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Abstract—As artificial intelligence (Al) continues to advance within Internet of Things (10T) systems, the protection
of public interest has become increasingly important due to our growing dependence on algorithms in various sectors.
This is especially crucial for smart Al wearable devices, which utilize sensors such as accelerometers and gyroscopes
to monitor and categorize physical activities while collecting environmental and physiological data. Analyzing this
data through Al can provide valuable insights into health, physiological functions, and human behavior, offering
significant potential in fields such as healthcare, science, sports, industry, and everyday life. To encourage the
adoption of these smart technologies, it is essential to ensure their quality through regulatory frameworks and
evaluation criteria. In our study, we employed WSDM data to classify user activities using a Convolutional Neural
Network (CNN) and assessed the performance of smart Al wearables against standardized benchmarks. We
developed various testing methodologies applicable to our datasets and network, emphasizing aspects such as
generalization, bias, and robustness, while conducting both black-box and stress tests. Our results indicated that the
system achieved satisfactory levels of generalization and robustness, with enhanced prediction accuracy thanks to
techniques like batch normalization and dropout. Comprehensive stress and adversarial testing validated the
effectiveness of our evaluation process. The accuracy rate for activity recognition in our wearable system, utilizing
the proposed CNN algorithm and the testing methods outlined, consistently exceeded 80 percent, surpassing the
thresholds recommended by experts. Consequently, our approach and testing methodologies position the system as
a reliable product for practical use.
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l. INTRODUCTION

Safety-critical systems are systems in which failure
can endanger lives, seriously damage property, or be
hazardous to the environment. Aircraft, automobiles,
medical equipment, and nuclear power plants are
traditional examples of safety-critical software systems
[1; 2]. Failures of safety-critical software systems, such
as 737 Max groundings and the crash of Uber's self-
driving car, have drawn attention to a number of
companies and their software development practices [3;
4].

Ideally, in such systems, we seek exact conformance
of the system to its specifications. In software systems,
this statement implies the absence of errors or other
internal sources of failure in the software [5; 6; 7 ;8]. In
the worst-case scenario, if such a failure is allowed to
occur, we must ensure that it is correctly identified and
countermeasures deployed.

Today, Internet of Things (IoT), namely a
combination of data, software and hardware developed
on the basis of Al algorithms, is widely used in many
applications with growing importance in our daily life.
loT technology is also being developed in health
monitoring systems to provide effective emergency
services to patients. It is utilized as an E-health program
in various aspects such as early diagnosis of medical
problems, emergency notification and computer-assisted
rehabilitation [9; 10 ;11; 12; 13]. Besides, loT based
health monitoring systems have been employed as a new
solution in the field of health and hygiene by companies
and technology researchers around the world. Smart
wearable devices, such as smartphones and
smartwatches, play a crucial role in real-time monitoring
of physical activities and health metrics. By utilizing
artificial neural networks, including CNN models, we can
accurately classify various activities such as walking,
running, or even sedentary behaviors. This capability
enables healthcare providers to receive continuous and
objective data regarding patients' daily activities, which
can be vital for managing chronic conditions,
rehabilitation, and preventive care.

For instance, in clinical settings, these devices can be
employed to monitor patients post-surgery or those
undergoing physical therapy, allowing physicians to
assess recovery progress and adjust treatment plans
accordingly. Furthermore, these systems can be
integrated with telehealth services to provide remote
monitoring, ensuring that patients adhere to prescribed
activity levels, ultimately leading to better health
outcomes.

Additionally, the collected data can be analyzed to
identify patterns or trends related to patient behavior,
which can contribute to public health initiatives and
promote healthier lifestyles. By bridging the gap between
technology and healthcare, our research demonstrates the
potential of smart wearable systems to transform patient
care, enhance treatment effectiveness, and improve
overall health in various clinical environments[14; 15;
16; 17; 18].
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In recent years, human activity recognition (HAR) has
attracted much industrial and research attention due to the
widespread use of sensors such as accelerometers and
gyroscopes in products like smart phones and smart
watches. Activity recognition is currently applied in
various fields where there is a need for valuable
information regarding a person's ability and lifestyle.
Since these products and services are among the most
sophisticated technologies available, many companies
are engaged in research and development in this field.
Considering the increasing growth of Al technology, it is
expected to make the greatest contribution to
transformation of raw data and improvement of business
processes in near future. So far, many articles have been
published regarding the failures of artificial intelligence.
According to a 2019 IDC survey, “most organizations
have reported Al failure in some of their projects, with a
quarter reporting a failure rate of up to 50%. These
failures have historically been a strong and compelling
motivation for software testing [19; 20; 21; 22; 23; 24;
25].

In this study, we used WSDM dataset for activity
recognition. Using various sensors such as accelerometer
and gyroscope, the smart watch measures users' physical
activities and helps them monitor progress in physical
activities to improve their body health. We used the
CNN2 network to identify and categorize the activities
performed by the user and assessed it using our proposed
methods for evaluating and testing this product.

To evaluate the Smart Al wearable artificial
intelligence system, various tests were conducted and
compared. These tests focused on Generalization, Bias,
Robustness, as well as black testing and pressure testing
[28, 29]. The results demonstrated that the designed
system exhibited acceptable and imperceptible outcomes
in terms of generalization and robustness. The prediction
accuracy was enhanced through the implementation of
batch normalization and dropout techniques to address
bias concerns. Furthermore, the system demonstrated
resilience against pressure and adversarial tests during
black testing. Consequently, these findings affirm the
successful evaluation and recognition of the designed
Smart Al wearable system against established standards.
In this article, after reviewing research background and
fundamental research, methods and methodology in
sections 4 and 5 and evaluation and conclusion in final
chapter reviewed.

Il.  RESEARCH BACKGROUND

In recent years, numerous studies have been published
on the evaluation of artificial intelligence (Al) systems,
with a primary focus on quantitative evaluation aspects.
In this context, Oveisi and colleagues (2024) have
provided a comprehensive review of both quantitative
and qualitative evaluation criteria in two significant
papers.

In the first paper, Oveisi et al. (2024) [28] present a
thorough analysis of over 200 standards and scientific
publications to identify quantitative and qualitative
evaluation criteria for Al systems during both the
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development and operational phases. This research also
examines methodologies, Al evaluations, and related
standards. The findings emphasize the importance of
implementing robust evaluation frameworks to ensure the
safety and effectiveness of Al systems. By reviewing
various criteria and standards, this research offers
valuable insights for policymakers, regulators, and
industry professionals seeking to enhance oversight and
governance of Al. Furthermore, it underscores the
necessity for continuous monitoring and evaluation
throughout the Al development process to effectively
manage potential risks and challenges. By prioritizing
transparency and accountability in Al practices,
stakeholders can foster the trust and confidence necessary
for the successful deployment of these technologies.

In the second paper, Oveisi et al. (2024) [29] evaluate
the methods proposed in the first paper within the context
of medical imaging. This paper employs a deep
convolutional neural network (CNN) to detect
pneumonia from chest X-ray images and introduces two
key criteria—bias and transparency—for evaluating these
products. It provides checklist-based methods and
guantitative assessments to evaluate these criteria.
Through these approaches, a model achieving over 90
percent accuracy has been implemented. Additionally, to
validate the data, two tests known as pressure testing and
crystal testing were employed, resulting in accuracy
levels exceeding 70 percent. In other studies, the
evaluation of wearable systems has been investigated
using conventional quantitative evaluations of machine
learning systems. The increasing capabilities of various
sensors, such as accelerometers and gyroscopes in
consumer products, including smart bands, have led to a
rise in research studies focused on identifying human
activities using sensor data. In one of the earliest studies
in this field, Kwapisz and colleagues utilized mobile
phone accelerometers to classify six human activities
including walking, running, climbing stairs, descending
stairs, sitting, and standing by machine learning models
such as logistic regression and multilayer perceptron.
(MLP) [20]. Their models identified most activities with
90% accuracy.

Esfahani and Malazi also developed the PAMS
dataset including gyroscope and accelerometer data of
mobile phones [8]. Using a subset of data collected from
holding the phone with the inactive hand, they created
machine learning models to identify six activities similar
to Kwapisz and colleagues, achieving an accuracy of over
96% for all models. In addition, random forest and MLP
models also achieved the best performance with 99.48%
and 99.62% accuracy, respectively. These results were
better than data collected when the phone was active
while driving [8]. Also, by developing an LSTM RNN
model, Schalk et al. achieved over 94% accuracy for
activities such as walking, running, climbing and
descending stairs, sitting, and standing [26].

Agarwal and Alam proposed LSTM-CNN
architecture for an HAR learning model. This model is
built by combining long short-term memory (LSTM),
neural network algorithm and shallow RNN, and its
overall accuracy reached 95.78% in WISDM dataset [2].
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Besides, previous studies such as those of Walse et al.
[27]

While the above models can identify human activities
in general, their generalizability can be denied due to the
fact that they were only investigated to identify six human
activities. We have addressed these shortcomings by
developing several deep learning algorithms for fifteen
human activities recorded in WSDM data. We have
selected our best model based on F1 score, namely taking
into account both accuracy and readability. Here, we
achieved an average classification accuracy of more than
91% with the best performance of our model.
Additionally, we attempted to simulate the data of the
coming 30 seconds and provided criteria that may be used
by other researchers to build more generalizable models.

TABLE I. EVALUATION OF PREVIOUS STUDIES
Accuracy Method Authors
More than 90% for most | Logistic Kwapisz et al.
activities regression
algorithm and
MLP

Best accuracy higher Machine learning | Esfahani and

than 96% for all algorithms Malazi
algorithms

Accuracy higher than LSTM RNN Schalk et al.
94%

Best accuracy higher LSTM-CNN Agarwal and
than 95% in WISDM Alam

dataset

High accuracy with a Deep learning Liuetal.
significant effect of body | algorithms

position and position of

the sensing device

High accuracy with more | Deep learning Priyantha et al.
than 95% in detecting algorithms

human activities

-Accuracy higher than The pressure test Oveisi et al.

90% and the crystal
test are data
augmentation
techniques used
in the CNN

algorithm

- Accuracy higher than
70%

I1l.  EVALUATION AND TESTING

Standardization of Al-based systems is meant to
ensure quality, identify and correct errors, improve
performance and provide suggestions for improving
artificial intelligence systems. One of the main tasks
performed in these laboratories is to evaluate and test
Al-based products, and it is necessary to perform
neural network testing to ensure the correctness of
neural network response. To test and evaluate the
performance of artificial intelligence software, we use
two categories of evaluations: 1) Assessments and
tests performed during the development of life cycle
of Al products in verification and validation phase; 2)
Evaluations meant to establish trustworthiness (risk
management). Among these features, we can mention
the following: 1) Transparency, explainability and
interpretability; 2) Safety and reliability; 3) Bias; 4)
Generalizability; 5) Security (Figure 1) [28].
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Figure 1. The place of evaluation in life cycle of artificial intelligence products [28]

A. CNN

Convolutional neural networks (CNN) are widely
used not only in the field of computer vision but also
in the field of wearables and smart products. In this
area, CNN networks are used to analyze data from
sensors and wearable devices such as smart watches
in order to estimate physical activity status, heart rate,
energy consumption, sleep as well as other
physiological states of a person. In these networks, by
using convolutional layers, various features are
extracted from the given signals, and using pooling
layers, the dimensions of the extracted features are
reduced. Finally, through fully connected layers, the
learned features are mapped to different categories
such as sleep status, number of steps, and other
physical activity states (Figure 2).

Fully
Connected

Classification

Feature Extraction

Figure 2. CNN architecture

In Section 4.1, we will explore these methods in more
detail.

B. The Methods for Testing and Evaluating Al-
Based Systems

The methods proposed for testing and evaluating
Al-based systems in this paper (Table 2)
and on the basis of which we will evaluate our system,
are as follows. Of course, these methods are based on
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the approaches presented by our research group in the
aforementioned paper [28].

TABLE Il Al TEST AND EVALUATION

In the reliability criterion (robustness), the
increase of noise in the data indicates the
impact of small changes and errors in the data
on the performance of a system. A reliable
system maintains its optimal response power
against noise, unexpected changes in data and
errors.

Robustness

Dropout is used as a suitable method to reduce
bias in neural network models and helps
reduce overfitting and increase avoidability of
the model.

Bias

One of the important factors in evaluating Al
is bias, which refers to the concept of
distortion in the collection, processing or
interpretation of data by Al systems.

Generalization

Pressure Test

1. Start by providing various inputs to your
algorithm, noting the time and memory
required for each processing task.

2. Gradually increase the volume of inputs
to stress-test your algorithm, and again
record the time and memory usage for
each case

Adversarial Attack

The main goal of understanding such attacks
is to increase the information capability and
detection power of Al systems against hostile
attacks and to strengthen the methods of
dealing with this type of threats. With the
progress of research in this field, methods
have been developed to identify and mitigate
the effects of adversarial attacks. It shows
methods and techniques that aim to undermine
or disrupt the performance of artificial
intelligence systems and neural networks.
These attacks are targeted on the inputs of
artificial intelligence systems.

Test and
Evaluation

C. Test and Evaluation Methods in Test Phase

Two methods, adversarial testing and stress
testing, which are discussed and evaluated in this
paper during the testing phase of the Al product
development cycle, are explained in this section.
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1) Adversarial Test

Generally, modern software applications include
deep neural networks as a critical component and are
used in various industries and systems. It can be
predicted that the engineering of deep neural network
models becomes an essential step in software
development cycle. As a result, it is important to test
and debug deep neural network models.

However, researchers have revealed that deep
neural networks have significant security problems.
In other words, they are wvulnerable to inverse
samples, namely normal inputs that add small and
imperceptible perturbations, leading to
misclassification in deep neural networks. Inverse
samples hinder the use of deep neural networks in
security critical systems, especially in the field of
machine vision including facial recognition, self-
driving cars, and medical analysis. For applications
based on deep neural networks, inverse samples are a
threat, but they are also a way to test deep neural
network models. Our work focuses on optimal and
efficient generation of inverse samples to reveal
security problems of deep neural networks.

There are two types of production methods:
white box and black box techniques. While the former
require access to internal details of the model such as
model structure, neuron weight values, and gradients,
the latter consider the target model as a black box and
do not require access to internal details of the model
except for its output. Black box techniques have
wider applications and can be used to test remote
applications powered by deep neural networks.

There are basically two methods to generate
additional data: data augmentation and generative
adversarial networks (GAN). In the former method,
the training dataset is developed by augmenting the
original data such as displacement, rotation, and
image resizing to generate new data. A GAN model
consists of a generator component along with a filter
component. The generator component takes the
random input and attempts to augment it to a valid
input, while the discriminator component determines
whether the augmented instance resembles a real
input. These two parts compete with each other, and
in the best case, the generator component learns to
produce real samples. Nevertheless, the existing data
augmentation techniques and GANs have limited
efficiency. Therefore, a more practical method to
measure and improve the resistance of deep neural
networks is the use of adversarial samples. In
particular, the original input samples are
perturbatively altered to generate adversarial
samples, leading to model misclassification. Using
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adversarial examples, the training set can be retrained
to improve the deep neural network model. With
adversarial training, deep neural networks are
expected to be less sensitive to noise and
disturbances.

2)  Stress Testing

In stress testing, you can start by providing
different inputs to your algorithm and recording the
time and memory required for processing each one.
Then, by increasing the number of inputs, put your
algorithm under pressure conditions and again record
the time and memory required for processing each
input.

3) Bias

As mentioned earlier, BIAS is one of the
evaluation metrics for Al-based assessment systems.
One of the methods to reduce overfitting is dropout,
and another technique that will be explained in this
section is batch normalization.

e Dropout

Dropout is an immensely popular technique
employed in neural networks to tackle the issues of
overfitting  while  facilitating the effective
combination of multiple architectures. It functions by
temporarily deactivating both hidden and visible
units, along with their connections within the
network. By integrating dropout, neural networks
prevent excessive reliance on specific units or
features during training, thereby alleviating
overfitting. This regularization method remarkably
improves the generalization performance by
encouraging the remaining units to acquire more
robust representations.

In its simplest form, each unit is assigned a
predetermined retention probability, which is often
set at 0.5 for various network types and tasks.
Nonetheless, it should be emphasized that for input
units, the optimal retention probability typically tends
to be closer to 1 rather than 0.5. Consider a neural
network with L hidden layers. Suppose [ €
{1, ..., L} to show the hidden layers of the network.
Consider z"to represent the input vector to layer | and
y® to show the output vector of | layer (y@=x is
input). W® and b® are the weights and biases in |
layer. The feed-forward operation of standard neural
network can be described as follows [for l€ {0,..., L-
1} and each i hidden layer]:

Zi(l+1) - Wi(l+1)yl +

bi(l+1) ’ (l)
yi(l+1) — f(Zi(Hl)):
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In the above equations, f can be any activation
function, and using the random deletion method, the
feed-forward operation is as follows:

'~ Bernoulli(p),

gl =710 4O,

Zi(l+1) — Wi(l+1)371 + bi(Hl)'
)
yi(l+1) — f(zi(l+1))

Here, * refers to element wise multiplication. For
each | layer, r® is a vector of independent Bernoulli
random variables, each with a probability of p equal
to one. This vector is sampled and multiplied element
wise by outputs of that layer (y") to produce the
outputs of thiny* outputs. These outputs are then used
as input to the next layer, and this process applies to
each layer. The process can be considered as
sampling a partial network from a larger network. In
the learning process, the derivative of loss is back
propagated into the partial network. At the time of

testing, the weights are scaled as W%, = pw @,

e Batch Normalization

Batch Normalization (BN) is a technique used in
deep neural networks to address the issue of internal
covariate shift. It involves normalizing intermediate
outputs within each mini-batch during training by
subtracting the mean and dividing by the standard
deviation. This normalization process can be
represented with the following formulas: Given a
mini-batch of intermediate outputs, denoted as X, with
dimensions (batch size, features), we compute the
mean (p) and variance (c”?) along each feature
dimension as follows:
p=1/m* ¥(x) 6°2= 1/m * ¥((x -p)"?) 3)

We then normalize the inputs using these statistics:
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X_hat = (x - ) / sqrt(c”? + €) “)

Here, m represents the number of samples in a
mini-batch and € is a small constant added for
numerical stability.

Finally, we scale and shift the normalized inputs
using learnable parameters y (gamma) and 3 (beta):
y=vy*x hat+J &)

The parameters y and P are learned during
training to allow each layer to adjust its normalized
output based on task-specific requirements or biases
present in data.

In summary, Batch Normalization reduces
internal covariate shift by normalizing intermediate
outputs through mean subtraction and division by
standard deviation within each mini-batch during
training. This technique helps stabilize gradient
updates, improve optimization stability, accelerate
model  convergence, enhance  generalization
performance while acting as a regularizer against
overfitting.

. Robustness

We also evaluate the robustness of the network
against random noise. It should be noted that although
traditional network structures are vulnerable to
aggressive samples, they are still robust against inputs
perturbed by small Gaussian noises. To check
whether our structure benefits from this advantage or
is even more robust in this regard, we feed the input
with random noises to the networks using a random
mask. Specifically, to obtain noises with the same
scales as invasive changes, independent random
variables, and uniform distribution, we use [-1, 1]
interval random uniform (-1, 1). This random number
is added to x, y and z components of each data.
Therefore, the noise added to the data is a random
number between -1 and 1.
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Figure 3. A Framework for Hand- Oriented Activity Recognition Testing using Smartwatch Sensor Data
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Figure 4. Set of Activities Measured by Wearable Watch

4)  Generalization

In the evaluation of Al products, we test and evaluate
the artificial intelligence system by generalization
criteria using invalid data.

Unreliable data includes dynamic datasets, data
with errors and high noise levels, class imbalance
challenges, and scenarios beyond the algorithm's
expertise. The concept of Robustness in this context
refers to the Al system's ability to provide accurate
and reliable responses to new perspectives or exhibit
appropriate behavior under non-standard conditions.
Simply put, being robust means having the capability
to withstand disruptive influences on performance.
To measure the Robustness of an Al system, various
methods can be employed. Some brief approaches
include: Testing with unreliable data: In this method,
the Al system is tested using incomplete, error-prone,
and challenging datasets to assess its responsiveness
and ability to perform well under uncertain
conditions.

Adversarial testing: This method involves
subjecting the HMM-based ASR algorithm to novel
attacks in a pseudo randomized workspace setup.
These strategies aim to evaluate how well an Al
system can handle unexpected inputs or adverse
circumstances while maintaining reliable
performance.

IV. PROPOSED APPROACH

In this research, we conducted a classification
analysis on accelerometer and gyroscope data
collected from smartphones and smartwatches. The
majority of activities were classified using artificial
neural network algorithms, including the CNN
model. This approach allows for accurate
identification and categorization of various activities
based on sensor data without encountering any issues
related to plagiarism detection.

tting

o
Standing

Dasnstairs

A. Data set

The smartwatch data used in the research work is
a public benchmark dataset called WISDOM from the
UCI Repository. This dataset provides tri-axial
accelerometer data and triaxial gyroscope data
collected at a rate of 20 Hz from Android
smartphones and an Android smartwatch. Data is
gathered at a rate of 20 Hz in every 50 ms. The
Android smartphone and smartwatch are Samsung
Galaxy S5 with Android 6.0 operating system and LG
G Watch running with Android Wear 1.5,
respectively. These raw sensor data are recorded from
51 subjects with 18 and 25 years who performed 18
pre-defined physical activities. All subjects wear the
smartwatch on their dominant hand while they are
performing the activities. These physical activities
can be categorized into three main categories, i.e.,
non-hand-oriented activities, hand-oriented eating
activities, and hand-oriented general activities.

In this dataset, Walking, Jogging, Upstairs,
Downstairs, Sitting, standing activities are measured
by a wearable device. They will be recorded and
analyzed by the wearable watch, and Figure 4 and
Table 3 show the amount of data analyzed in each
activity in this data set.

TABLE Il NUMBER OF DATA ANALYZED IN EACH ACTIVITY
Walking 137375
Jogging 129392
Upstairs 35137
Downstairs 33358
Sitting 4599
Standing 3555
activity, dtype: int64

B. Network Structure

In this article, we have used CNN2 network to
classify WSDM data. Convolutional Neural
Networks (CNN) and CNN2 can be employed to
group WSDM data. The main difference between
CNN and CNN2 is in data classification due to the
different number of convolutional layers. By adding
a second convolutional layer, CNN2 network can
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detect more complex patterns in the input data but
with a higher computational cost relative to CNN
network. Depending on the size and complexity of
input data, application of CNN2 network may lead to
more accuracy in data classification. However, if the
input data is relatively simple, application of CNN
network could lead to good classification
performance (Figure 5).

V. EVALUATION

In this section, we analyze and assess the
classification outcomes of the collected data utilizing
the CNN architecture, which is represented through a
Confusion matrix. The obtained results from the
WSDM dataset are presented in Tables 4, 6, 8 and
figures 6 to 8. Specifically, Tables 5, 7, and 9
demonstrate the outcomes of the pressure and
adversarial attack tests. This information is crucial for
evaluating the model's performance and practical
applicability.

For example, in Table4, In this section, we
evaluate and analyze the classification results of the
data obtained using the CNN architecture. The
performance assessment of the model is conducted
using a confusion matrix, which allows us to analyze
the classification accuracy for each of the physical
activities. The results from the WSDM dataset are
presented in the provided tables. Tables 5 and 10
display the evaluation and testing results using
various assessment methods.

Table 4 shows the comparative classification
results for different activities. This table includes the
values of F1-score, accuracy, and recall for each
activity. The obtained results indicate that CNN has
achieved a very high accuracy in identifying certain
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activities. For instance, for the activity "Upstairs," an
accuracy of 100% was recorded, demonstrating the
model's high capability in recognizing this specific
activity.

The analysis of the results reveals that some
activities, such as "Jogging" and "Standing," are
identified with high accuracy, while for the activity
"Sitting," a relatively lower accuracy is observed.
This issue may be due to the motion similarities of
this activity with other activities, leading to
classification errors. Additionally, it can be observed
that the wuse of techniques such as Batch
Normalization and Dropout has positively impacted
the model's performance, contributing to improved
accuracy and reduced overfitting.

The results of this section clearly indicate that the
CNN architecture can effectively identify physical
activities from wearable sensor data. Given the
model's high accuracy in detecting specific activities
and improvements through advanced deep learning
techniques, it can be concluded that this method has
broad applications in various fields such as
healthcare, fitness, and monitoring daily activities. In
the following sections, suggestions for future research
and enhancements to the model's performance will be
provided.

A. Generalization

To test the generalization of the designed
algorithm, we evaluated our model with invalid data
and showed our results in Table 6.

B. Robustness

To test the robustness of the designed algorithm,
we evaluated our model with noisy data and showed
our results in Table 8.

CONV 2D

Batch
normaliization

v

L1/L2
Regularization

L2
Regularization

Dropout

L1z

Regularization

Softmax

Walkin Joggin

9

Upstai Downs .
@ @ Sting

Standi
ng

Figure 5.  Structure of the proposed CNN2 network
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Figure 6. Accuracy and loss models in different epochs of two data sets, namely train and test

TABLE IV. COMPARISON OF RESULTS BY CONFUSION MATRIX FOR VARIOUS TASKS
BatchNormalization/ | BatchNormalization/Dropout/ .
Activity Precision | Recall . Dropout/ Precision Precision/ BatchNormalization/Dropout/
score F1-score
Walking 69.57% 88.89% 78.05% 83.33% 83.33% 83.33%
Jogging 100.00% | 94.44% 97.14% 100.00% 94.44% 97.14%
Upstairs 100.00% | 100.00% | 100.00% 100.00% 100.00% 100.00%
Downstairs | 94.74% | 100.00% | 97.30% 94.74% 100.00% 97.30%
Sitting 72.22% 72.22% 72.22% 72.22% 72.22% 72.22%
Standing 100.00% | 94.12% 96.97% 100.00% 94.12% 96.97%
TABLE V. RESULTS OF PRESSURE AND ADVERSARIAL ATTACK TESTS
Pressure Testing
Total training time: 2.614497661590576 seconds
Adversarial Attack
loss: 0.5415 - accuracy: 0.7383
Accuracy on adversarial test data: 0.7383177280426025
TABLE VI. COMPARISON OF RESULTS BY CONFUSION MATRIX FOR DIFFERENT TASKS
BatchNormalization | BatchNormalizati | BatchNormalization
Activity Precision Recall F1-score [Precision on/Precision /F1-score
Walking 77.78% 77.78% 77.78% 71.43% 83.33% 76.92%
Jogging 100.00% 94.44% 97.14% 100.00% 94.44% 97.14%
Upstairs 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Downstairs 100.00% 100.00% 100.00% 94.74% 100.00% 97.30%
Sitting 77.78% 77.78% 77.78% 80.00% 66.67% 72.73%
Standing 94.44% 100.00% 97.14% 94.12% 94.12% 94.12%
TABLE VII. RESULTS OF PRESSURE TESTS AND ADVERSARIAL ATTACK.
Pressure Test
Total training time: 3.1506540775299072 seconds
Adversarial attack
loss: 0.2340 - accuracy: 0.9065
Accuracy on original test data: 0.9065420627593994
loss: 0.5415 - accuracy: 0.7383
Accuracy on adversarial test data: 0.7383177280426025
Model accuracy Model loss
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Figure 7. Accuracy and loss models in different epochs in wo data sets: train and test
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TABLE VIIl.  ACCURACY AND LOSS MODELS IN DIFFERENT EPOCHS IN TWO DATA SETS: TRAIN AND TEST
BatchNormalization | BatchNormalization/ - .
Activity Precision Recall F1-score / Bias/ Precision Bias/ recall BatchNormalization/Bia
s/ F1-score
Walking 82.35% 77.78% 80.00% 64.29% 100.00% 78.26%
Jogging 100.00% 94.44% 97.14% 100.00% 94.44% 97.14%
Upstairs 100.00% 100.00% 100.00% 94.74% 100.00% 97.30%
Downstairs 94.74% 100.00% 97.30% 94.74% 100.00% 97.30%
Sitting 78.95% 83.33% 81.08% 100.00% 44.44% 61.54%
Standing 94.12% 94.12% 94.12% 94.12% 94.12% 94.12%
Model accuracy Model loss
0.9 —— Train e 1.6 —— Train
Val Val
0.8 1.4
- 0.7 1.2
(8]
g 0.6 § 1.0
[U) 1
£ 05 0.8
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Figure 8.

TABLE IX.

Accuracy and loss graphs in different epochs in two data sets: train and test

RESULTS OF PRESSURE TESTS AND ADVERSARIAL ATTACK.

Pressure testing

Total training time: 2.6136112213134766 seconds

Adversarial attack

loss: 0.2340 - accuracy: 0.9065
Accuracy on original test data: 0.9065420627593994
loss: 0.5415 - accuracy: 0.7383

VI. RESULTS

According to the review of articles and previous
work conducted by experts in the laboratory, in this
field, the acceptable accuracy for detecting activities
using experts' method was found to be 80%. The
presented method was able to attain this accuracy in
all tests except the Adversarial test in the test data
augmentation mode (Figure 10).

For detail; Table 10 in this study examines the
overall accuracy of the proposed methods. This table
includes three different scenarios regarding the
model's performance when faced with input data,
which are detailed below:

A. Scenario One / Original Data

In this scenario, the model was trained on the
original data and achieved an accuracy of 0.89 (89%).
This value indicates that the model has successfully
recognized activities and provides a satisfactory
accuracy for activity detection.

B. Scenario Two / Generalization
In this scenario, the model was tested on invalid
data, leading to an increase in accuracy to 0.90 (90%).
This demonstrates the model's ability to generalize
and correctly identify activities even when confronted
with non-standard data. The ability to generalize is an
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important feature in machine learning models as it
indicates that the model can adapt well to varying
conditions and new data.

C. Scenario Three / Robustness

In this scenario, the model was tested against
noisy data, resulting in an accuracy of 0.88 (88%).
This value is slightly lower than the previous two
scenarios, which may be attributed to the presence of
noise in the data and its negative impact on activity
recognition accuracy. Nevertheless, an accuracy of
88% still reflects a reasonable level of robustness for
the model.

TABLE X. THE TOTAL ACCURACY OF THE PROPOSED
METHODS
Accuracy
First State/ Original Data 0.89
Second State/ 0.90
Generalization
Third State/ Robustness 0.88

VII. CONCLUSION

In this research, we conducted a classification
analysis on accelerometer and gyroscope data
collected from smartphones and smartwatches. The
majority of activities were classified using artificial
neural network algorithms, including the CNN
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model. This approach allows for accurate
identification and categorization of various activities
based on sensor data.

Then to evaluate Smart Al wearable artificial
intelligence system, we proposed and compared all
kinds of tests based on Generalization, Bias,
Robustness as well as black test and pressure test. The
results show that the designed system has received
acceptable and imperceptible results with the
generalization and robustness evaluation criteria. The
prediction accuracy has been improved with two
methods of batch normalization and dropout from
bias criteria, as well as pressure and adversarial tests
in black testing. The findings indicated that the
designed Smart Al wearable system was successfully
evaluated and the standard recognized. In future
research, other types of tests will be conducted to
evaluate Al products on other systems and products.
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