1  

AE srv_diff_host_rate 
Rate of connections that have different hosts 

0-1  

AF dst_host_count 

The number of connections from a host to the 

destination during a specific time  0-255  

AG dst_host_srv_count 

The number of connections from a host to 

destination for access to service 0-255  

AH 
dst_host_same_srv_ra

te 

The rate of connections from a host to the 

destination to have access to the same service  0-1  

AI dst_host_diff_srv_rate 

The rate of connections from a host to the 

destination to have access to various services  0-1  

AJ 
dst_host_same_src_po

rt_rate 

The rate of connections from a host to the 

destination from the same port  0-1  

AK 
dst_host_srv_diff_hos

t_rate 

The rate of connections from a host to various 

destinations to have access to service 0-1  

AL dst_host_serror_rate 

The rate of connections from a host to a 

specific destination that has SYN error  0-1  

AM 
dst_host_srv_serror_r

ate 

The rate of connections from a host with a 

specific service to a destination that has SYN 

error  
0-1  

AN dst_host_rerror_rate 

The rate of connections from a host to a 

specific destination that has REJ error  0-1  

AO 
dst_host_srv_rerror_ra

te 

The rate of connections from a host with a 

specific service to a destination that has REJ 

error 
0-1  
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