
44737

Volume 5- Number 4- Autumn 2013 (59-69)

ITRC

Increasing the Total Efficiently Executed
Work on Volunteer Computing Environment

Based on Work Send Policy

T. Kianpishe
Computer Engineering and Information Technology

Amirkabir University of Technology
Tehran, Iran

t_kianpishe@aut.ac.ir

Mohammad Kazem Akbari
Computer Engineering and Information Technology

Amirkabir University of Technology
Tehran, Iran

Received: February 7, 2012- Accepted: July 7, 2013

Abstract— Volunteer computing is a type of parallel computing systems that is defined by a large number of nodes and
autonomous changeable resources. Task scheduling is one of the most crucial issues on volunteer computing. A well-
defined scheduling attracts the versatile guest applications to submit their jobs to this environment and motivates
internet-users to contribute more. Hence, optimization of the server-side policies will stimulate volunteers’ eagerness
to contribute more of their resources. The existent methods cannot use the capacity of the host system efficiently. In
this paper, we propose a new scheduling mechanism, which tries to decrease the idleness factor of the host system and
keeps down its waste factor. In our method, we schedule some of the jobs in one RPC round earlier than usual. The
experimental results show that the total efficiently executed work increases up to 70% and the average increases by
35%.

Keywords-volunteer cmputing; scheduling mechanism; remote procedure call; EDF algorithm

akbarif@aut.ac.ir

I. INTRODUCTION

Volunteer computing is a type of distributed
computing environments in which computer owners
share their resources to run one or more projects on a
voluntary basis. This method differs from grid
computing (with shared and managed resources within
or among organizations) [1]. In fact, volunteer
computing – also is called Peer-to-Peer - uses a
volunteer computer, which is connected to the
Internet, as a source to increase computing and storage
speed of distributed scientific projects. This computing
method is used in molecular biology, pharmacology,
astrophysics, meteorology, etc. For example,
SETI@home has achieved 668 TeraFLOPS speed by
this method.

The main objective in volunteer computing is
consuming the idle time of worldwide-distributed
computers that are connected to internet, and using
them to perform the large-scale distributed
applications. Indeed, the volunteer internet-users offer
part of the idle time of their computers to perform part
of an application. Therefore, volunteer computing is
an expansion of the cycle stealing method on the
Internet.

Demand of the commercial center managers for
using volunteer computing, pervasive property of
Internet and growing number of internet-connected
devices reveal the performance of volunteer
computing. It is not easy to handle non-active
resources for creating a Very Large Parallel Computer

Research Note

40 Volume 5- Number 4- Autumn 2013

(VLPC). Issues in achieving these objectives include:
size of the components (server, network, and host) in
volunteer computing systems based on the
characteristics of applications; high performance and
secure execution; management of resources and
workload as inputs of scheduling algorithms, and the
effect of application characteristics (CPU/data-bound).

Volunteer computing administrators must use
appropriate policies to enable guest jobs to run in
parallel with local jobs of the volunteer computer.
These policies are discussed in four areas: processor
scheduling, work fetch, work send and work
completion estimation. Indeed, an administrator that
wants to have a proper scheduling must know the
number of available CPU cycles of user’s system for
an application, the highest priority and the order of the
tasks, an appropriate project to run on user’s system,
and the validity and corresponding credits of returned
results.

As the other types of distributed systems,
volunteer computing systems must consider several
issues, and solve them. These systems must have a
high scalability to both tolerate hundreds of thousands
of nodes and increase the efficiency. The owner of a
computational resource must be able to define a policy
that considers availability of the host. The
administrator of the volunteer computing environment
must decide based on that policy. The Mean Time
Between Failure (MTBF) of internet-connected
workstations is another important topic. The
introduced architecture of volunteer computing system
must be able to tolerate the intermittent failures and to
maintain the efficiency in an acceptable value. All the
participated computers must be protected against
malicious or mistake manipulations. Results of
Projects must be protected against malicious hosts’
interference and the host/application security must be
provided. The system must be able to both tolerate
environment dynamism and adapt itself with the types
of configuration, communication delays and
throughput.

Volunteer computing has several issues that need
to be addressed to obtain an efficient system. Most
volunteer systems are in a private network or have
limited connectivity. So, it is impossible for the server
to contact clients directly. Some clients have a low
connectivity. Therefore, the client should ensure the
resource would not run out of work. Another
important issue is that the results that are received are
not always correct. Volunteers do not have a
continuous availability, so the server should maintain
the task in its database for a long period. If the
scheduling policy of the project is prone to waste
resources, volunteers may stop supporting the project.
There are several ways to detect and analyze of these
anomalies in large distributed systems [16].

Currently, one of the most important issues is the
scheduling; i.e., how jobs must be organized on the
host.

II. BOINC MIDDLEWARE

The encouraging users to continue their
participation is the administrators’ goal, so it is
suggested to use a middleware that performs

coordination without interference of the user so that
the user only should establish the first session and
determine the conditions and afterward he will not
involve with the issues of the execution of volunteer
computing projects. One of the well-known
middlewares is BOINC that runs on both the host and
the server’s systems. BOINC system is one of the
most popular systems. This system has the universal
code (LGPL) and is made from development of the
NSF-funded research project at UC Berkeley Space
Sciences Laboratory. This system provides the host
software for Windows, Mac x OS, Linux and different
types of UNIX [4]. Currently, there are about 40
BOINC-based projects and hundreds of thousands of
volunteer computers perform about 8.425 PetaFLOPS of
these projects per day [9].

Goals of using the BOINC are new issues of
volunteers to enter the network and to get started,
sharing resources among fully autonomous and
independent projects, supporting different applications
(it is clear that each issue needs its own requirements).

These systems have two types of servers: a
scheduling server and a data server. The scheduling
server uses the Remote Procedure Call (RPC). It
distributes tasks and aggregates the results of tasks.
The data server selects files to transmit and handles
file transfer. This selection is based on the
mechanisms of authentication (to block malicious
requests). In addition, there is a database that stores
description of each application, volunteer, scheduling,
etc. The BOINC software includes server-side and
host-side components. The host-side component runs
BOINC-based projects in the application level and is
responsible to CPU scheduling method, implemented
on the higher level of a local OS scheduler. The host
will initialize all the communications; the host
requests jobs from servers of attached projects
alternately. Some hosts are connected to the physical
network periodically (e.g., portable or dial-up
computers). These computers may have an off-and-on
connection. In similar situations, BOINC tries to
provide enough jobs for these systems to keep them
busy until the next connection [13].

One of the most important issues for servers is the
local scheduling. The purpose of the scheduling is to
maximize the use of resources (keeping users busy),
successfully completing the jobs in their deadlines,
allocating resources among user-accepted projects
fairly, and satisfying the user by executing variable
projects.

BOINC-based projects are autonomous. Each
project has a server that includes several components:
a web interface, a task server and a data server. A task
server can be configured by any policy of the
scheduling policies. In all policies, when a job is going
to be transmitted to a host, which has sufficient disk
and memory, and if the host is able to complete it in its
deadline, the job may be elected to transmit. A task
server is responsible for generating of the tasks,
transmitting them to the hosts and processing the
returned tasks.

In volunteer computing environment, a host
requests a (collection of jobs) from an application

Volume 5- Number 4- Autumn 2013 61

server through a workRequest call. The middleware of
volunteer system describes its run-time environment
(e.g., OS and architecture) and a list of received and
stored items in its local cache directory. Based on this
information, the server selects a collection of tasks,
and returns a description of each task, inputs of task,
host-suitable parts of the application and a server
address, that host can save the results on it. At the end
of the computing, the host uses a workResult call to
return results to the specified address. This call will be
mirrored to reach the server provided the work to
announce the end of it [6].

As compared with other types of the high
performance computing, volunteer computing has a
very high diversity. Volunteer computers differ in
software and hardware, speed, availability, reliability,
network connection and other features. Similarly, tasks
and applications vary in hardware requirements and
completion time constraints [2, 3].

These differences introduce a new set of issues in
volunteer computing environment. The first issue is
the work selection problem: Whenever a host connects
to a task server, the server should select the best work
set from a database with millions of jobs based on a
complex set of criteria. Furthermore, the server has to
service hundreds of these requests per second.

Since the server-side scheduling and an
appropriate task selection make conditions so variable,
optimization of used policies in this area has an
effective role in increasing volunteers’ tendency to
offer their resources.

The scheduler consists of two parts:

Dispatcher. This part selects a group of tasks
from task database and gives it to the scheduler.
Task selection procedure follows a simple pattern.
First, the dispatcher chooses the best application
to determine the task. Priorities are configured
based on the minimum execution ratio of the task
for each application. Then, the dispatcher selects
the last published task for the application.

Scheduler. This part is responsible for receiving
the tasks. Tasks are scheduled with First-In-First-
Out (FIFO) algorithm. When a host requests a
work set, the scheduler offers a host-compatible
job set. Two examples of a job never transmitted
to the same participate. In addition, the server
marks incomplete jobs with a workAlive signal
and schedules them again if they had not
completed in their earlier execution.

Policies of the dispatcher and the scheduler can be
configured dynamically.

In the basic job selection policy, job cache is
parsed in a random time. For each job, parsing results
that do not need the database are marked. For
example, it is checked if the host memory and/or the
disk space is enough or not, and if the host is able to
complete the job in its deadline or not? After this step,
the job is locked. Jobs, that do not need to get access
the database, are marked. The questions like this: Is
there a sample of job that is assigned to a specific
host? This procedure continues until appropriate jobs,
which satisfy job request of the host, are selected.

III. SCHEDULING POLICIES

The Scheduling mechanism of a volunteer system
is as follow:

The server divides the computational work into
some tasks and allocates each task to a volunteer
system. When a task execution has completed,
volunteer system sends the results back to the server.
Due to received results, the server raises or disrates
credit of the volunteer.

In [14], authors mention that burst projects, with
fewer tasks and interested in response time, have
emerged. Many works have proposed new scheduling
algorithms to optimize individual response time but
their use may be problematic in presence of other
projects. In that article, they show that the commonly
used BOINC scheduling algorithms are unable to
enforce fairness and project isolation. They believe
that burst projects and considering different scheduling
parameters may dramatically affect the performance of
all other projects (burst or non-burst). They declare
that the non-cooperative optimization may result in
inefficient and unfair share of the resources. Also, see
[15].

Scheduling policies have different inputs. The first
input is the host’s hardware characteristics, including
the number of CPUs and benchmarks. The BOINC
client uses different characteristics like active-fraction
(the fraction of time that BOINC middleware is
running, and is permitted to do the computing), and
statistics for network connections.

Second input is the user’s priority. The BOINC
client enables the users to determine their priorities
and the pattern of accessibility of volunteer computing
projects to their system. These priorities, applied to all
the connected projects, are as follow:

Priority of tasks; giving top priority to the user’s
application;

Share of the source for each project; users can
divide resources among projects so that the
system is prevented from bottleneck conditions.

CPU usage limitation; when the host system is
running assigned jobs, the maximum number of
usable CPU cycles, and the maximum ratio of
time that the project can use the CPU (e.g., to
minimize CPU heat of the user) can be specified.

Communication time; the range of the time that
the BOINC middleware is allowed to
communicate with server-side middleware can be
determined.

Confirmation before a connection; the user should
allow the BOINC client before establishing a
communication. This priority is appropriate for
dial-up connected users and applications with low
delay.

The minimum connection interval; the minimum
time between network activity periods. This
priority allows the users to offer a hint that if a
host (e.g., a laptop) is connected to the network
periodically, how long the client middleware can
connect to the network. The server fetches enough

40 Volume 5- Number 4- Autumn 2013

jobs for the host to occupy the system. On the
other hand, this priority allows the dial-up
connected users to tell the BOINC middleware
about the scheduled intervals of network
connection. In fact, it allows the dial-up
connected users (that pay the cost of their
connection) to manage the communications in a
way that middleware do most of required
displacements to continue jobs in one connection
interval.

Schedule intervals; the policy can specify parts of
the time that the host’s CPU Scheduler must
consider to schedule tasks (default value is one
hour).

The number of jobs that can be saved on the host;

The number of additional jobs that can be saved
on the host;

Disk access intervals; the minimum time between
the disk accesses can be determined. This priority
seems appropriate for laptops with low power.

The maximum usage of disk; the maximum
amount of host’s disk that the BOINC client is
allowed to use.

The minimum disk spaces; the minimum amount
of host’s disk that is free [10].

Finally, each job (which is work unit) has the
specific parameters, including an estimated number of
floating-point operations (FPOPS) and a deadline to
report the results. Most of the BOINC projects use the
redundancy computing, where two or more pieces of
work set are executed on different hosts (with the
almost similar systems). If the host system does not
return the work set in its deadline, the user will not
receive credit.

As mentioned in the previous session, BOINC is
the most famous and widely used software in the
volunteer computing environment. Process of
receiving and executing jobs by the BOINC
middleware follows the four dependent policies:

CPU scheduling; which of the currently
executable jobs is the best choice to run?

Work fetch; when the host decides to request
more jobs for a project, which project is the best
choice and how many jobs should be requested?

Work completion estimation; how is the
remaining of the CPU time estimated for a job?

Work send; when the server receives a project
request from a host system, which jobs are the
best choices to send?

These policies have a great effect on the efficiency
of BOINC-based projects. For evaluations, parameters
such as the job size deviation, the deadline, and the
number of attached projects are investigated.

To evaluate the scheduling policies, following
metrics are used:

Idleness. Idleness duration in an interval of
availability of the CPU is the fraction of CPU

cycles in which jobs are not executed. The range
of this factor is (0, 1) and ideal value of it is zero.

Waste. Waste duration in an interval of
availability of the CPU is the fraction of CPU
cycles that are used by jobs that miss their
deadlines.

Share Violation. A Criterion emphasizes the
user’s resource share. In the best case, its value is
“0” and in the worst case is “1” (satisfactory case
for guest applications is assigning higher
importance to them than user’s jobs).

Monotony. Reverse value of the number of
switching of the project on the host; “0” means
that the number of switches is the maximum
(based on the scheduling intervals and other
factors) and “1” means that no switch action has
occurred. This factor represents to assign equal
share of resources to all projects.

A. Cpu Scheduling Policies
Using an appropriate policy, the host-side BOINC

middleware manages projects in a way that avoids the
interference of BOINC projects with jobs of the host
system and organizes jobs in a way that maximizes the
resource utilization. Two basic policies exist. In the
Round-Robin scheduling policy, the time division
among projects is based on the weight (share) of each
project from available resources of volunteer host. In
other words, the host assigns weight to each project
based on the portion of each project from a resource
and runs jobs according to their weights. Alternate
method is the weighted Round-Robin scheduling
policy, where jobs that may miss their deadlines are
determined. Scheduling plan of these jobs is running
the job with earlier deadline (Earliest Deadline First,
EDF). The weighted Round-Robin scheduling policy
has the least waste value due to considering deadlines.
Although growing the number of projects increases the
waste - because deadlines become similar -, but still
results are better than that of the Round-Robin
scheduling policy.

In a simulation of workload of the real projects, it
must be ensured that the combination of jobs with
different sizes and deadline exists. Thus, “mix” is
defined. Each workload has a mix with size M, where
M is the number of projects. The host system accepts
a project called Pi, where 1<=i<=M. Each project (Pi)
has following characteristics:

(1) mean value of FPOPS for each job = i *
basic size of FPOPS

(2) latency bound = i * base latency bound

(3) resource share of Pi = i * base resource
share

The basic values are input values.

The projects in the similar categories with similar
characteristics are stored (e.g., chemical computing)
and the user accepts the projects with similar groups.
Therefore, the user can accept a large number of
projects.

Volume 5- Number 4- Autumn 2013 63

B. Work Fetch Policies
Work fetch has two basic policies. In the first

policy, the host requests at least one job for all the
projects either running on the system or in its queue.
This new queue is divided among projects based on
their resource share. Since this policy pays no
attention to the power of the host system to implement
projects effectively, it wastes the system’s processing
capacity. To solve this problem, another policy is
suggested. It considers the amount of executed jobs
for each project and maintains that. This policy uses a
simulation of weighted Round-Robin scheduling
policy to estimate CPU shortfall. In other words, the
scheduler selects any project that has both the highest
total amount of run jobs and the CPU shortfall to
fetch. However, jobs with scant deadlines will be
avoided. Both policies are done on the host side. Later
policy considers the amount of executed jobs for each
project. Therefore, its waste factor is less than earlier.

C. Work Completion Estimation Policies
Both host and server should have an estimation of

job completion time. This estimation is used when the
host is going to request more jobs from the server, and
the server is going to transmit more jobs to the host.
Whatever this estimation is close to the actual amount,
the probability of efficiently execution of projects will
be increase.

The BOINC application reports the fraction of the
work that is executed. Result of estimating confidence
is increased by execution of tasks. One method to
estimate completion time of currently executing jobs is
using following estimation:

[F * A + (1 - F) B],

where “F” is a priority coefficient, “A” is an
estimation based on the elapsed time of CPU cycles
and the executed fraction of the job, and “B” is based
on benchmark estimations, the number of FPOPS, user
priorities and CPU efficiency (the ratio of average
CPU cycle used to maximize project’s execution
duration).

There is an alternative method to estimate the job
completion time. This method uses the Duration
Correction Factor (DCF) for each project; i.e., it
estimates the ratio of time that the job is executed on
the host’s CPU to the estimated CPU usage of the job.
In this corrective method, there are sudden increases,
but exponential decreases. Evaluations demonstrate
that using the DCF policy corrects estimated value
faster than that of the earlier method.

D. Work Send Policies
Two methods have been proposed to implement

work send policy.

In the first method (which is shown in results with
X label), for a host request with the size of “x”
seconds, the server selects jobs that their total
estimated execution time is at least “x” seconds and
sends them. So, if the host disconnects, there will be
enough jobs to keep its system busy until the next
connection presents. This method provides jobs due to
the host request, so it can decrease the idleness metric
based on the requested size of jobs. Instead, it will

increase the waste criterion; because jobs are selected
regardless of deadlines of existence jobs on the host
system (either ready-to-run or running jobs).
Therefore, influence of adding a new job to previous
jobs is not considered, previous jobs may be corrupted,
and their deadline restrictions may not be met. This
issue reduces the amount of efficiently executed jobs
done by the host system.

To solve the problems of previous methods, an
alternative policy has been suggested, where the server
uses EDF simulation. As noted, the BOINC
middleware uses EDF algorithm (or its derivations) to
implement the scheduling of the host's CPU cycles.
Thus, when a workRequest is received from a host, the
server implements the EDF algorithm. This algorithm
is used in the host system to select new jobs. Work set
request message from a host includes a list of all the
in-progress jobs on the host system, with their
deadlines and completion times. The server selects
new jobs which are compatible with the host from its
database (as a job set) and runs EDF simulation using
information of this new job set and that of not-
completed jobs' (which are received from the host).
These information includes their deadlines and
estimated completion times. In fact, this method
simulates the host CPU scheduling algorithm (EDF
method) for existing jobs on the host system and the
new elected job. If the results of this simulation shows
no interference in jobs' normal execution or does not
force a deadline miss for this new job or running-jobs
on the host (i.e., all jobs will be able to complete
within their deadlines), the new job will be selected for
transmission. Using this policy, the server collects an
appropriate work set and sends it to the host system. In
this policy, jobs will be evaluated before transmission
to consider the deadline limitations. So, it is able to
improve the utilization of the host system and reduce
the waste criterion. Election procedure in this policy is
bound by deadline restrictions. Therefore, it cannot
use all the capacity of the host system to implement
the applications; parts of the donated CPU cycles of
the host system may not be used whereupon the host
system power may be wasted. This issue is against the
volunteer computing nature that tries to use CPU
cycles of the volunteer system efficiently to perform
volunteer applications sooner and faster.

In this paper, purpose was reducing the idleness
factor of the host system and simultaneously keeping
the waste factor at the low rate, whereupon the number
of efficiently executed work (i.e., a set of jobs that
have successfully completed within their deadlines)
would be increased.

IV. THE PROPOSED APPROACH

Since a good scheduling and an appropriate task
selection on the server-side middleware can greatly
alter the conditions, optimization of the used policies
will have an effective role in expanding the
volunteers’ tendency to offer their resources to this
environment.

As noted, none of the currently used policies of the
work send issue can maximize the usage of CPU
capacity the host system (reasons were mentioned
earlier). Therefore, we proposed a new mechanism

40 Volume 5- Number 4- Autumn 201364

here, called XEDF simulation policy. This policy uses
two steps for selecting and transmitting the jobs.

In the first step, similar to the EDF simulation
policy, new jobs are selected as many as possible. The
server puts the selected jobs in an initial queue, named
initial_work queue. As noted before, the choice is
made according to deadline restrictions.

In the next step, the server provides a new set of
jobs for the idle time of the host system; called
extra_work queue. These new jobs are selected from
the jobs that have greater deadlines. This distance can
be at least equal to the sum of the total size of the
remained execution time of the existence jobs on the
host and the new jobs that are selected in the first step.
In fact, we use a post-processing method. The server
selects the jobs that can be possibly sent to the host
during the next work request. Similar to the first step,
the server selects the new jobs according to the
mentioned condition in the EDF simulator. Now, we
have two sets of jobs; one set includes the jobs
selected by the host in the first step and another
includes the jobs that existed on the host before the
last request. In the second step, priority of these sets
are assumed to be higher than the extra_work set and
all jobs after completion of these jobs are new (the
reasons of this assumption will be explained later).

Then, the selected jobs in the first step
(initial_work set) and the selected jobs in the second
step (extra_work set) are sent to the host. First, the
host runs the available jobs in its system along the new
selected jobs in the first step (initial_work). If the host
experiences an idle cycle on its CPU due to the
completion of the jobs of the first queue, it moves the
jobs selected in the second step (extra_work set) to the
ready queue in order to schedule and execute them. In
addition, the host enables the flag of the extra_work
set usage.

In the next work request of the host from the
server, the host reports the extra_work usage flag to
the server besides the information of the existing jobs.
If this flag is not activated, the server finds that the
jobs of the extra_work set are not used. Therefore, the
server protects this collection in extra_work set. Then,
in the second step, it chooses the new jobs based on
these jobs. During this procedure, the jobs with missed
deadlines or the jobs with useless execution (the jobs
that their deadlines are before the next connection) are
removed from the queue.

The results showed that this work send policy
reduced idleness, had no tangible increase in waste
factor and ultimately increased the total efficiently
executed work in the host system.

V. EVALUATING OF THE PROPOSED APPROACH

A. Scheduling Scenarios
The simulator used for evaluating the proposed

policy was ClientSim simulator [9]. This tool simulates
the logic of the CPU scheduling policy, the work fetch
policy, the job completion time estimation using DCF
and the work send policy in each host. Core of the
simulator is based on BOINC. It was possible to
separate the code of scheduling from the code of
network and memory access. Therefore, with a few

changes, the simulator is connected to the common
scheduling code of BOINC. In fact, only the part of
the BOINC code, which is used to access the network
(RPC for communication between servers and
projects), is replaced with the stubs of simulator (stub
is a part of the work that executes the middleware
role). Therefore, the implemented scheduling
mechanism and most of the main code of the
simulated host are known for the BOINC source code
[10].

The simulator accepts and uses some basic
characteristics for each host, middleware and each
project.

Parameters for each host are:

Number and speed of CPUs,

Fraction of time that the host is available,

Availability intervals as an exponential
distribution with avail parameter,

Connection intervals of the host system.

Parameters for the BOINC middleware on the host
side are:

CPU scheduling intervals,

Amount of queued jobs,

Amount of additional jobs that can be stored,

Maximum number of CPUs, memory and disk
that can be used by BOINC projects,

Maximum resource share of BOINC projects
from the CPU of the host,

Parameters for each project are:

A resource share of each project,

A latency bound (i.e., a job deadline),

An estimated FPOPS for each job,

Normal distribution of FPOPS for each job,

Any combination of these parameters is called a
scenario.

We defined two projects to evaluate the proposed
XEDF simulation policy and compared it with other
policies. Each project had a different latency bound
and a different job size (FPOPS). A standard deviation
was defined for the execution duration of each job in
each project. This means that specific processing time
of each job can be calculated from the assumed
standard deviation of job size of a project as usual.

Simulation duration was 27 days and each CPU
scheduling cycle was assumed 60 seconds. The rate of
the availability of the host was considered 0.8 [10],
[11] and the range of the availability was calculated
using an exponential distribution with User
access to the internet was given 0.55 per day and the
host buffer size was considered 0.55 per day, too
(simulation needs a large enough job buffer because
the common EDF simulation policy only offers a good
response in this mode [10]). The host used two CPU
cycles to perform BOINC jobs (the most common

Volume 5- Number 4- Autumn 2013 65

number of CPU cycles for the regular Internet users)
and the speed of each CPU was set to 1e9 [10].
Resource share of both projects was considered equal.
The basic job size in one of projects was twice as big
as that of another project and the amount of buffer size
was 13.2 times larger than the largest project (thus,
changes in standard deviation of the rate of job size in
each project ultimate various amounts of job sizes). It
should be noted that values of mentioned parameters
are based on real estimations.

The studies were based on two criteria: waste and
idleness (which were discussed in part 3).
Consequently, the total amount of efficiently executed
work that can be run by the host system was
considered as the third criterion.

B. Evaluation Results
Except the EDF algorithm, the processor can be

scheduled with the Least Slack Time (LST) algorithm
(also called Least Laxity First, LLF), too. In this
algorithm, the lowest priority is assigned to the job
with the lowest laxity. The laxity is the maximum time
that a job can wait for CPU usage (with basic speed)
without missing its deadline.

The value of laxity was calculated from the
following formula:

T rem = E - (t - R),

T slack = D - (t + T rem),

where “E” is the execution duration of the job, “R”
is the arrival time of the job to the system, “D” is the
deadline of job, “T rem” is the remaining time of the
start of the job execution, “T slack” is the amount of
laxity of the job at the time of t<D.

Since the laxity of a job varies in the time, its
priority will change, too. Of course, there are different
versions of this algorithm, but all of them follow the
above pattern for laxity [12].

We considered the LST algorithm, alongwith the
EDF algorithm in the present evaluation, because they
are two of known algorithms in distributed computing
and volunteer computing environments. Indeed, the
CPU scheduling of the host system was implemented
in two methods using the EDF algorithm and the LST
algorithm whereupon the work send policies were
divided into four categories including:

A policy based on “x” seconds work request
(mentioned as X_Sched)

EDF simulation policy (mentioned as
EDF_Sched)

LST simulation policy (mentioned as LST_Sched.
It is similar to the EDF simulation policy. Their
difference is in the job selection method. The
earlier method uses deadline restriction, whereas
the later one uses laxities)

XEDF simulation policy (mentioned as
XEDF_Sched)

First, the total amount of efficiently executed work
that can be performed by the host (the number of
executed jobs that were completed successfully), the

idleness factor and the waste factor of the volunteer
system were studied. The evaluations were based on
various amounts of latency bounds for each job. The
amount of latency bounds was set based on the ratio of
the size of the host’s system buffer and this ratio
varied between 0.3 and 4.5 times larger than the buffer
size.

According to Fig. 1, it can be determined that, for
each of the four policies mentioned above, when the
latency bound increased, the total efficiently executed
work increased, too. This increase is because the
pressure on the CPU of the host system to perform
tasks faster decreased while the latency bound
increased. However, when we used the XEDF
simulation policy, while the latency bound increased,
the total amount of efficiently executed work that was
performed by the host was more than that of other
three policies. The reason was that the host used the
extra_work set for the idle time of its system. In fact,
when the host system experimented an idle cycle, it
could transfer the extra_work set to its ready queue to
be run thus it can prevent the CPU from remaining
idle.

Fig. 2 shows the idleness fraction of the host system
when it used each of the implemented policies with
different latency bounds. As can be seen, with
increasing the size of the latency bound for each
policy, the idleness fraction was reduced. This is
because the server could choose more jobs than before
(based on the deadline restriction in two of the policies
and the laxity restriction in the other one). However, it
can be seen that the percentage of the idleness factor in
the XEDF simulation policy was less than that of other
policies. This is because our proposed policy used
both the extra_work set and a prediction of the idle
time of the host system. It may sound that the
reduction was not significant, but it is better to note
that the value of the idleness fraction should be
considered along with the waste fraction and the total
amount of the efficiently executed work that was
performed by the host. In other words, the
denominator used to calculate the idleness factor had
different values in each of the four policies (it was
equal to the total number of jobs available in the host
system). This reduction in conjunction with the total
amount of efficiently executed work and the waste
factor should be considered in evaluation. In the
XEDF simulation policy, the idleness factor
incremented for higher latency bounds in comparison
with other policies. This is because the number of jobs
that could be sent by the server to the host system was
limited by the buffer size of the host system and the
server could not transmit jobs more than the buffer
size of the volunteer system.

40 Volume 5- Number 4- Autumn 201366

Fig. 1 The comparison of the total efficiently executed work had
done by the host system

Fig. 2 The comparison of the idleness factor of the host system

Fig. 3 demonstrates the waste factor of the host
system. As can be observed, when the latency bound
of jobs was smaller than the buffer size of the host
system, the X policy should cause higher waste
fraction due to its lack of attention to the deadline
restriction when it elected work. The XEDF
simulation policy seemed better than the EDF
simulation policy and the LST simulation policy;
because it received more jobs than others and also it
selected jobs based on the server limitation of
deadlines (which was also affected the laxity). The
XEDF simulation policy selected all jobs according to
this restriction. It caused less idleness fraction beside
higher executed work and less waste fraction. When
the latency bound was larger than the buffer size of the
host, all four policies had very little waste fraction. In
this case, waste fraction of the XEDF simulation
policy increased slightly. This (slightly) increase could
be omitted when we considers the increase in the total
efficiently executed work.

Finally, Fig. 4 presents the increased percentage of
the total amount of efficiently executed work that was
performed by the host using the XEDF simulation
policy in comparison with other policies. It can be
seen that the total amount of efficiently executed work
increased up to 70% and the average increased by
38%.

Fig. 3 The comparison of the waste fraction of the host system

Fig. 4 The increased percentage of the total efficiently executed
work had done by the host system (utilization)

In the next scenario, the effect of increasing the
standard deviation of each job (the job’s size in each
project) was studied. This study was considered
because of evaluating the effect of variance of jobs’
size among three discussed criteria. In this case,
different sizes of jobs were presented when the host
received the jobs from different projects; so each job
had a different size.

Two different modes were considered for
evaluation. These cases were based on the ratio of the
latency bound to the host system’s buffer size. In the
first case, a situation was considered in which the
latency bound of projects was larger than the host
system’s buffer size. In the second case, the latency
bound of projects was less than the buffer size. This
may put the host under pressure because it should
complete the jobs in a short period.

Fig. 5 gives the amount of total efficiently
executed work done by the host for different standard
deviations in the first case. The standard deviation of
“10” meant that the jobs’ sizes of projects were getting
close to one another and the standard deviation of
“1000” meant that the jobs’ sizes had much different
values. It can be seen that when the standard deviation
increased, the total efficiently executed work
decreased; because the server was limited in work
selection since slots were larger and may not fit in the
remained suggested time in the X policy or may cause
missing deadlines in other simulation policies (EDF,
LST and XEDF). However, the results indicated that
the XEDF simulation policy improved the total
efficiently executed work more than other policies. In
addition, unlike other policies, with increasing the

Volume 5- Number 4- Autumn 2013 67

standard deviation, the total efficiently executed work
had less decrease in the XEDF simulation policy.
Because, when the number of jobs increased, the
probability of ascending the size of jobs in the
extra_work and initial_work sets and allowed work
selection range increased. Therefore, increasing the
standard deviation had less effect.

Fig. 6 shows the idleness fraction of the host
system with increasing standard deviation in the first
case. It can be seen that, in all four policies, with
increasing the standard deviation, the idleness factor
increased (the cause of this event was mentioned
before in the total efficiently executed work).
Nevertheless, the idleness fraction of the host system
in the XEDF simulation policy was less than those of
other policies; because it predicted the idle time of the
host and provided extra jobs for these times.
Consequently, the amount of total efficiently executed
work for the project increased.

Fig. 5 The comparison of the total efficiently executed work had
done by the host system when the latency bound is higher than the

host system’s buffer size.

Fig. 6 The comparison of the idleness factor of the host system
when the latency bound is higher than the host system’s buffer size.

Fig. 7 presents the waste factor of the host system
based on the standard deviation increment. While
increasing the standard deviation, the waste factor
remained low for four policies because the number of
jobs downloaded by the host was few. Of course, the
XEDF simulation policy had higher (very partial)
waste fraction than other policies, but it was close to

others when the standard deviation increased. The
reason of this was due to downloading more jobs by
the host system in the XEDF simulation policy
compared with other policies. So, the proposed policy
in this paper can offset this partial increase by the
increase in the total efficiently executed work which
was done by the host system.

Fig. 8 shows the amount of total efficiently
executed work performed by the host in the second
case, i.e., the case in which the latency bound was
smaller than the buffer size. While the standard
deviation increased, the total efficiently executed work
increased using the XEDF simulation policy. Of
course, the amount of executed work was less than the
case in which the latency bound was larger than the
buffer size; because the work selection was limited.
However, considering the existence of a secondary
queue for idle times of the host system in the XEDF
simulation policy, this method was able to perform
more efficiently jobs relative to other methods. In
addition, it can be seen that, the less the diversity of
work size based on FPOPS, the better the results
provided by both the EDF and LST simulation
policies, compared with the X and proposed policies.

Fig. 9 demonstrates the idleness factor of the host
system with the standard deviation increment in the
second case. As can be seen, with the standard
deviation increase, the idleness factor increased for all
the four policies (the reason was mentioned before).
Nevertheless, it was always less for the X and XEDF
simulation policies. The reason is that in the EDF and
LST simulation policies, the server could not select
and send a large amount of work for the host. These
two policies had a less amount of latency bound than
the buffer size of the host. If the number of jobs
increased, the host would not be able to complete the
jobs in their deadlines. However, the X policy that
selected jobs without considering the tasks' deadlines
sent them according to the host's demand; therefore, its
idleness factor was less. In addition, in the XEDF
simulation policy due to the existence of the secondary
queue, the previous case would be true. In fact, this
amount of idleness must be considered with the total
available jobs in the host system; consider Fig. 8 and
10.

Fig. 10 presents the waste factor of the host system
in the second case with different values of standard
deviation. As can be seen, with increasing standard
deviation, the waste factor always decreased; because
the number of downloaded jobs decreases.
Nevertheless, this reduction was faster for the XEDF
simulation policy; because the number of downloaded
jobs was more than that of other policies and the fast
reduction of waste factor, lower value of idleness
factor and higher amount of totally downloaded jobs
resulted in an increase in the amount of total
efficiently executed work.

40 Volume 5- Number 4- Autumn 201368

Fig. 7 The comparison of the waste factor of the host system when
the latency bound is higher than the host system’s buffer size.

Fig. 8 The comparison of total efficiently executed work had done
by the host system when the latency bound is smaller than the host

system’s buffer size.

Fig. 9 The comparison of the idleness factor of the host system
when the latency bound is smaller than the host system’s buffer

size.

Fig. 10 The comparison of the waste factor of the host system when
the latency bound is higher than the host system’s buffer size.

VI. CONCLUSION

Human beings are developing in the science world
and along this progress, the need for new and, of
course, cheaper resources increases. Therefore, using
the introduced computational method can effectively
help in solving scientific computational problems
(along the storage issues).

Currently, companies find earlier computational
solutions or tools very expensive. Therefore, they can
benefit from the volunteer computing environment.
For example, manufacturers can use these features in
computational analysis and processing simulations of
complex production lines. This will fire the bottleneck
problem and weaknesses in the effects of processing
and prediction of changes and help to make jobs
cheaper and more efficient.

One of the very important issues in volunteer
computing is the middleware; what is the structure of
the middleware, how much complexity must be
tolerated or what architecture should be followed and
issues like these. The volunteer computing network
administrators are careful, but they have not full
control on their resources. Therefore, the scheduling
issue is important. Most executed work is done
according to frequent estimations. Server scheduling is
a part of this scheduling issue and optimizing it will
help in increasing the number of jobs for the projects.

In this article, using the XEDF simulation policy,
there was an attempt to upload more jobs on the host
system and increase the total efficiently executed work
done by the host system. It can be seen that, the total
amount of efficiently executed work increased up to
70% and the average increased by 35%. This
improvement can increase the speed of the project’s
execution; thus, the scientific goals can be improved –
by efficiently using the host system.

REFERENCES

[1] L. F. G. Sarmenta, Volunteer Computing, Ph.D. Dissertation,
Massachusetts Institute of Technology, Supervisor: Stephen
A. Ward, June 2001.

[2] G. Fedak, C. Germain, V. N´eri, F. Cappello, "XtremWeb: A
Generic Global Computing System", Laboratories de
Recherché en Informatique, Universities Paris Sud, December
13, 2000.

Volume 5- Number 4- Autumn 2013 69

[3] L.F.G. Sarmenta, "Bayanihan: Web-Based Volunteer
Computing Using Java", Lecture Notes in Computer Science
1368, Springer-Verlag, 1998, pp. 444-461, Proc. of the 2nd
International Conference on World-Wide Computing and its
Applications (WWCA'98), Tsukuba, Japan, March 3-4, 1998.

[4] D. P. Anderson, "BOINC: A System for Public-Resource
Computing and Storage", Space Sciences Laboratory,
University of California at Berkeley, 2004.

[5] D. P. Anderson, C. Christensen, B. Allen, "Designing a
Runtime System for Volunteer Computing", IEEE, SC2006,
0-7695-2700-0/06, November 2006.

[6] D. P. Anderson, E. Korpela, R. Walton, "High-Performance
Task Distribution for Volunteer Computing", Space Sciences
Laboratory University of California, Berkeley, 2005.

[7] D. Kondo, D. P. Anderson, J. McLeod VII, "Performance
Evaluation of Scheduling Policies for Volunteer Computing",
3rd IEEE International Conference on e-Science and Grid
Computing e-Science'07, 2007.

[8] D. P. Anderson, G. Fedak, "The Computational and Storage
Potential of Volunteer Computing", Technical Report, 2006.

[9] URL. http://boinc.berkeley.edu/.
[10] D. Kondo, M. Taufer, C. Brooks, H. Casanova, A. Chien,

"Characterizing and Evaluating Desktop Grids: An Empirical
Study", In Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’04), April 2004.

[11] XtremLab. http://xtremlab.lri.fr/.
[12] H. Jin, H. A. Wang, Q. Wang, G.Z. Dai, "An Improved Least-

Slack-First Scheduling Algorithm", Journal of Software,
2004.

[13] G. M. Kumar, “A Survey of Desktop Grid System
Scheduling”, International Journal of Computer Science &
Engineering Technology (IJCSET), Mar 2013.

[14] B. Donassolo, A.Legrand, C. Geyer, “Non-Cooperative
Scheduling Considered Harmful in Collaborative Volunteer
Computing Environments”, Proceesings of the 11th IEEE
International Symposium on Cluster Computing and the Grid
(CCGrid’11), IEEE Computer Society Press, May 2011.

[15] L. M. Schnorr, A. Legrand, J. Vincent, “Multi-scale Analaysis
of Large Distributed Computing Systems”, Proceedings of the
third international workshop on Large-scale system and
application performance, LSAP’11, 2011.

[16] L. M. Schnorr, A. Legrand, J. Vincent, “Detection and
Analysis of Resource Usage Anomalies in Large Distributed
Systems Through Multi-scale Visualization”, Wiley
Interscience, 2011.

Mohammad Kazem Akbari received his
B.Sc. degree from the National
University, and the M.Sc. and Ph.D.
degrees from the Case Western Reserve
University. He is currently a faculty
member with the Department of Computer
Engineering and IT at Amirkabir
University of Technology and the Chair of
the IHPCRC.

Tayebe Kianpishe received her B.Sc.
degree in computer engineering from the
Bahonar University, Kerman, Iran, in
2006, and her M.Sc. degree in computer
engineering from Amirkabir University
of Technology, Tehran, Iran, in 2010.
Her research interests include parallel
processing, cloud, grid and cluster

computing systems, as well as volunteer computing.

