
Combination of Machine Learning Techniques

Using Weighted Majority Voting for Intrusion

Detection in IoT

Mohammad Hassan Nataj Solhdar

Shohadaye Hoveizeh Campus of Technology, Shahid

Chamran University of Ahvaz

Ahvaz, Iran

n.solhdar@scu.ac.ir

Nasser Erfani Majd

Shohadaye Hoveizeh Campus of Technology, Shahid

Chamran University of Ahvaz

Ahvaz, Iran

n.erfanimajd@scu.ac.ir

Received: 15 April 2024 – Revised: 10 June 2024 - Accepted: 26 August 2024

Abstract__The vast scale of the IoT requires robust cloud computing capabilities for data storage, management, and

analysis near the network's edge. As IoT integration in business operations grows, so does the need for secure and

efficient communication. Security concerns in fog and cloud environments are critical, as network attacks can severely

impact IoT, fog, and cloud computing development. Intrusion detection systems (IDS) are one of the best options

designed using artificial intelligence. This paper presents an IDS designed to enhance fog security against cyber-attacks

using various machine learning techniques. The NSLKDD dataset was employed to develop and test the model.

Performance metrics show the proposed system's superiority over existing methods. The model operates in two phases:

first, a classifier ensemble of three experts processes data into binary form using five different classifiers; second, the

collective output of these classifiers is merged. By using weighted majority voting (WMV), the combined output is

optimized. Experimental results demonstrate that integrating opinions from multiple experts improves classifier

performance across all measured criteria—Accuracy, TPR, F-measure, and FPR—proving the model's effectiveness.

Specifically, the proposed method achieves a significant improvement in various metrics, with an F-measure of 94.1%,

an accuracy of 91.32%, a TPR of 93.4%, and an FPR of 0.17%.

Keywords: Internet of Things (IoT), intrusion detection, classification

Article type: Research Article

© The Author(s).

Publisher: ICT Research Institute

 Corresponding Author

https://orcid.org/0000-0002-8959-3345
https://orcid.org/0000-0002-9929-0858

I. INTRODUCTION

The Internet of Things (IoT) is an evolution of the

Internet, so that the ability to connect to the Internet

is given to any entity [1, 2], which is estimated to

number more than 50 billion. This huge number of

connected devices represents a huge amount of

traffic and generated and transmitted digital data.

From 106 to 1030 data is used to describe the vast

amount of digital pool formed by the IoT platform.

In fact, 40% of the data generated by the IoT is

stored, processed, analyzed, and operated near the

edges of the network where cloud deficiencies are

met to meet IoT needs [3]. These shortcomings1 and

the acceleration of IoT lubricate the wheels of fog

computing pattern development. On the other hand,

as the depth of this digital pool increases, it becomes

problematic due to different types of attacks and

intrusions [4]. Based on this, various methods and

techniques have been designed and implemented to

protect the IoT operating system such as firewalls,

data encryption and user authentication through the

fog computing model. Attack and threat methods are

evolving, and leave classic security techniques

inefficient and ineffective to deal with IoT security

To open the getway to a new generation of intrusion

detection systems built using machine learning and

artificial neural networks. A series of works and

researches on finding the best intelligent intrusion

detection system in IoT-based environments has

been done for different types of applications [5, 6].

In this paper, we define an expert as a set of binary

categories that together produce a binary vector of

responses. An expert from an adaptive network-

based fuzzy inference system (ANFIS), an expert

from k-nearest neighbor (K-NN), and an expert from

support vector machine (SVM) are considered on

the same data set. Then a combination of the

weighted majority algorithm (WMA) method is

created which ensemble the opinions of three

experts to reach a final decision.

In early research, it has been shown experimentally

and theoretically that combination groups are more

accurate than any single classification components.

A combination group generated from classifiers

derived from the same learning algorithm is called

homogeneous, while a combination group generated

from classifiers derived from different learning

algorithms is called heterogeneous. For example,

bagging and boosting are often used to produce

homogeneous compounds, while stacking

combinations can be used to produce heterogeneous

compounds. The success of a combination classifier

strongly depends on the diversity in the output of its

1 The deficiency in this paragraph refers to the deficiency related to the

cloud, which is removed by the fog

component as well as the choice of method for

combining these outputs into one classifier [7].

Given the massive data volumes generated by IoT

devices, deep learning methods like Deep Q-

learning might initially seem ideal due to their

automatic feature extraction capabilities. Deep

learning models, such as convolutional neural

networks (CNNs) and recurrent neural networks

(RNNs), have been extensively applied in various

domains for tasks requiring complex pattern

recognition and large-scale data analysis [30,31].

However, IoT environments typically operate with

constrained computational resources, making

lightweight machine learning algorithms like

ANFIS, SVM, and K-NN more suitable. These

methods not only offer computational efficiency but

also provide better interpretability and ease of

deployment, critical for IoT's decentralized nature.

Our method's novelty lies in its strategic

combination of these algorithms, leveraging their

diverse strengths through a weighted majority

voting mechanism, thus ensuring real-time, scalable,

and accurate intrusion detection tailored specifically

for IoT networks. This approach effectively

addresses IoT's unique challenges, such as limited

resources and the need for low-latency responses,

making it a robust security solution.

II. RELATED WORK

Because intrusion detection systems are one of the

main problem-solving methods used for IoT

security, there is a tendency to use more than one

technique at the same time that is proposed by

Alharbi et al. [8]. They provided a proof-of-concept

system for IoT security implemented in the fog

computing layer. The proposed system consists of a

VPN server, traffic analysis engine, challenge-

response unit, and firewall. Each unit thwarts certain

types of attacks. The VPN server destroys the

communication channels between IoT systems

against sniff, spoof, and system attacks. To detect

DoS and DDoS attacks, intrusion detection systems

of traffic analysis units were used, in which the

decision tree machine learning method was used as

a classification engine.

Pajouh et al. [9] have proposed a new layer system

for intrusion detection for the backbone of IoT body

using a two-layer dimensional reduction engine and

a two-layer classification engine. The reduce

dimensions engine consisted of component analysis

and linear separation analysis units, while the

classification engine consisted of Naïve Bayes and

CF-KNN. Naïve Bayes classification was used to

classify attack records and CF-KNN classification

Volume 16- Number 4 – 2024 (20 -32)

21

was used as the second filter layer. Using the NSL-

KDD dataset [10], the proposed model achieved

acceptable performance for a small number of

attacks, namely the U2R and R2L classes.

Anthi et al. have proposed a predictive and adaptive

intrusion detection system for IoT systems Using

Wireshark software through the IoT test network for

four consecutive days and using machine learning

techniques on it [11]. The proposed system consists

of two main stages. First, they built a real IoT lab

and controlled the normal operation of each IoT

device. Then, in the second stage, malicious

activities were applied on these devices, which leads

to anomalous network traffic. These steps feed a

supervised machine learning technique with the

appropriate training data that forms the core of the

intrusion detection model.

Dovom et al. [12] used a fast fuzzy tree method to

identify malware intrusion and classification in the

Internet of Things. This type of fuzzy-based

technique consists of a fuzzy top-down induction

structure such as a tree, in which the nodes inside the

tree are fuzzy logic calculus operators, While the

leaves of these nodes are related to the fuzzy

predictions applied to the input properties features.

Using the Vx-Heaven dataset, their proposed model

achieved high detection accuracy at a reasonable

execution time.

To improve detection, Wang et al. [13] performed

logarithmic density ratios to convert NSL-KDD data

set features to new and better display quality

features. Using the support vector machine (SVM)

as the classification engine, the experimental results

showed strong performance in detection rate and

detection accuracy.

Zhang et al. [14] used the UNSW-NB dataset [15]

using a comprehensive overview of IoT modern

attack scenarios to demonstrate the effectiveness of

machine learning-based intrusion detection.

Although they used a simple multilayer perceptron

as a classifier, they used a new feature selection

engine using the Denoising Autoencoder (DAE)

based on weight loss performance. This new

technique focuses on the features that represented

the attacks on the network.

Another application of the UNSW-NB dataset in the

IoT is a forensic architecture consisting of the C4.5

decision tree, Naïve Bayes, the Association Rule

Rining (ARM), and the artificial neural network

(ANN). Machine learning techniques by Koroniotis

et al. [16] identify and track new and complex forms

of current botnet attack

As an example of the integration of SDN and IoT,

Dovom et al. [17] Provide an in-depth penetration

detection system for SDN-based IoT architecture

that uses SDN modeling for IoT, scalability,

enhancement, and flexibility purposes. While the

Boltzman Machine Restricted (RBM) was used as

the engine to detect intrusion. The proposed model

was evaluated and validated using the KDD Cup’99

dataset and earn Performance accuracy close to

94%.

Hodo et al. [18] presented a simple multi-layered

perceptron neural network trained with forwarding

and backward learning algorithms to detect DoS /

DDoS attacks on IoT networks. The IoT structure

consists of five node sensors, one of which acts as a

server amplifier node for data analysis while the

others act as a client. This method was able to

successfully detect DoS / DDoS attacks to 99.4%

accuracy.

For use in computer networks, Mohammadi and

Sabokrou [19] proposed a semi supervised intrusion

detection model constructed using deep structured

neural networks trained by adversarial learning. This

model consists of two main stages: training and

testing. The training phase, which performed using

only the normal flow of NSL-KDD data set

connections, consists mainly of two modules. The

first module consists of an encryption-decryption

network, and the second module includes a fully

connected neural network, followed by the SoftMax

classification. On the other Network anomalies are

generated through an optimized encoder-decoder

network. The test phase uses a trained neural

network that results from a training phase in which

KDDTest + is fully utilized. In this model, 91.39%

detection accuracy was obtained by the proposed

model.

A semi supervised intrusion detection system was

proposed by Kumari and Varma [20] which the

classification engine used a support vector machine

(SVM) and Fuzzy c-means (FCM) in combination.

In this model, intrusion detection performed using

two classification engines: SVM and FCM. If both

classifiers label an input as a normal sample, they

will eventually be considered normal. However, if

the input sample is labeled as an anomaly by the

SVM engine and its subset is also designated by the

FCM engine, it is considered an abnormal sample

and the nearest circle to support higher fuzzy

membership vectors as a subclass will be selected as

a subgroup.

Volume 16- Number 4 – 2024 (20 -32)

22

Figure 1. General framework of the proposed smart model for IoT security

Other researchers have used group training for

strong IoT security. This method uses several

techniques, model or expertise to solve a problem

based on Artificial Intelligent. In intrusion detection,

problems, group learning leads to better

generalization, and voting between different group

techniques offers higher detection accuracy than

individual models presented by Illy et al. [21].

III. PROPOSED METHOD

In this section, the principles of architecture,

concept, and design of the proposed model are

presented. Figure 1 shows the general architecture of

our proposed model, which is implemented in the

fog calculation layer.

As shown in Figure 1, The proposed smart intrusion

detection model consists of the main engine which

is fully explained in Section 3.2. Traffic connections

are preprocessed in the traffic processing unit, which

results in the creation of traffic data in a format that

is suitable for processing by the classification

engine. The proposed model can be implemented in

Fog calculations, which are very close to ending

users and IoT devices. This model train three

experts (ANFIS, SVM, K-NN) that each expert is

trained by five binary classifiers to increase the

predictability of attack or normal classification. The

main engine shows classification-based traffic

analysis, that is, network traffic that attempts to

access the IoT system and analyzes security alerts in

the event of detected intrusion. To clarify the roles

of the expert system and the classifiers, it should be

noted that in this context, the term "expert system"

refers to a system based on multiple classifiers that

work in combination to enhance the accuracy and

reliability of intrusion detection. For this purpose, 3

votes are examined and tested, and then they are

combined in a combined group. The steps are as

follows, which we will explain in the following:

1- NSLKDD data preprocessing

2- Data classification with ANFIS

3- Data classification with SVM

4- Data classification with k-NN

5- Data classification with combination classifier

In our proposed intrusion detection system, we

utilize a combination of ANFIS, SVM, and K-

NN classifiers, each selected for its distinct

advantages in data classification. ANFIS

leverages the learning power of neural

networks with fuzzy logic’s ability to manage

uncertainty, making it ideal for the complex IoT

environments. SVM excels in high-

dimensional data and binary classification tasks

by maximizing the margin between classes,

essential for distinguishing between normal and

malicious traffic. K-NN is effective for

handling irregular decision boundaries by

classifying based on proximity to k-nearest

neighbors. The integration of these methods

allows the system to capitalize on their

complementary strengths, thereby improving

the overall accuracy and reliability of intrusion

detection. This multi-classifier ensemble

enhances the security of IoT networks by

detecting a broader range of intrusion types.

A. Data traffic preprocessing

We used the NSL-KDD dataset [10] to train, test,

and validate the model. The data attributes that

represent the incoming traffic of the network system

are naturally contradictory. Therefore, pre-

processing of traffic data is required for the input of

the classification engine [22]. The traffic

preprocessor engine applies three preprocessing

steps to raw traffic data: (1) Convert symbolic data

to numbers. (2) Data normalization. (3) Data

sampling.

1) Convert symbolic data to numbers

As shown in the table of attributes attached in this

paper, the traffic data feature shows that after the

first numeric feature, there are three symbolic fields

with the titles: protocol, service, and flag features. In

Volume 16- Number 4 – 2024 (20 -32)

23

this paper, we encode these properties in Table 1.

These attributes are changed from symbolic to

numeric:

Protocol: {tcp= 1, udp =2, icmp =3}

Private = {private =16, ..., Netsat= 30}

Flag: {pstr= 4, …, S2= 14}

In addition, as shown in Table 1, as another step

in encoding the data set, the attack

subcategories are labeled as a set in their main

categories, as well as the normal data class code

is considered Zero. In general, we have two

types of labeling: for the binary classifier

engine (normal, attack), all training data

records are packaged in normal and attack

mode. 40 types of attacks are classified into

four main categories, as shown in Table 1

2) .Data normalization

(1)

In order for the range of data changes to be suitable

for the input of the classifiers, the feature value of

the traffic data is normal to be within a certain range.

In this paper, we used the linear transformation of

data with min-max formula. Assume that 𝑚𝑖𝑛𝑓and

𝑚𝑎𝑥𝑓represent the minimum and maximum values

of the 𝑓𝑡ℎfeature, respectively. Therefore, the min-

max formula gives the value of the 𝑓𝑡ℎfeature to the

new value V in the new range.

2) Data sampling

This step is a fundamental step in data set

preprocessing to solve the problem of data that is

unbalanced in the data set. The NSL-KDD dataset

contains approximately 125,000 records, of which

the normal, DoS, Probe, R2L, and U2R datasets are

67343, 45927, 11656, 995 and 52, respectively. A

simple calculation shows that the number of normal

data contains more than 50% of the data set, and also

the DoS data is large and the rest of the classes make

less than 5% of the training data set. As a result,

because of this imbalance, our classifiers tend to be

biased toward normal, DoS data, which is more

numerous, than other classes of attack, which are

fewer in number.

Due to the small number of R2L and U2R attacks,

the classification engine deals with these attacks as

noise when training classifiers, making it difficult to

distinguish this particular type of attack. One

solution to this problem is to replicate both R2L and

U2R attacks in different places of the data set.

Repetition of this data leads to new statistics and

distribution of this type of rare attack, which is

shown in Table 2.

3.2 Intrusion Detection Engine

We design each classifier motor in such a way

that it classifies each input into 5 binary classes.

Suppose i = (1,…, 5) is an index in quintiles T =

(Normal, Probe, DoS, U2R, and R2L) and Bi

represents the corresponding binary classification

for the target class i in T. All 5 binary classifiers are

trained using the training dataset, but each classifier

specifies only its own class. In other words, if the Bi

classifier shows the value 1 as output, it means that

this classifier specifies the input label as class i, and

also if it shows the value zero as output, it means the

input did not put in class i. For example, if output B1

is 1 for an input value, that input is considered

normal data, and if it is zero, that input data is not

normal and will probably be one of the attacks. In

order to distinguish between binary classifiers, the

term expert is introduced to represent a set of 5

binary classifiers. In fact, 5 binary classifiers are

called an expert. Figure 2 shows the relationship

between binary classifiers and experts and presents

the output format of each classifier for each class.

Experts must use a pattern to generate output, So K-

NN, SVM, and ANFIS are implemented as 5 binary

classifiers. Implementing in this way makes it

possible to integrate and combine the experts used

in a combined expert system.

In this paper, we employ Weighted Majority Voting

(WMV) as the combination method for our proposed

IDS. This choice is based on the method's ability to

effectively balance accuracy and computational

efficiency, making it particularly suitable for the

resource-constrained environments typical of IoT

networks. While various combination methods such

as majority voting, stacking, and boosting could be

considered, WMV was selected due to its proven

performance in enhancing the overall decision-

making process by assigning more weight to the

most reliable classifiers. This ensures a robust and

precise detection of different types of attacks with

minimal computational overhead.

Our method is designed specifically for IoT

networks, where the need for low latency and high

responsiveness is paramount. By integrating WMV

within the fog computing layer, close to the IoT

devices, we achieve an optimized balance between

security and performance, ensuring the system

remains lightweight and efficient.

Volume 16- Number 4 – 2024 (20 -32)

24

TABLE I. MAIN CATEGORIES AND SUBCLASSES OF ATTACKS IN THE DATA SET NSL-KDD

Numerical

Code

Main

Categories

Subclasses

1 DoS Back, Land, Neptune, Pod, Smurf, Teardrop, Mailbomb, Processtable, Udpstorm, Apache2, Worm

2 Probe Satan, Ipsweep, Nmap, Portsweep, Mscan, Saint

3 R2L Guess_password, Guess-passwd, ftp-write, Imap, Phf, Multihop, Warezmaster, Xlock, Xsnoop, Snmpguess,

Snmpgetattack, Httptunnel, Sendmail, Named, Warezclient, Spy

4 U2R Buffer-overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm, Ps

3.2.1 Neuro-fuzzy classifier

Artificial neural networks and fuzzy logic are both

artificial intelligence tools that can complement

each other to build another intelligent system. An

artificial neural network is a low-level

computational structure that works well with raw

data. In contrast, fuzzy logic deals with high-level

arguments obtained using the knowledge of an

expert in a particular field [23]. A Neural-fuzzy

network can create in two ways: combining neural

network with Mamdani fuzzy or combining neural

network with Sugeno fuzzy.

 In 1993, Jang first introduced the neural-fuzzy

adaptive inference system. It is taking into account

the capabilities of fuzzy theory and artificial neural

networks. Fuzzy theory is based on logical rules.

Also, the artificial neural network method can

extract knowledge from numerical data(Jang 1993).

The system provided by Jang is called ANFIS. In the

Sugeno fuzzy system, the rules are inferred as if-

then. The inputs and outputs of each layer are

specified and the relationship associated with it is

expressed as follows [23]

Layer 1: This layer is the input layer. The nodes in

this layer prepare the data for layer 2. In layer 1, no

changes are made to the data so that the input is

equal to the output.

Layer 2: In this layer, a fuzzy operation is

performed on the data.

Layer 3: This layer is the rules layer. Each node in

this layer represents a fuzzy rule. Each node in this

layer receives its input from the corresponding

outputs in the previous layer, and its output is the

fire strength of each rule.

Layer 4: Each node normalizes its input from all

nodes of the previous layer, with the output

representing the normalized firing strength of the

corresponding rule.

Layer 5: Each node in this layer receives its input

from the corresponding node in the previous layer.

Layer 6: This layer has a single node that calculates

the sum of the defuzzied values from the previous

layer.

In our proposed intrusion detection system (IDS),

the neuro-fuzzy classifier plays a critical role in

improving detection accuracy by leveraging both

ANN and fuzzy logic. The fuzzy rules in the neuro-

fuzzy classifier can be generated using two methods:

Grid Partition and Subtractive Clustering, which do

not require expert knowledge. We use the

Subtractive Clustering method to determine the

number of required rules and membership functions.

Then, ANFIS is employed to build the IDS.

The Subtractive Clustering method with a

neighborhood radius of 0.5 (R = 0.5) is used to

produce the initial fuzzy system. This method

ensures that the rules and membership functions are

optimized for the dataset, enhancing the system's

ability to detect various types of intrusions

accurately.

By detailing the layers of ANFIS and explaining

how each contributes to the overall decision-making

process, we demonstrate the classifier's integration

within our proposed IDS. The neuro-fuzzy

classifier's ability to handle both numerical data and

logical rules makes it an effective component of our

ensemble approach, combining its strengths with

those of other classifiers to improve the system's

overall performance.

3.2.2 SVM Classifier

Support vector machine (SVM) is an effective

technique for solving classification and regression

problems. SVM is essentially an implementation of

the Vapnick Structural Risk Minimization (SRM)

principle [25], known for its low generalization

error, which is known to have a low (general)

generalization error, in other words, it can be said

that the training data set does not suffer from too

much fit. A model is prone to overfitting or has a

high generalization error if too much learning

happens on the training data. SVM specifically

affects data sets that are linearly separable.

Therefore, the One-Versus-all method is used in

data classification, which is described in Figure 2.

SVM is used in conjunction with many core

functions [26]. But when the RBF kernel function is

used, it produces the best results for classification

[25]. This function is as follows:

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝛾‖𝑥𝑖−𝑥𝑗‖
2

 (2)

Volume 16- Number 4 – 2024 (20 -32)

25

TABLE II. DATA DISTRIBUTION IN STANDARD AND

PROPOSED DATASETS

Balanced data

set (suggested)

Number of data in the

dataset NSL-KDD

Data

classes

33901 67343 Normal

23390 45926 DoS

5356 11656 Probe

4640 995 R2L

713 52 U2R

The selected value for the RBF parameter is defined

with the value 0.2.

3.2.3 K-NN Classifier

The nearest neighbor (K-NN) is an effective and

simple technique for classifying objects based on the

nearest training samples in space [27]. Consider a set

of observations and objectives (x1, y1), ..., (xn, yn)

in which the observations 𝑥𝑖𝜖𝑅𝑑and the objectives

𝑦𝑖 ∈ {0,1}for ith sample that are given K-NN

estimates the neighbors of a test sequence in the

training sample, and uses the class labels of the

nearest neighbors to predict the test class vector.

Therefore, K-NN takes new samples and classifies

them based on the majority of votes obtained for the

k nearest sample in the training data. In K-NN, the

Euclidean distance is often used as a distance

measure to measure the similarity between two

samples.

(3)
d2(xi, xj) = ‖𝑥𝑖 − 𝑥𝑗‖2 = ∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2𝑑

𝑘=1

Such that
(xi, xj) Rd, xi = (xi1, xi2, . . ., xid).

The k-parameter in the K-NN classifier displays the

number of neighbors in the training observation set

that close to the given observations in the validation

or the test data set. The difference between these

parameters will affect the accuracy of each of the

binary classifiers within an expert. In this research,

we have considered the value of k to be 5.

3.2.4 Combined method with Weighted Majority

Voting (WMV)

The idea of WMV is simple and understandable;

first, the votes are assigned to each expert output.

The output is accepted as the final decision with the

most votes. Littlestone and Warmuth [28] showed

that the number of errors made by the combination

system can be reduced by introducing weights to the

majority voting process.

Each expert has assigned a weight extracted from

the expert's accuracy in the validation of the sample

being classified. Since each expert contains 5 Bi

binary classifier (as shown in Figure 2), the expert

output is considered for each class i separately.

Based on the output of each Bi binary classifier,

expert output can be divided into two categories:

• Experts who classify the observation as an

sample of class i (output value 1).

• Experts who claim that the observed

sample belongs to some other class i

(output value 0).

Voting procedure is repeated for each observation X

and for each binary classifier within the expert. As a

result, a combined expert is generated with 5 binary

classifiers, for each class. This article uses the WMV

method [29] to generate weight.

A set of weighting coefficients w is defined as 3

vector elements, each element j representing a

weight for the jth expert in the combined group as w

= (w1, w2, w3). To define a final decision function,

one must first consider how the weights are used in

the voting process. For a separate observation of x,

3 output values (y1, y2, y3) are obtained (one output

value for each expert). Each value can be defined as

a positive or negative sample as 𝑦𝑗= {1, - 1}. The

value of 1 corresponds to the output of 1 in expert

and the value of -1 indicates the output of 0 experts.

The final decision y is obtained using equation (4).

y = sgn(∑ 𝑤𝑗
𝑗=3
𝑖=1 . 𝑦𝑗) (4)

In this case, the value of sgn (0) is selected

randomly. Each coefficient 𝑤𝑗is multiplied by the jth

output of the most expert 𝑦𝑗, and the final decision

is made by specifying the sum of the weight

coefficients for all experts (3 experts).

The weighted majority algorithm (WMA) was first

introduced in research [28] and since then, this

algorithm has gained popularity as an efficient

method for classification within a combination

group. WMA is implemented to generate a set of

weights. The WMA method uses validation data to

determine the weights of each class. The WMA

algorithm is as follow:

1: procedure WMA

2: set W←Winit

3: for i ∈ {1 . . . length(data)} do

4: set Q1 ←Sum(result(i,) = =1)

5: set Q0 ←Sum(result(i,) = =0)

6: if Q0 > Q1 then

7: set Q←0

8: else if Q0 < Q1 then

9: set Q←1

10: else

11: if rand() < 0.5 then

12: set Q←0

13: else

14: set Q←1

15: if Q = = data(i) then

16: set W(result(i,) ! =0)←βW(result(i,) ! =0)

17: set W(result(i,) = =0)←βW(result(i,) = =0)

Volume 16- Number 4 – 2024 (20 -32)

26

18: return W

The pseudocode presented above pertains to the

Weighted Majority Algorithm (WMA). This

algorithm is used to combine the outputs of multiple

classifiers to reach a final decision. Here are the

explanations for the pseudocode:

First, the weights (W) are initialized using initial

values.

Then, a loop is executed from 1 to the length of the

data (data):

1. Calculate the number of classifiers that have an

output of 1 (number of positive outputs).

2. Calculate the number of classifiers that have an

output of 0 (number of negative outputs).

3. If the number of negative outputs is greater than

the number of positive outputs:

 - Set Q to 0 (the final decision is negative).

4. If the number of positive outputs is greater than

the number of negative outputs:

 - Set Q to 1 (the final decision is positive).

5. If the number of positive and negative outputs is

equal:

 - Generate a random number; if this number is less

than 0.5:

 - Set Q to 0.

 - Otherwise (if the random number is not less than

0.5):

 - Set Q to 1.

6. If the final decision (Q) matches the actual value

of the data (data(i)):

 - Reduce the weights of the classifiers that did not

match the final decision by a factor of β.

 - Also reduce the weights of the classifiers that

matched the final decision by a factor of β.

7. Finally, return the weights.

Overall, this algorithm adjusts the weight of each

classifier based on the accuracy of their outputs and

ultimately produces a final decision for each input

data. If multiple classifiers provide similar outputs,

the algorithm assigns greater weight to those

classifiers and reduces the weight of incorrect

classifiers. This way, the algorithm improves and

becomes more accurate over time. In this algorithm,

the learning factor β is a user-defined parameter that

may have values in the range 0< β <1. The process

is repeated for each observation in the validation

sample.

IV. EVALUATION CRITERIA AND EFFICIENCY OF THE

PROPOSED MODEL

Various standard criteria have been proposed for

evaluating intrusion detection systems. These

include error detection rates and false alarm rates.

The error detection rate is obtained by dividing the

number of correctly detected attacks by the total

number of attacks, and the false alarm rate is the

ratio of the number of normal connections that are

incorrectly detected as intrusions to the total number

of normal connections. . The following are the

evaluation criteria:

Accuracy=
(𝑻𝑷+𝑻𝑵)

(𝑻𝑷+𝑭𝑷+𝑭𝑵+𝑻𝑵)
 (5)

Recall (TPR)=
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
 (6)

Precision =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑝)
 (7)

FPR=
(𝑭𝑷)

(𝑻𝑵+𝑭𝑷)
 (8)

F_measure =
2

1

𝑅𝑒𝑐𝑎𝑙𝑙
+

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 (9)

Such that True Positive (TP): The number of

intrusion samples classified as an intrusion.

True Negative (TN): The number of normal samples

classified as normal.

False Positive (FP): The number of normal samples

that are classified as an intrusion.

False Negative (FN): The number of intrusion

samples that are normally classified.

we have examined the proposed model with the four

evaluation criteria mentioned in equation 5 to 8 with

the experimental data. For the three criteria

Accuracy, TPR, and F_measure, the closer they are

to 1, the better their performance, and the lower the

False Positive Rate (FPR), the better (closer to zero).

This study was performed with MATLAB b2017

software, 64-bit installed on Windows 10 operating

system, 64-bit with 7-core Intel processor, M8 up to

3.90 GHz cache, and G8 RAM. Training, validation,

and experimental samples were taken from the data

set presented in Table 2. In order to compare the

performance of the proposed algorithms, four

evaluation criteria have been considered as a basis

for comparison. Here, the evaluation criteria of each

binary classifier in each expert are considered

separately. Experimental results for each dataset for

SVM, ANFIS, k-NN and combined experts are

presented separately in Tables 3 to 7.

Volume 16- Number 4 – 2024 (20 -32)

27

TABLE III. ACCURACY RESULTS

Expert Normal DoS Probe U2R R2L
ANFIS,

R=0.5
96.74% 95.6651% 94.7095% 77.9773% 83.4215%

K-NN, k=5 96.53% 93.7103% 93.6149% 75.4449% 83.4124%

SVM , RBF

= 0.2
96.22% 93.2904% 92.4733% 72.4296% 83.2391%

WMA 97.59% 96.2464% 95.4448% 78.794% 83.897%

TABLE IV. TPR RESULTS

Expert Normal DoS Probe U2R R2L
ANFIS,

R=0.5
95/2428 94/4822 92/8 77/9315 83/2121

K-NN, k=5 95/052 93/5433 93/84 75/342 83/1174

SVM , RBF

= 0.2
94/6234 92/8336 92/276 72/1044 82/8763

WMA 96/3176 95/0116 95/1227 78/5598 83/7404

TABLE V. FPR RESULTS

Expert Normal DoS Probe U2R R2L
ANFIS,

R=0.5
0.194 0.199 0.23 0.348 0.294

K-NN, k=5 0.437 0.486 0.488 0.516 0.497

SVM , RBF

= 0.2
0.629 0.689 0.685 1.3846 1.267

WMA 0.187 0.189 0.216 0.321 0.276

TABLE 6: F_MESURE RESULTS

Expert Normal DoS Probe U2R R2L
ANFIS,

R=0.5
95.43 94.51428 94. 092 77/9547 83/4015

K-NN, k=5 95.1416 93.6643 93.849 75/389 83/2248

SVM , RBF

= 0.2
94.7446 92.9064 92.435 72/2574 83/0479

WMA 96.369 95.126 95.2127 78/6634 83/8186

TABLE VI. CICIDS 2017 DATASET

Expert F_mesure ACCURACY

TPR FPR

ANFIS,

R=0.5

93.48 90. 092 91.24 0.18

K-NN, k=5
91.43 86.57 92.31 0.34

SVM , RBF

= 0.2

90.64 89.35 91.29 0.29

WMA
94.1 91.32 93.4 0.17

TABLE VII. COMPARISON WITH OTHER WORKS

Expert F_mesure ACCURACY TPR FPR

CF-KNN [9]
93.85 90. 91 92.53 0.28

Wireshark [11]
92.81 89.78 93.27 0.4

Fuzzy-Vx-

Heaven [12]

93.49 88.57 92.99 0.19

Our

proposed

94.1 91.32 93.4 0.17

Volume 16- Number 4 – 2024 (20 -32)

28

Table 7 presents the performance results of the

proposed intrusion detection model using the

CICIDS 2017 dataset. This table compares the

performance of different classifiers (ANFIS, K-NN,

SVM) and the combined approach using Weighted

Majority Voting (WMV) across four key metrics:

1. F-measure results

2. Accuracy results (two columns)

3. False Positive Rate (FPR) results

The results show:

1. ANFIS (with radius R=0.5) performs well

across all metrics.

2. K-NN (with k=5) and SVM (with RBF

kernel = 0.2) show competitive

performance but generally lower than

ANFIS.

3. The combined WMV approach

consistently outperforms individual

classifiers across all metrics:

o Highest F-measure (94.1%)

o Highest accuracy (91.32% and

93.4%)

o Lowest false positive rate (0.17)

This table demonstrates the effectiveness of the

proposed combined approach (WMV) in improving

the overall performance of the intrusion detection

system when applied to the CICIDS 2017 dataset. It

highlights that by combining multiple classifiers, the

model achieves better results than any individual

classifier alone.

The inclusion of results from the CICIDS 2017

dataset also shows that the authors have extended

their evaluation beyond the initially mentioned

NSLKDD dataset, addressing potential concerns

about the model's performance on more recent and

diverse datasets.Table 8 presents a comparative

analysis of our proposed method against three other

established approaches in the field: CF-KNN [9],

Wireshark [11], and Fuzzy-Vx-Heaven [12]. The

comparison is based on four key performance

metrics: F-measure, two sets of accuracy results, and

False Positive Rate (FPR).

Our proposed method demonstrates superior

performance across all metrics. It achieves the

highest F-measure of 94.1%, surpassing CF-KNN

(93.85%), Wireshark (92.81%), and Fuzzy-Vx-

Heaven (93.49%). In terms of accuracy, our method

outperforms the others in both sets of results, with

91.32% and 93.4% respectively. These figures

represent a notable improvement over the next best

performer, CF-KNN, which achieved 90.91% and

92.53%.

Particularly noteworthy is our method's False

Positive Rate (FPR) of 0.17, which is the lowest

among all compared approaches. This indicates that

our proposed technique has the highest precision in

correctly identifying positive cases while

minimizing false alarms.

These results collectively suggest that our proposed

method offers a more robust and accurate solution

compared to existing techniques in the field. The

consistent superiority across multiple performance

metrics underscores the effectiveness and potential

of our approach in addressing the challenges in this

domain.

VI. CONCLUSION

In this paper, we present a Fog-based intrusion

detection model for IoT network security. The

proposed model operates in two stages. In the first

stage, the classifier engine, consisting of three

experts, classifies the data in binary form using five

classifiers. In the second stage, the combined output

from all three experts is integrated. The

experimental results demonstrate that the evaluation

metrics of each classifier can be enhanced by

combining the opinions of different experts using

the weighted majority voting (WMV) method.

To validate the effectiveness of our proposed model,

we have performed extensive experiments using the

NSLKDD dataset. However, to address the concerns

raised, we have now extended our evaluation to

include additional datasets such as CICIDS 2017.

This broader evaluation allows for a more

comprehensive analysis of our model's performance

in different scenarios and contexts.

Furthermore, we have compared the performance of

our model with several well-known intrusion

detection methods, including. The comparison is

based on key metrics such as Accuracy, True

Positive Rate (TPR), F-measure, and False Positive

Rate (FPR).

The results of these comparisons, as presented in

Table 3,4,5,6 and 7, show that our proposed model

consistently outperforms the other methods across

all metrics. Specifically, our model achieves a

higher accuracy and TPR, while maintaining a lower

FPR, demonstrating its robustness and effectiveness

in detecting intrusions in IoT networks.

In summary, the strategic combination of diverse

machine learning classifiers through the WMV

mechanism provides a significant improvement in

intrusion detection accuracy and reliability. Our

hybrid model is not only computationally efficient

and interpretable but also scalable and flexible,

making it well-suited for the dynamic and

decentralized nature of IoT networks.

Future work will focus on further enhancing the

model by incorporating additional machine learning

and deep learning techniques, as well as exploring

real-time implementation and evaluation in practical

IoT environments.

Volume 16- Number 4 – 2024 (20 -32)

29

REFERENCES

[1] Balasubramanian, V., et al., Low-latency vehicular edge:

A vehicular infrastructure model for 5G. Simulation

Modelling Practice and Theory, 2020. 98: p. 101968.

[2] Al Ridhawi, I., et al., A profitable and energy-efficient

cooperative fog solution for IoT services. IEEE

Transactions on Industrial Informatics, 2019. 16(5): p.

3578-3586.

[3] Mekki, K., et al., A comparative study of LPWAN

technologies for large-scale IoT deployment. ICT

express, 2019. 5(1): p. 1-7.

[4] Al Ridhawi, I., et al., A continuous diversified vehicular

cloud service availability framework for smart cities.

Computer Networks, 2018. 145: p. 207-218.

[5] da Costa, K.A., et al., Internet of Things: A survey on

machine learning-based intrusion detection approaches.

Computer Networks, 2019. 151: p. 147-157.

[6] 6. Quwaider, M. and Y. Jararweh, A cloud supported

model for efficient community health awareness.

Pervasive and Mobile Computing, 2016. 28: p. 35-50.

[7] Chen, Y., M.-L. Wong, and H. Li, Applying Ant Colony

Optimization to configuring stacking ensembles for data

mining. Expert systems with applications, 2014. 41(6): p.

2688-2702.

[8] Alharbi, S., et al. FOCUS: A fog computing-based

security system for the Internet of Things. in 2018 15th

IEEE Annual Consumer Communications & Networking

Conference (CCNC). 2018. IEEE.

[9] Pajouh, H.H., et al., A two-layer dimension reduction and

two-tier classification model for anomaly-based intrusion

detection in IoT backbone networks. IEEE Transactions

on Emerging Topics in Computing, 2016. 7(2): p. 314-

323.

[10] Tavallaee, M., et al. A detailed analysis of the KDD

CUP 99 data set. in 2009 IEEE Symposium on

Computational Intelligence for Security and Defense

Applications. 2009. IEEE.

[11] Anthi, E., L. Williams, and P. Burnap, Pulse: an

adaptive intrusion detection for the internet of things.

2018.

[12] Dovom, E.M., et al., Fuzzy pattern tree for edge

malware detection and categorization in IoT. Journal of

Systems Architecture, 2019. 97: p. 1-7.

[13] Wang, H., J. Gu, and S. Wang, An effective intrusion

detection framework based on SVM with feature

augmentation. Knowledge-Based Systems, 2017. 136: p.

130-139.

[14] Zhang, H., et al. An effective deep learning based

scheme for network intrusion detection. in 2018 24th

International Conference on Pattern Recognition (ICPR).

2018. IEEE.

[15] Moustafa, N. and J. Slay. UNSW-NB15: a

comprehensive data set for network intrusion detection

systems (UNSW-NB15 network data set). in 2015

military communications and information systems

conference (MilCIS). 2015. IEEE.

[16] Koroniotis, N., et al. Towards developing network

forensic mechanism for botnet activities in the iot based

on machine learning techniques. in International

Conference on Mobile Networks and Management. 2017.

Springer.

[17] Dawoud, A., S. Shahristani, and C. Raun, Deep

learning and software-defined networks: Towards secure

IoT architecture. Internet of Things, 2018. 3: p. 82-89.

[18] Hodo, E., et al. Threat analysis of IoT networks using

artificial neural network intrusion detection system. in

2016 International Symposium on Networks, Computers

and Communications (ISNCC). 2016. IEEE.

[19] Mohammadi, B. and M. Sabokrou. End-to-end

adversarial learning for intrusion detection in computer

networks. in 2019 IEEE 44th Conference on Local

Computer Networks (LCN). 2019. IEEE.

[20] Kumari, V.V. and P.R.K. Varma. A semi-supervised

intrusion detection system using active learning SVM and

fuzzy c-means clustering. in 2017 International

Conference on I-SMAC (IoT in Social, Mobile, Analytics

and Cloud)(I-SMAC). 2017. IEEE.

[21] Illy, P., et al. Securing fog-to-things environment

using intrusion detection system based on ensemble

learning. in 2019 IEEE Wireless Communications and

Networking Conference (WCNC). 2019. IEEE.

[22] Aloqaily, M., et al., Data and service management in

densely crowded environments: Challenges,

opportunities, and recent developments. IEEE

Communications Magazine, 2019. 57(4): p. 81-87.

[23] Negnevitsky, M., Artificial intelligence : a guide to

intelligent systems / Michael Negnevitsky. 2005, New

York: Addison-Wesley.

[24] Jang, J.-S., ANFIS: adaptive-network-based fuzzy

inference system. IEEE transactions on systems, man,

and cybernetics, 1993. 23(3): p. 665-685.

[25] Kuang, F., W. Xu, and S. Zhang, A novel hybrid

KPCA and SVM with GA model for intrusion detection.

Applied Soft Computing, 2014. 18: p. 178-184.

[26] Horng, S.-J., et al., A novel intrusion detection system

based on hierarchical clustering and support vector

machines. Expert Systems with Applications, 2011.

38(1): p. 306-313.

[27] Wang, W., X. Zhang, and S. Gombault, Constructing

attribute weights from computer audit data for effective

intrusion detection. Journal of Systems and Software,

2009. 82(12): p. 1974-1981.

[28] Littlestone, N. and M.K. Warmuth, The weighted

majority algorithm. Information and computation, 1994.

108(2): p. 212-261.

[29] Dogan, A. and D. Birant. A Weighted Majority Voting

Ensemble Approach for Classification. in 2019 4th

International Conference on Computer Science and

Engineering (UBMK). 2019. IEEE.

[30] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep

learning. Nature, 521(7553), 436-444.

[31] Schmidhuber, J. (2015). Deep learning in neural

networks: An overview. Neural Networks, 61, 85-117.

Mohammad Hassan Nataj Solhdar

received his B.Sc., degree in Computer

Science from the University of

Mazandaran, Mazandaran, Iran in 2010,

and M.Sc. degree in Computer Science

from the Shahid Bahonar University of

Kerman, iran in 2013. He is a faculty

member of Shahid Chamran University of Ahvaz, Ahvaz,

Iran. His research interests include Artificial Intelligent,

Machine Learning, Neural Network, Computer Network

Security, Intrusion Detection System. He has published

several journal and conference papers in these fields.

Nasser Erfani Majd received his

B.Sc. degree in Electronic

Engineering from Shahid Chamran

University of Ahvaz, Ahvaz, Iran, in

2008, and his M.Sc. degree in

Electronic Engineering from Tarbiat

Modares University of Tehran,

Tehran, Iran in 2011. He obtained his

Ph.D. degree in Electronic Engineering from Amir kabir

University of Technology, Tehran, Iran, in 2016. He is

currently an assistant professor in the Department of

Electrical Engineering at the Shohadaye Hoveizeh

Campus of Technology, Shahid Chamran university of

Ahvaz, Dasht-e Azadegan, Khuzestan, Iran. His research

interests include digital signal processing, delta sigma

modulator-based transmitter design and mixed-signal

circuit design

Volume 16- Number 4 – 2024 (20 -32)

30

Attachment

Feature

label
Name of network features Descriptions Range of values

A Duration Duration of connection in seconds 0-21

B protocol_type
Type of protocol, for example, udp, tcp, etc.

Tcp – udp – icmp

C Service

Network service at the destination, for

example, http, telnet, etc.
http , talent , ftp_data , private ,

remote_job , mtp , eco_i ,suodup

D Flag
Type of connection to the network SF , S0,S1,S2,S3,

REJ,SH,PSTR,…

E src_bytes

The number of bytes of data sent from

source to destination 0-1379963888

F dst_bytes

Number of bytes sent from destination to

source 0-1309937401

G Land

1 if the connection from/to host/port is the

same, otherwise zero 0-1

H wrong_fragment
Number of wrong fragments

0-3

I Urgent
Number of urgent packages

0-3

J Hot
Number of host indexes

0-77

K num_failed_logins
Number of failed logins

0-5

L logged_in
1 if logged in; otherwise zero

0-1

M num_compromised
Number of compromised connections

0-7479

N root_shell
1 if root shell is obtained; otherwise zero

0-1

O su_attempted

1 if attempts are made to implement the su

root instruction, otherwise zero 0-1

P num_root
Number of root access

0-7468

Q num_file_creations
Number of file creation operations

0-43

R num_shells
Number of shell command creations

0-2

S num_access_files
Number of file access commands

0-9

T num_outbound_cmds

Number of outbound commands for access to

ftp protocol 0

U is_host_login

1 if the input belongs to the host list,

otherwise zero 0-1

V is_guest_login
1 if the user logins as a guest; otherwise zero

0-1

W Count

The number of connections to a host in the

latest connections in the last two seconds 0-511

X srv_count

The number of connections a single service

has in more than two seconds in the last

connection
0-511

Y serror_rate

The number of connections that have SYN

error 0-1

Z srv_serror_rate

The rate of connections with SYN error

(server) 0-1

AA rerror_rate
The rate of connections that have REJ error

0-1

AB srv_rerror_rate

The rate of connections that have REJ error

(server) 0-1

AC same_srv_rate

Percentage of connections that have the same

service 0-1

Volume 16- Number 4 – 2024 (20 -32)

31

AD diff_srv_rate

Rate of connections that have different

service 0-1

AE srv_diff_host_rate
Rate of connections that have different hosts

0-1

AF dst_host_count

The number of connections from a host to the

destination during a specific time 0-255

AG dst_host_srv_count

The number of connections from a host to

destination for access to service 0-255

AH
dst_host_same_srv_ra

te

The rate of connections from a host to the

destination to have access to the same service 0-1

AI dst_host_diff_srv_rate

The rate of connections from a host to the

destination to have access to various services 0-1

AJ
dst_host_same_src_po

rt_rate

The rate of connections from a host to the

destination from the same port 0-1

AK
dst_host_srv_diff_hos

t_rate

The rate of connections from a host to various

destinations to have access to service 0-1

AL dst_host_serror_rate

The rate of connections from a host to a

specific destination that has SYN error 0-1

AM
dst_host_srv_serror_r

ate

The rate of connections from a host with a

specific service to a destination that has SYN

error
0-1

AN dst_host_rerror_rate

The rate of connections from a host to a

specific destination that has REJ error 0-1

AO
dst_host_srv_rerror_ra

te

The rate of connections from a host with a

specific service to a destination that has REJ

error
0-1

Volume 16- Number 4 – 2024 (20 -32)

32

