
9

Volume 5- Number 4- Autumn 2013 (9-18)

ITRC

From Reliable Distributed System 
Toward Reliable Cloud by Cat Swarm 

Optimization

Reza Shojaee
School of Electrical & Computer Engineering

College of Engineering
University of Tehran

Tehran, Iran
Ur.shojaee@ut.ac.ir U

Hamid Reza Faragardi
School of Electrical & Computer Engineering College 

of Engineering
University of Tehran

Tehran, Iran
Uh.faragardi@ut.ac.ir U

Nasser Yazdani
School of Electrical and Computer Engineering

College of Engineering
University of Tehran

Tehran, Iran
Uyazdani@ut.ac.ir U

Received: January 25, 2013- Accepted: August 25, 2013

Abstract—Distributed Systems (DS) are usually complex systems composed of various components and cloud is a 
common type of DSs. Reliability is a major challenge for the design of cloud systems and DSs in general. In this paper 
an analytical model to analyze reliability in DSs with regards to task allocation was presented. Subsequently, this 
model was modified and a new model to analyze reliability in cloud systems with regards to Virtual Machine(VM)
allocation was suggested. On the other hand, optimal task allocation in DSs is an NP-hard problem, thus finding exact 
solutions are limited to small-scale problems. This paper presents a new swarm intelligence technique based on Cat 
Swarm Optimization (CSO) algorithm to find near optimal solution. For evaluating the algorithm, CSO is compared 
with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The experimental results show that in contrast 
to PSO and GA, CSO acquires acceptable reliability in reasonable execution time.
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I. INTRODUCTION

A Distributed System (DS) consists of multiple 
autonomous computers that communicate through a 
computer network. The computers interact with each 
other in order to achieve a common goal. A computer 
program that runs in a DS is a parallel application [1].

In distributed computing environment, a parallel 
application is divided into many tasks, each of which 
is executed by one or more computers [2]. There are 
many cases in which the use of a single computer 
would be possible, but the use of a DS is beneficial 
for practical reasons. For example, it may be more 
cost-efficient to obtain the desired level of



40 Volume 5- Number 4- Autumn  2013

performance by using a cluster of several low-end 
computers, in comparison with a single high speed 
computer. A DS can be more reliable than a non-
distributed system, as there is no single point of 
failure. Moreover, a DS may be easier to expand and 
manage than a monolithic uniprocessor system [3]. A 
heterogeneous DS consists of nodes with various 
computation power and memory capacities. 
Moreover, connection links which couple the nodes 
may provide different bandwidths. Such systems 
provide many advantages over centralized ones, such 
as improving performance, availability, reliability, 
resource sharing and extensibility [4]. Tasks of the 
parallel applications are executed concurrently on 
different nodes. Distributed System reliability is 
defined as probability that all the tasks run 
successfully [5]. Making a distributed system reliable 
is very important.  The failure of a DS can result in 
anything from easily repairable errors to catastrophic 
meltdowns. A reliable DS is designed to be as fault 
tolerant as possible.  Fault tolerance deals with 
making the system function in the presence of faults.  
Faults can occur in any of the components of a 
distributed system. Redundancy and diversity are 
most effective way to achieve reliability 
[6][7][8][9][10], but they enforce surplus hardware or 
software costs. Another alternative is optimal task 
allocation. This approach enhances system reliability 
just by using optimal task allocation among 
heterogeneous nodes [11][12][13].

The network topology for our problem is cycle-free 
such as star, tree and bus. In this paper, we have not 
considered redundancy, task precedence constraints 
and transient faults. Solving the optimal task 
allocation problem for maximizing reliability is 
known to be NP-hard [11]; therefore, exact methods 
cannot be used for finding the optimal solution for 
large scale inputs. This paper presents a meta-
heuristic algorithm based on Cat Swarm Optimization 
to find a near optimal solution within reasonable time. 
To evaluate the algorithm, PSO, GA and CSO were 
implemented, and their reliability and execution times 
were compared for various numbers of tasks and 
processors. Results indicate that CSO produces more 
accurate solutions than PSO and GA.

Cloud computing is a large-scale distributed 
computing paradigm and its applications are 
accessible at anywhere and anytime. A cloud 
computing system can be defined as: A scalable 
distributed computing environment in which a large 
set of virtualized computing resources, different 
infrastructures, various development platforms and 
useful software are delivered as a service to customers 
as a pay-as-you-go manner usually over the Internet 
[14]. Actually, it is a type of computing and is usually 
considered it as a next generation of computing 
systems. The virtually infinite computing resources 
on the cloud provider side and the economic reason 

on the consumer side have made large companies to 
consider outsourcing their services to cloud. A large 
number of reputable companies such as Amazon, 
Google, Verizon, IBM, and Microsoft run and 
maintain large scale clouds. Cloud computing 
providers offer their services according to three 
fundamental types: Infrastructure as a service 
(IaaS),platform as a service (PaaS), and software as a 
service (SaaS) where IaaS is the most basic and 
prevalent type.In this paper after presenting a model 
for distributed system reliability, we contemplate 
reliability in IaaS cloud systems and suggest a new 
model to analyze reliability in IaaS cloud systems.
This model can be employed to improve service
reliability in such systems.

The remainder of this paper is structured as 
follows: Related work is summarized in Section II. In 
Section III we formally defined the problem statement
for DS. CSO-based algorithm is presented in section 
IV. Simulation results to evaluate reliability of DSs are 
presented in section V. In section VI we introduce an 
analytical model to analyze reliability in IaaS cloud 
systems. Section VII reveals the simulation results for 
cloud computing systems. To show the effectiveness 
of CSO algorithm for both DS and IaaS cloud we 
manage the section VIII. Finally, concluding remarks 
and future work are presented in section IX.

II. RELATED WORK

Shatz et al.[5] defined a model to the problem 
where the failure of processors or communication 
links is time-dependent.  Based on this scenario, the 
task with longer execution time will have more failure 
probability. Many algorithms have been proposed 
based on this model to find optimal or near optimal 
solutions. Exact algorithms can produce optimal 
solutions and are usually based on branch and bound 
idea. Kartik and Murthy (1995, 1997) used the branch 
and bound with underestimates and reordered the 
tasks according to task independence for reducing the 
computations required. They proved that reliability-
oriented task allocation in distributed computing 
systems is NP-Hard [11]. Thus, exact algorithms only 
work in problems with small and moderate sizes.

Most studies in recent years have been focused on 
developing heuristic and meta-heuristic algorithms to 
solve the problem. In 2001, Vidyarthi and Tripathi 
proposed a solution based on simple genetic 
algorithm to find a near optimal allocation quickly 
[13]. In 2006, Attiya and Hamam developed a 
simulated annealing algorithm for the problem and 
compared its performance with branch-and-bound 
technique [9]. In 2007 Yin et al. proposed a hybrid 
algorithm combining particle swarm optimization and 
hill climbing heuristic [12]. In 2010 Kang, et al. used 
honeybee mating optimization technique [15].
Recently, some prominent studies have been 
proposed based on modified meta-heuristic 
algorithms to find optimal or near optimal solutions 
by proper task allocation[16][17][18]. Also, in 
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another outstanding research, maximizing reliability 
in real-time distributed systems was stipulated [19].

Although, a lot of studies have been done to analyze 
reliability in DSs, just a few works have taken cloud 
computing reliability into account. Chen et al.[20]
proposed a security level to achieve trusted cloud. 
They concentrated to provide reliable migration for 
virtual machines (VMs).Wu et al. [21] introduced a 
pipelined approach and a dependence estimation 
algorithm to improve service reliability in cloud 
systems. They incorporated an accounting approach 
in their analysis. Faragardi et al. [22] present an 
analytical model to evaluate reliability of cloud 
computing systems. In addition, Vishwanath and 
Nagappan[23]were examined hardware reliability in 
Cloud Computing Systems. They investigated server 
failures and hardware repairs for large data centers 
and presented a detailed analysis of failure 
characteristics in such systems. In 2012, Lin and 
Chang[24]proposed a method to evaluate reliability of 
the cloud network. They only concentrated on the 
communication link reliability with considering 
maintenance budget and time constraints. Some of 
new researches devoted to the multi-objective 
optimization in cloud[25]. In our cloud reliability 
model, we focus on IaaS reliability respect to hazard 
rate of server and hypervisor.

III. PROBLEM STATEMENT

In a heterogeneous DS, nodes may have different 
processing speeds, memory sizes, and failure rates. In 
addition, the communication links may have different 
bandwidths and failure rates. Another important issue 
is network topology. The network topology for our 
problem is cycle-free such as star, tree and bus. Each 
component of the distributed computing system (node 
or communication link) can be in any of two states: 
operational or failed. If a component fails during an 
idle period, it will be replaced by a spare. We do not 
consider this to be a critical failure. The failure of a 
component follows a Poisson process (constant failure 
rate). Failures of components are statistically 
independent. This assumption has been widely used in 
the community of computing system’s reliability 
analysis [26][27][28][29]. Under these assumptions, 
the reliability of a DS depends on both the number of 
computing servers composing the system and their 
individual likelihoods of failure. Obviously the 
number of tasks is another important factor which 
affects the results.

Tasks of the given application require certain 
computer resources such as computational load and 
memory capacity. They also communicate at a given 
rate. We are given a set of Mtasks representing a 
parallel application to be executed on a distributed 
system with processors [9].

A. Notation
The notations used in problem formulation are 
listed as follows:    

M represents number of tasks.

N represents number of processors.
Ti is an ith task.
Pi is an ith processor.
CLpq is a path between node p and q.
xij equals one, if and only if Ti is assigned 
to Pj in the assignment represented by X. 
Otherwise xij = 0.
PHRi is hazard rate for ith processor.
Eij is execution time of Ti on Pj.
CBWij is communication bandwidth for 
CLpq.
CRij is communication rate between task i 
and j.
PLij is path load between Pi and Pj.
CHRpq shows communication hazard rate 
for CLpq.
Memi is memory amount for Pi.
memi represents essential memory for Ti.
Li is processing load for Pi.
li is essential processing load for Ti.
Rs(X) is system reliability for assignment 
X.
Rs’(X) is system reliability without 
considering failure of links.
Rs”(X) is system reliability without 
considering failure of nodes.
C(X) is cost of assignment X 
TC(X) is total cost of assignment X 

B. Principle constraints
The principle constraints for the problem are 

outlined in this section.
Memory: Memory of each processor is no less 
than the total amount of memory requirements 
for all its assigned tasks. This constraint is 
formulated by Eq. 1.
Processing load: Load of each processor is no 
less than the total amount of processing load 
requirements for all its assigned tasks. This 
constraint is formulated by Eq. 2.
Path load: Load of each path is no less than the 
total amount of communication rate 
requirements for all tasks which communicate 
through this path. This constraint is formulated 
by Eq. 3. mem xik=1 k

For all k, 1 (1)l xik=1 k               
For all k, 1                                              (2)

ij x x= +1
1

=1
For all paths pq, 1                                          (3)

C. System modeling
System is modeled in five parts. In part 1, 

reliability of nodes is considered. In part 2, reliability 
of paths is considered. Part 3 formulates system 
reliability and in part 4, penalty functions are stated. 
Total cost is suggested in last part.
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1. Reliability of nodes: We assume reliability of 
a node is equal to reliability of its processor 
(i.e., memory and other parts of a node are 
perfect). Reliability of processor Pk can be 
achieved from Eq. 4 and due to constant 
hazard rate [5][30] it reduces to Eq. 5. Then, 
as the total elapse time for executing the 
tasks assigned to Pk by assignment X is =1 , the corresponding processor 
reliability can be computed by Eq. 6. Failure 
of nodes can be assumed independent 
[5][30]. Thus reliability of system without 
considering failure of links can be computed 
by Eq. 7. Furthermore Eq. 8 is obtained from 
Eq. 7. 

2. Reliability of paths: Similarly, the reliability 
of the path CLpq can be achieved from Eq. 9 
and due to constant hazard rate it reduces to 
Eq. 10. Then, as the total elapse time for 
communicating the tasks assigned to nodes p 
and q by assignment X 
is x x ( CRCBW )= +11=1 , the reliability 

of path CLpq can be computed by Eq. 11. We 
assume failures of paths are independent 
hence reliability of system without 
considering failure of nodes can be 
computed by Eq. 12. Furthermore Eq. 13 is 
obtained from Eq. 12.

RP (t) = ( )0                                                  (4)

RP (t) = t                                                      (5)

RP(X) = =1                                      (6)

RS’(X) = =1=1                           (7)

RS’(X) = =1 =1                             (8)

Rpq(t) = 0 (t)dt                                                   (9)

Rpq(t) = CHR t                                                     (10)

Rpq(X) =
CHR x x  ( CRCBW )= +11=1            (11)

Rs”
(X)=

CHR x x ( CRCBW )= +11=1= +1
1

=1
(12)

Rs” (X) =
CHR= +11=1 x x  ( CRCBW )= +11=1

(13)

3. System reliability: Due to independence of 
nodes and path failures, system reliability 
can be formulated as Eq. 14. Therefore Eq. 

15 is obtained from Eq. 14. Maximizing the 
system reliability is equivalent to minimizing 
the cost function which is defined in Eq. 16.

4. Penalty functions: Penalty function for 
violating memory, processing load and path 
load constraints are formulated in Eq. 17, 18 
and 19 respectively.

5. Total cost: Total cost of assignment X is 
equal to sum of cost X and all penalties in a 
weighted manner. Each penalty has a 
coefficient which shows its importance. 
Total cost is formulated by Eq. 20.

Rs(X) = RS’(X). Rs” (X)                                  (14)

Rs(X) = 

( =1  + CHR= +11=1 x x ( CRCBW )= +11=1 )=1
(15)

C(X)= =1 +=1 CHR x x ( CRCBW )= +11=1= +11=1
(16)

PM = (0, i ik  k=1 )=1
          (17)

PL = (0, i ik  k=1 )=1
                           (18)

PC = {0, ( )=1=1= +1=1  }
(19)

TC(X) = C(X) + PM + PL + PC
(20)

For determining coefficients two cases can be 
considered: first, they should scale possible values of 
PM, PL and PC to comparable ranges to guide the 
search towards valid solutions and away from invalid 
ones. Second, decision-maker can tune the value of 
coefficient with respect to importance of 
corresponding penalty function. Because of same 
importance of penalty functions in our model, we 
assume the coefficients are equivalent. Thus, we 

. Therefore 
Eq. 20 is rewritten by Eq. 21. The main goal is 
minimizing Total Cost function which is determined 
in Eq. 21.

TC(X) = C(X) + (PM + PL + PC)(21)

IV. CAT SWARM OPTIMIZATION

    Cat swarm optimization is a new algorithm 
developed based on two major behaviors of cats, 
termed as “seeking” and “tracing”. To apply CSO in 
the optimization problem, the first step is to decide 
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how many cats to use. Each cat has its own M-
dimensional position, velocities for each dimension, a 
fitness value representing the accommodation of the 
cat to the fitness function and a seeking/tracing flag to 
identify whether the cat is in seeking or tracing mode. 
The final solution would be the best position for one of 
the cats. CSO keeps the best solution until the end of 
all iterations [31].

A. Seeking mode
    This sub model is used to model the behavior of cat 
in the period which is resting but looking around and 
seeking the next position to move. Four essential 
parameters are defined in seeking mode as Seeking 
Memory Pool (SMP), Seeking Range of the selected 
Dimension (SRD), Counts of Dimension to Change 
(CDC) and Self-Position Consideration (SPC).  SMP 
is defined as the size of seeking memory for each cat, 
which indicates the points sought by each cat. SRD 
declares the mutative ratio for the selected dimensions. 
If a dimension is selected to mutate, the difference 
between the old value and the new one cannot be out 
of the range defined by SRD. CDC discloses how 
many dimensions will be varied. And SPC is a 
Boolean variable which decides whether the point, on
which the cat is already standing, can be one of the 
candidates to move to. The seeking mode works based 
on following five steps: 

1. Make j copies of the present position of 
catk, where j =  SM. If the value of SPC is 
true, let  j =  (SMP 1) , and then retain 
the present position as one of the 
candidates.

2. For each copy, according to CDC, 
randomly plus or minus SRD percent of 
the present values and replace the old ones.

3. Calculate the fitness values (FS) of all 
candidate points.

4. If all FS are not exactly equal, calculate the 
selecting probability of each candidate 
point by Eq. 22, otherwise set all the 
selecting probability of each candidate 
point to 1.

5. Randomly pick the point to move to from 
the candidate points, and replace the 
position of catk.= | | , where 0 < <         (22)

If the goal of the fitness function is to find the 
minimum solution, let  = , otherwise =

.

B. Tracing mode
    This sub model is used to model the case which cat 
is tracing some targets. Once a cat enters the tracing 
mode, it moves according to its velocities for each 

dimension. The tracing mode can be described as 
follows: 

1. Update the velocities Vk,d(t) for every dimension 
for the catk at the current iteration according to 
Eq. 23. 

2. Check if the velocities are in the range of 
maximum velocity. If the new velocity is over-
range, set it to the limit. 

3. Update the position of catk according to Eq. 24.vk,d(t) = vk,d(t 1)+ r1. c1. xbest ,d(t 1) xk,d(t 1)     d = 1,2, . . , M (23)

Where best ,d (t 1) is the position of the cat with the 
best fitness value at the previous iteration and k,d (t1) is the position of catk at the previous iteration, c1 is 
a constant value and r1 is a random value between 0 
and 1. xk,d (t) = xk,d (t 1) + vk,d(t)         (24)

    In order to combine two above-mentioned modes 
into the CSO algorithm, a mixture ratio (MR) of 
joining the seeking mode and tracing mode must be 
defined. Clearly, MR is a tiny value, since 
observations from the behaviors of cats show that they 
spend most of their waking times on resting and 
slowly changing their positions. The CSO process can 
be described in the following seven steps: 

1. Create N cats in the process.
2. Randomly sprinkle the cats into the M-

dimensional solution space and randomly 
select values, which are in the range of the 
maximum velocity to the velocities of each 
cat. The position of each cat is improved, 
using hill climbing algorithm.

3. Then haphazardly pick a number of cats and 
set them into tracing mode according to MR, 
and set the others into seeking mode.

4. Evaluate the fitness value of each cat by 
applying the positions of cats into the fitness 
function, which represents the criteria of our 
goal, and keep the best cat into memory. 

5. Move the cats according to their flags. If catk

is in seeking mode, apply the cat to the 
seeking mode process; otherwise apply it to 
the tracing mode process. 

6. Re-pick number of cats and set them into 
tracing mode according to MR, then set the 
other cats into seeking mode.

7. Check the termination condition, if satisfied, 
terminate the program, and otherwise repeat 
step 3 through step 6.

V. SIMULATION RESULTS FOR DS

    To evaluate the efficiency of the proposed 
algorithm, intensive experiments have been conducted 
and the algorithm was compared with PSO and GA. 
PSO was originally proposed by Kennedy and 
Eberhart [32], considering the social behavior of 
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natural swarms such as birds, fishes, etc. Similar to 
communications between swarms in the real world 
based on the evolutionary computations, PSO
combines self-experiences with social experiences. In 
this algorithm a swarm of particles are randomly 
generated and each individual improves by referring to 
experiences of itself and that of the others in the 
swarm. The swarm intelligence is enriched along with 
the evolution of each particle and thus the near-
optimal solutions can be found. The major 
components of PSO are Particle Representation, 
Swarm, Experience and Stopping Criterion. The 
convergence and parameterization aspects of the PSO 
are discussed in [33] and [34]. A hybrid of PSO and 
hill climbing (HPSO) algorithm was applied to solve 
the problem [12]. To validate the effectiveness of our 
algorithm, HPSO was implemented and comparison 
results are listed in Tab. II.
    The genetic algorithm was first developed by John 
H. Holland in the 1960's [35]. In Genetic Algorithm 
(GA) a population of strings called chromosomes 
which encode candidate solutions called creatures or 
individuals to an optimization problem, evolves 
towards better solutions. The evolution starts from a 
population of randomly generated individuals and 
repeats in generations. In each generation, the fitness 
of each individual is evaluated, several individuals are 
selected from the current population (based on their 
fitness) and combined and randomly mutated to form a 
new population. Then, the new population is used in 
the next iterations. The algorithm terminates when 
either a maximum number of generations have been 
produced or a satisfactory fitness level has been 
acquired. As the basis for implementation of GA, we
assume that GA evolves with a population size of 50 
chromosomes and the cross over and mutations rates 
are 0.8 and 0.1, respectively. These values are 
determined experimentally from the following ranges. 
The population size changes from 10 to 100 by the 
increase of 10. The cross over and mutation rates are 

both tested in the varying range of 0 to 1 with the 
increment of 0.1. Also, the maximum number of 
iterations (stopping condition) is set to 80.
In a DS, many parameters should be determined in 
order to compute system reliability, such as hazard 
rate of each node and path, memory and processing 
load of each node, network topology and etc. System 
parameters are tabulated in Tab. I. These values are 
similar to the ones used in [15][12][16]. Moreover, we 
consider the tree as network topology in the 
simulations.  For each problem size (N, M), 20 
simulation runs are conducted by GA, PSO and CSO. 
The average values of reliability with the 
corresponding confidence interval at the 95% 
confidence level and execution time are tabulated in 
Tab. II. Simulations have shown that CSO results in 
better reliability in comparison with GA and PSO, 
while it consumes less execution time. Also, reliability 
column in Tab. II denotes that our algorithm has 
smaller reliability deviation rather than GA and PSO

TABLE I SYSTEM PARAMETERS AND THE 
CORRESPONDING VALUE RANGES

System 
parameters Description Value ranges

E Task Execution Time [15, 25]

l Task Processing Load [1, 50]

L Node Processing Load [100, 200]

mem Task Memory [1, 50]

Mem Node Memory [100, 200]

CR Communication Rate [0, 25]

PL Path Load [100, 200]

PHR Processor Hazard 
Rate

[0.00005, 
0.00010]

CHR Communication 
Hazard Rate

[0.00015, 
0.00030]

CBW Communication 
Bandwidth [1, 4]

TABLE II EXPERIMENTAL RESULTS FOR VARIOUS NUMBERS OF NODES AND TASKS IN TERMS OF GA, PSO AND CSO

Problem 
Size GA PSO CSO

N M Reliability 
Execution Time 

(sec) 
Reliability 

Execution Time 

(sec) 
Reliability 

Execution Time 

(sec) 

6 10 
0.9893 ± 

0.0000 
4.250 

0.9893 ± 

0.0000 
4.372 

0.9893 ± 

0.0000 
0.8 

6 15 
0.9680 ± 

0.0002 
7.689 

0.9792 ± 

0.0000 
5.839 

0.9803 ± 

0.0000 
2.854 

6 20 
0.9429 ± 

0.0018 
16.426 

0.9545 ± 

0.0007 
11.763 

0.9730 ± 

0.0000 
7.285 

6 25 
0.9345 ± 

0.0029 
25.662 

0.9408 ± 

0.0015 
19.451 

0.9430 ± 

0.0002 
11.480 

8 15 
0.9798 ± 

0.0018 
18.205 

0.9818 ± 

0.0000 
24.362 

0.9818 ± 

0.0000 
7.051 

8 20 
0.9371 ± 

0.0074 
52.214 

0.9704 ± 

0.0015 
47.528 

0.9741 ± 

0.0000 
27.878 

8 25 
0.8982 ± 

0.0133 
96.859 

0.9522 ± 

0.0014 
72.763 

0.9661 ± 

0.0007 
55.848 

8 30 
0.8729 ± 

0.0374 
134.723 

0.9311 ± 

0.0025 
118.763 

0.9581 ± 

0.0011 
82.728 
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VI. RELIABILITY OF CLOUD

In this section, we strive to modify the reliability 
model which is proposed in section III in order to 
analyze reliability in IaaS cloud systems. As we 
mentioned before, IaaS is a common type of cloud 
systems in which infrastructures are served as a 
service. Analyzing reliability in cloud systems is 
inherently different from distributed system 
reliability. In the mentioned distributed systems we 
tackle with task allocation while in IaaS cloud 
systems the goal is VMs allocation. There are two 
major differences between the tasks and VMs from 
the reliability point of view:

1. Each task has a certain execution time on 
each processor while we do not consider 
execution time for VMs. Consequently, if no 
VM is allocated to a server, its reliability is 
equal to 1 because this server has no effect on 
system reliability and in this situation we can 
even turn off the server in order to minimize 
energy consumption.

2. In spite of distributed systems, In IaaS cloud 
systems, VMs do not communicate each 
other. Therefore, the reliability of links could 
be neglected in the formulation. Although, 
link hazard rate affect service reliability but 
for system reliability analysis is not 
noteworthy.

Based on virtualization concept in IaaS layer, 
cloud provider installs Virtual Machine Monitor 
(VMM) on servers. Each VMM could manage 
number of VMs. By request of customers, one or 
more VM instances are provisioned with the specific 
amount of resources. VM, VMM and hardware are 
three important parts of each server. Although each of 
which are carefully engineered, they are still capable 
of failing.We illustrate the virtualization concept of 
IaaS cloud in Fig. 1.

Figure 1. System architecture for the virtualization in IaaS layer of 
Cloud

Here, we introduce the principle notation of the 
model:  

is an ith VM.
is an ith server.

represents number of VMs.
represents number of servers.

equals one, if and only if is 
assigned to in the assignment 
represented by . Otherwise = 0.

is hardware hazard rate for ith 
server.

is hypervisor hazard rate for ith 
server.

is number of dedicated processors for 
.

is number of available processors on 
.

is amount of dedicated memory 
for .

is total amount of memory on .
is amount of dedicated storage for 
.
is total amount of storage on .

represents the state of and is equal 
to 1 when this server is on and is equal to 
0 when is off.

( ) is reliability of for assignment 
.

( ) is cloud system reliability for 
assignment .
Cc( ) is cost of assignment .
TCc( ) is total cost of assignment .

We assume server failures are independent. Thus, 
system reliability of the cloud systems can be 
formulated by Eq. 25. ( ) =  =1 ( )(25)

To delineate state of each server (on or off) we 
introduce  =  (0, )1 (26)

The reliability of a server can be calculated by Eq. 27 
which is similar to Eq. 5. In addition, from Eq. 
26,when is off,  = 0 and thus =1. As a 
consequence, with increasing number of off servers, 
system reliability may enhance. It should be noted 
that it is not the general case because the servers have 
not the same reliability.

=  +                                           (27)

Furthermore, as we mentioned before the VMs have 
no certain execution times and so we assign t=1. It 
leads us to following formulation to calculate server 
reliability:

=  +                                            (28)

Finally, from Eq. 25 and 28, system reliability of the 
cloud system can be formulated by Eq. 29.

=  + =1                                  (29)
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For maximizing we should minimize the 
following term which called cost function.

Cc( ) = +  =1                           (30)

Penalty functions for violating processing capacity,
memory and storage constraints are formulated in Eq. 
31, 32 and 33 respectively.=  0, =1  =1                     (31)=  0, =1  =1  (32)=  0, =1  =1             (33)

Total cost of assignment( ) is equal to sum of 
cost ( ) and all penalties in a weighted manner. 
Each penalty has a coefficient which shows its 
importance. Total cost is formulated by Eq. 34.

TCc( ) = Cc( ) + c + c + c            (34)

Due to same importance of penalty functions in our 
model, we suppose the coefficients are equivalent. 

.
Therefore Eq. 34 is rewritten by Eq. 35. The main 
goal is minimizing Total Cost function which is 
determined in Eq. 35.

TCc( ) = Cc( ) + c ( + + )           (35)

VII. SIMULATION RESULTS FOR IAAS

To assess our CSO-based algorithm for reliability 
of IaaS cloud, we implementCSO along with two well 
known meta-heuristic algorithms. First, we 
concentrate on GA and tune its parameters. 60
chromosomes for population size, uniform crossover 
and 0.2 for mutation rate are considered as the main 
parameters for GA which lead to the highest 
reliability for this algorithm. Moreover, we applied a 
heuristic algorithm to produce initial solution for GA. 
It helps to converge the process to the best solution 
rapidly. For PSO, we set 35 as the number of particles 
and 0.75 as inertial constant.Furthermore, due to use 
of Canonical PSOfor this problem,we adjust neighbor 
component coefficient, cognitive coefficient and 
social coefficient to zero, 2 and 1.8 respectively. Tab. 
III shows the computed reliability for these three 
algorithms. The confidence interval which is shown in 
the Tab. III is based on 96% confidence level.

Acquired results reveal that CSO is more effective 
and superior to the Enhanced GA and Canonical PSO 
in terms of both solution quality and execution time. 
Fig. 2 indicates the reliability results for 30 servers 
and various number of VMs for the mentioned above 
algorithms.

Figure 2. Computed IaaS reliability for 30 servers

Table IV CSO Parameter Settings for DS and IaaS Platforms

Parameter Description Values for
DS

Values for 
IaaS

Number of cats 
spread in solution 

area

30 45

SMP Number of copies 
each cat makes in 

seeking mode

5 7

SRD Range of variation for 
each dimension in 

seeking mode

25% 25%

CDC Number of 
dimensions that will 
change in seeking 

mode for each copy.

80% 75%

MR Percentage of cats in 
tracing mode vs. 

seeking mode

20% 25%

r1 A random variable 
used in calculating 

velocities

[0,1] [0,1]

c1 A constant variable 
used in calculating 

velocities

2 2

VIII. FROM DS TO IAAS BY CSO

    In this section, we tackle with the effectiveness of 
CSO for both problems. The parameter settings for 
CSO are tabulated into Tab. IV in terms of DS and 
IaaS platforms.  As mentioned before, CSO algorithm 
has four main parameters in seeking mode including 
CDC, SRD, SMP and SPC. CDC is the count of 
tasks/VMs in which processor/server allocation will be 
changed. SRD is the range of change in 
processor/server allocation for each task/VM. SMP is 
the size of memory for each cat which determines 
number of copies made in seeking process. SPC is 
always 1 which means current position is considered 
in experiments. Usually, total number of cats which 
spread in the solution area depends on the problem 
size. Few number of cats leads to the less exploration 
and more exploitation. 

Although, the two platforms (DS and IaaS) have 
quite different components but the conducted 
simulation indicates the acceptable results which are 
generated by CSO. Our investigation on the behavior 
of CSO reveals that the main strong point of CSO in 
comparison of PSO and GA is its seeking and tracing 
mode. These modes provide an appropriate trade-off 
between the exploration and exploitation of the 
algorithm. Furthermore, seeking mode helps to find 
better solution in a short period of time.



40Volume 5- Number 4- Autumn  2013

Table III Experimental results for various numbers of servers and VMs in terms of Enhanced GA, Canonical PSO and CSO

Problem 
Size 

Enhanced GA Canonical PSO CSO 

  Reliability Execution Time 
(sec) 

Reliability Execution Time 
(sec) 

Reliability Execution Time 
(sec) 

20 100 0.9793 ± 
0.0001 

6.590 0.9831 ± 
0.0000 

5.712 0.9873 ± 
0.0000 

2.105 

20 150 0.9618 ± 
0.0001 

10.839 0.9722 ± 
0.0000 

7.364 0.9804 ± 
0.0000 

5.933 

20 200 0.9493 ± 
0.0017 

18.216 0.9542 ± 
0.0014 

10.981 0.9654 ± 
0.0001 

7.648 

30 150 0.9656 ± 
0.0024 

24.892 0.9763 ± 
0.0014 

15.753 0.9799 ± 
0.0001 

13.746 

30 200 0.9381 ± 
0.0029 

32.415 0.9530 ± 
0.0023 

19.094 0.9708 ± 
0.0009 

17.297 

30 250 0.8814 ± 
0.0065 

61.198 0.9093 ± 
0.0032 

32.637 0.9354 ± 
0.0010 

29.384 

30 300 0.8423 ± 
0.0106 

104.649 0.8827 ± 
0.0058 

46.260 0.9053 ± 
0.0013 

41.284 

30 350 0.8246 ± 
0.0259 

194.855 0.8801 ± 
0.0062 

88.033 0.9014 ± 
0.0019 

80.472 

IX. CONCLUSION

In this paper, we tackle with reliability 
maximization problem in distributed systems and 
cloud environment. We first investigate reliability in 
distributed systems and suggest a mathematical model 
to analyze reliability. The model consists of two cost 
functions which manifests the unreliability caused by 
execution of tasks on the nodes and the other reveals 
unreliability caused by inter-process communication 
time. Different penalty functions are also defined to 
satisfy the application and system constraints. Based 
on the model we introduce a task allocation algorithm 
which is inspired from cat behavior. The 
computational evaluations manifestly support the high 
performance of our proposed algorithm against other 
meta-heuristic algorithms which were applied for 
finding optimal task allocation in DSs. Subsequently, 
to analyze reliability in IaaS cloud systems, we 
propose another mathematical model which 
elaborately represents effect of VMs allocation on 
cloud system reliability, and apply the CSO to this 
problem too. The acquired results of conducted 
simulation indicate that CSO has low deviation from 
average reliability in all of the cases in contrast to 
Enhanced GA and Canonical PSO.As a future work 
we plan to extend our model in order to take PaaS and 
SaaS into account.
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