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Abstract— Volunteer computing is a type of parallel computing systems that is defined by a large number of nodes and 
autonomous changeable resources. Task scheduling is one of the most crucial issues on volunteer computing. A well-
defined scheduling attracts the versatile guest applications to submit their jobs to this environment and motivates 
internet-users to contribute more. Hence, optimization of the server-side policies will stimulate volunteers’ eagerness 
to contribute more of their resources. The existent methods cannot use the capacity of the host system efficiently. In
this paper, we propose a new scheduling mechanism, which tries to decrease the idleness factor of the host system and 
keeps down its waste factor. In our method, we schedule some of the jobs in one RPC round earlier than usual. The 
experimental results show that the total efficiently executed work increases up to 70% and the average increases by
35%.

Keywords-volunteer cmputing; scheduling mechanism; remote procedure call; EDF algorithm

akbarif@aut.ac.ir

I. INTRODUCTION

Volunteer computing is a type of distributed
computing environments in which computer owners 
share their resources to run one or more projects on a 
voluntary basis. This method differs from grid 
computing (with shared and managed resources within 
or among organizations) [1]. In fact, volunteer
computing – also is called Peer-to-Peer - uses a
volunteer computer, which is connected to the 
Internet, as a source to increase computing and storage 
speed of distributed scientific projects. This computing 
method is used in molecular biology, pharmacology, 
astrophysics, meteorology, etc. For example,
SETI@home has achieved 668 TeraFLOPS speed by 
this method.

The main objective in volunteer computing is 
consuming the idle time of worldwide-distributed
computers that are connected to internet, and using 
them to perform the large-scale distributed 
applications. Indeed, the volunteer internet-users offer 
part of the idle time of their computers to perform part 
of an application. Therefore, volunteer computing is 
an expansion of the cycle stealing method on the 
Internet.

Demand of the commercial center managers for
using volunteer computing, pervasive property of 
Internet and growing number of internet-connected 
devices reveal the performance of volunteer 
computing. It is not easy to handle non-active 
resources for creating a Very Large Parallel Computer 
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(VLPC). Issues in achieving these objectives include:
size of the components (server, network, and host) in 
volunteer computing systems based on the 
characteristics of applications; high performance and 
secure execution; management of resources and 
workload as inputs of scheduling algorithms, and the 
effect of application characteristics (CPU/data-bound).

Volunteer computing administrators must use 
appropriate policies to enable guest jobs to run in 
parallel with local jobs of the volunteer computer. 
These policies are discussed in four areas: processor 
scheduling, work fetch, work send and work 
completion estimation. Indeed, an administrator that 
wants to have a proper scheduling must know the 
number of available CPU cycles of user’s system for 
an application, the highest priority and the order of the 
tasks, an appropriate project to run on user’s system, 
and the validity and corresponding credits of returned 
results.

As the other types of distributed systems, 
volunteer computing systems must consider several 
issues, and solve them. These systems must have a 
high scalability to both tolerate hundreds of thousands 
of nodes and increase the efficiency. The owner of a 
computational resource must be able to define a policy 
that considers availability of the host. The 
administrator of the volunteer computing environment 
must decide based on that policy. The Mean Time
Between Failure (MTBF) of internet-connected 
workstations is another important topic. The
introduced architecture of volunteer computing system 
must be able to tolerate the intermittent failures and to
maintain the efficiency in an acceptable value. All the 
participated computers must be protected against 
malicious or mistake manipulations. Results of 
Projects must be protected against malicious hosts’ 
interference and the host/application security must be 
provided. The system must be able to both tolerate 
environment dynamism and adapt itself with the types 
of configuration, communication delays and 
throughput.

Volunteer computing has several issues that need 
to be addressed to obtain an efficient system. Most 
volunteer systems are in a private network or have 
limited connectivity. So, it is impossible for the server 
to contact clients directly. Some clients have a low 
connectivity. Therefore, the client should ensure the 
resource would not run out of work. Another 
important issue is that the results that are received are 
not always correct. Volunteers do not have a 
continuous availability, so the server should maintain 
the task in its database for a long period. If the 
scheduling policy of the project is prone to waste 
resources, volunteers may stop supporting the project.
There are several ways to detect and analyze of these 
anomalies in large distributed systems [16].

Currently, one of the most important issues is the 
scheduling; i.e., how jobs must be organized on the 
host.

II. BOINC MIDDLEWARE

The encouraging users to continue their 
participation is the administrators’ goal, so it is
suggested to use a middleware that performs 

coordination without interference of the user so that 
the user only should establish the first session and 
determine the conditions and afterward he will not
involve with the issues of the execution of volunteer 
computing projects. One of the well-known 
middlewares is BOINC that runs on both the host and 
the server’s systems. BOINC system is one of the 
most popular systems. This system has the universal 
code (LGPL) and is made from development of the 
NSF-funded research project at UC Berkeley Space 
Sciences Laboratory. This system provides the host 
software for Windows, Mac x OS, Linux and different 
types of UNIX [4]. Currently, there are about 40 
BOINC-based projects and hundreds of thousands of 
volunteer computers perform about 8.425 PetaFLOPS of 
these projects per day [9].

Goals of using the BOINC are new issues of 
volunteers to enter the network and to get started, 
sharing resources among fully autonomous and 
independent projects, supporting different applications 
(it is clear that each issue needs its own requirements).

These systems have two types of servers: a
scheduling server and a data server. The scheduling 
server uses the Remote Procedure Call (RPC). It 
distributes tasks and aggregates the results of tasks.
The data server selects files to transmit and handles 
file transfer. This selection is based on the 
mechanisms of authentication (to block malicious 
requests). In addition, there is a database that stores 
description of each application, volunteer, scheduling, 
etc. The BOINC software includes server-side and 
host-side components. The host-side component runs 
BOINC-based projects in the application level and is 
responsible to CPU scheduling method, implemented 
on the higher level of a local OS scheduler. The host
will initialize all the communications; the host 
requests jobs from servers of attached projects 
alternately. Some hosts are connected to the physical 
network periodically (e.g., portable or dial-up
computers). These computers may have an off-and-on 
connection. In similar situations, BOINC tries to 
provide enough jobs for these systems to keep them 
busy until the next connection [13].

One of the most important issues for servers is the 
local scheduling. The purpose of the scheduling is to 
maximize the use of resources (keeping users busy), 
successfully completing the jobs in their deadlines, 
allocating resources among user-accepted projects
fairly, and satisfying the user by executing variable
projects.

BOINC-based projects are autonomous. Each 
project has a server that includes several components: 
a web interface, a task server and a data server. A task 
server can be configured by any policy of the 
scheduling policies. In all policies, when a job is going 
to be transmitted to a host, which has sufficient disk 
and memory, and if the host is able to complete it in its 
deadline, the job may be elected to transmit. A task 
server is responsible for generating of the tasks, 
transmitting them to the hosts and processing the
returned tasks.

In volunteer computing environment, a host
requests a (collection of jobs) from an application 
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server through a workRequest call. The middleware of 
volunteer system describes its run-time environment 
(e.g., OS and architecture) and a list of received and 
stored items in its local cache directory. Based on this
information, the server selects a collection of tasks, 
and returns a description of each task, inputs of task,
host-suitable parts of the application and a server 
address, that host can save the results on it. At the end 
of the computing, the host uses a workResult call to 
return results to the specified address. This call will be 
mirrored to reach the server provided the work to 
announce the end of it [6].

As compared with other types of the high 
performance computing, volunteer computing has a 
very high diversity. Volunteer computers differ in 
software and hardware, speed, availability, reliability, 
network connection and other features. Similarly, tasks 
and applications vary in hardware requirements and 
completion time constraints [2, 3].

These differences introduce a new set of issues in 
volunteer computing environment. The first issue is
the work selection problem: Whenever a host connects
to a task server, the server should select the best work
set from a database with millions of jobs based on a
complex set of criteria. Furthermore, the server has to
service hundreds of these requests per second.

Since the server-side scheduling and an
appropriate task selection make conditions so variable, 
optimization of used policies in this area has an 
effective role in increasing volunteers’ tendency to 
offer their resources.

The scheduler consists of two parts:

Dispatcher. This part selects a group of tasks 
from task database and gives it to the scheduler. 
Task selection procedure follows a simple pattern. 
First, the dispatcher chooses the best application 
to determine the task. Priorities are configured 
based on the minimum execution ratio of the task
for each application. Then, the dispatcher selects 
the last published task for the application.

Scheduler. This part is responsible for receiving 
the tasks. Tasks are scheduled with First-In-First-
Out (FIFO) algorithm. When a host requests a 
work set, the scheduler offers a host-compatible
job set. Two examples of a job never transmitted 
to the same participate. In addition, the server
marks incomplete jobs with a workAlive signal 
and schedules them again if they had not 
completed in their earlier execution.

Policies of the dispatcher and the scheduler can be 
configured dynamically.

In the basic job selection policy, job cache is 
parsed in a random time. For each job, parsing results
that do not need the database are marked. For 
example, it is checked if the host memory and/or the 
disk space is enough or not, and if the host is able to 
complete the job in its deadline or not? After this step,
the job is locked. Jobs, that do not need to get access
the database, are marked. The questions like this: Is
there a sample of job that is assigned to a specific 
host? This procedure continues until appropriate jobs,
which satisfy job request of the host, are selected.

III. SCHEDULING POLICIES

The Scheduling mechanism of a volunteer system 
is as follow:

The server divides the computational work into 
some tasks and allocates each task to a volunteer 
system. When a task execution has completed, 
volunteer system sends the results back to the server. 
Due to received results, the server raises or disrates 
credit of the volunteer.

In [14], authors mention that burst projects, with 
fewer tasks and interested in response time, have 
emerged. Many works have proposed new scheduling 
algorithms to optimize individual response time but 
their use may be problematic in presence of other 
projects. In that article, they show that the commonly 
used BOINC scheduling algorithms are unable to 
enforce fairness and project isolation. They believe 
that burst projects and considering different scheduling 
parameters may dramatically affect the performance of 
all other projects (burst or non-burst). They declare 
that the non-cooperative optimization may result in 
inefficient and unfair share of the resources. Also, see 
[15].

Scheduling policies have different inputs. The first 
input is the host’s hardware characteristics, including 
the number of CPUs and benchmarks. The BOINC 
client uses different characteristics like active-fraction 
(the fraction of time that BOINC middleware is 
running, and is permitted to do the computing), and 
statistics for network connections.

Second input is the user’s priority. The BOINC 
client enables the users to determine their priorities 
and the pattern of accessibility of volunteer computing 
projects to their system. These priorities, applied to all 
the connected projects, are as follow:

Priority of tasks; giving top priority to the user’s 
application;

Share of the source for each project; users can 
divide resources among projects so that the 
system is prevented from bottleneck conditions.

CPU usage limitation; when the host system is 
running assigned jobs, the maximum number of 
usable CPU cycles, and the maximum ratio of 
time that the project can use the CPU (e.g., to 
minimize CPU heat of the user ) can be specified.

Communication time; the range of the time that 
the BOINC middleware is allowed to 
communicate with server-side middleware can be 
determined.

Confirmation before a connection; the user should 
allow the BOINC client before establishing a 
communication. This priority is appropriate for 
dial-up connected users and applications with low 
delay.

The minimum connection interval; the minimum 
time between network activity periods. This 
priority allows the users to offer a hint that if a 
host (e.g., a laptop) is connected to the network 
periodically, how long the client middleware can
connect to the network. The server fetches enough 
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jobs for the host to occupy the system. On the 
other hand, this priority allows the dial-up
connected users to tell the BOINC middleware 
about the scheduled intervals of network 
connection. In fact, it allows the dial-up 
connected users (that pay the cost of their
connection) to manage the communications in a 
way that middleware do most of required 
displacements to continue jobs in one connection
interval.

Schedule intervals; the policy can specify parts of 
the time that the host’s CPU Scheduler must 
consider to schedule tasks (default value is one 
hour).

The number of jobs that can be saved on the host;

The number of additional jobs that can be saved 
on the host;

Disk access intervals; the minimum time between 
the disk accesses can be determined. This priority 
seems appropriate for laptops with low power.

The maximum usage of disk; the maximum 
amount of host’s disk that the BOINC client is 
allowed to use.

The minimum disk spaces; the minimum amount 
of host’s disk that is free [10].

Finally, each job (which is work unit) has the 
specific parameters, including an estimated number of 
floating-point operations (FPOPS) and a deadline to 
report the results. Most of the BOINC projects use the 
redundancy computing, where two or more pieces of 
work set are executed on different hosts (with the 
almost similar systems). If the host system does not
return the work set in its deadline, the user will not 
receive credit.

As mentioned in the previous session, BOINC is 
the most famous and widely used software in the 
volunteer computing environment. Process of 
receiving and executing jobs by the BOINC 
middleware follows the four dependent policies:

CPU scheduling; which of the currently 
executable jobs is the best choice to run?

Work fetch; when the host decides to request 
more jobs for a project, which project is the best
choice and how many jobs should be requested?

Work completion estimation; how is the
remaining of the CPU time estimated for a job?

Work send; when the server receives a project 
request from a host system, which jobs are the 
best choices to send?

These policies have a great effect on the efficiency 
of BOINC-based projects. For evaluations, parameters 
such as the job size deviation, the deadline, and the 
number of attached projects are investigated.

To evaluate the scheduling policies, following
metrics are used:

Idleness. Idleness duration in an interval of 
availability of the CPU is the fraction of CPU 

cycles in which jobs are not executed. The range 
of this factor is (0, 1) and ideal value of it is zero.

Waste. Waste duration in an interval of 
availability of the CPU is the fraction of CPU 
cycles that are used by jobs that miss their 
deadlines.

Share Violation. A Criterion emphasizes the 
user’s resource share. In the best case, its value is 
“0” and in the worst case is “1” (satisfactory case 
for guest applications is assigning higher 
importance to them than user’s jobs).

Monotony. Reverse value of the number of
switching of the project on the host; “0” means 
that the number of switches is the maximum
(based on the scheduling intervals and other 
factors) and “1” means that no switch action has 
occurred. This factor represents to assign equal
share of resources to all projects.

A. Cpu Scheduling Policies
Using an appropriate policy, the host-side BOINC 

middleware manages projects in a way that avoids the 
interference of BOINC projects with jobs of the host 
system and organizes jobs in a way that maximizes the 
resource utilization. Two basic policies exist. In the 
Round-Robin scheduling policy, the time division 
among projects is based on the weight (share) of each 
project from available resources of volunteer host. In 
other words, the host assigns weight to each project 
based on the portion of each project from a resource
and runs jobs according to their weights. Alternate 
method is the weighted Round-Robin scheduling 
policy, where jobs that may miss their deadlines are 
determined. Scheduling plan of these jobs is running 
the job with earlier deadline (Earliest Deadline First, 
EDF). The weighted Round-Robin scheduling policy 
has the least waste value due to considering deadlines.
Although growing the number of projects increases the 
waste - because deadlines become similar -, but still 
results are better than that of the Round-Robin 
scheduling policy.

In a simulation of workload of the real projects, it 
must be ensured that the combination of jobs with 
different sizes and deadline exists. Thus, “mix” is
defined. Each workload has a mix with size M, where 
M is the number of projects. The host system accepts 
a project called Pi, where 1<=i<=M. Each project (Pi)
has following characteristics:

(1) mean value of FPOPS for each job = i * 
basic size of FPOPS

(2) latency bound = i * base latency bound

(3) resource share of Pi = i * base resource 
share

The basic values are input values.

The projects in the similar categories with similar 
characteristics are stored (e.g., chemical computing) 
and the user accepts the projects with similar groups.
Therefore, the user can accept a large number of 
projects.
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B. Work Fetch Policies
Work fetch has two basic policies. In the first 

policy, the host requests at least one job for all the
projects either running on the system or in its queue.
This new queue is divided among projects based on 
their resource share. Since this policy pays no 
attention to the power of the host system to implement 
projects effectively, it wastes the system’s processing 
capacity. To solve this problem, another policy is 
suggested. It considers the amount of executed jobs 
for each project and maintains that. This policy uses a
simulation of weighted Round-Robin scheduling 
policy to estimate CPU shortfall. In other words, the 
scheduler selects any project that has both the highest 
total amount of run jobs and the CPU shortfall to 
fetch. However, jobs with scant deadlines will be 
avoided. Both policies are done on the host side. Later
policy considers the amount of executed jobs for each 
project. Therefore, its waste factor is less than earlier.

C. Work Completion Estimation Policies
Both host and server should have an estimation of 

job completion time. This estimation is used when the 
host is going to request more jobs from the server, and 
the server is going to transmit more jobs to the host. 
Whatever this estimation is close to the actual amount, 
the probability of efficiently execution of projects will 
be increase.

The BOINC application reports the fraction of the 
work that is executed. Result of estimating confidence 
is increased by execution of tasks. One method to 
estimate completion time of currently executing jobs is 
using following estimation:

[F * A + (1 - F) B],

where “F” is a priority coefficient, “A” is an 
estimation based on the elapsed time of CPU cycles 
and the executed fraction of the job, and “B” is based 
on benchmark estimations, the number of FPOPS, user 
priorities and CPU efficiency (the ratio of average 
CPU cycle used to maximize project’s execution 
duration).

There is an alternative method to estimate the job 
completion time. This method uses the Duration 
Correction Factor (DCF) for each project; i.e., it
estimates the ratio of time that the job is executed on
the host’s CPU to the estimated CPU usage of the job.
In this corrective method, there are sudden increases, 
but exponential decreases. Evaluations demonstrate
that using the DCF policy corrects estimated value 
faster than that of the earlier method.

D. Work Send Policies
Two methods have been proposed to implement 

work send policy.

In the first method (which is shown in results with 
X label), for a host request with the size of “x”
seconds, the server selects jobs that their total 
estimated execution time is at least “x” seconds and 
sends them. So, if the host disconnects, there will be 
enough jobs to keep its system busy until the next 
connection presents. This method provides jobs due to
the host request, so it can decrease the idleness metric 
based on the requested size of jobs. Instead, it will

increase the waste criterion; because jobs are selected 
regardless of deadlines of existence jobs on the host 
system (either ready-to-run or running jobs). 
Therefore, influence of adding a new job to previous 
jobs is not considered, previous jobs may be corrupted,
and their deadline restrictions may not be met. This
issue reduces the amount of efficiently executed jobs
done by the host system.

To solve the problems of previous methods, an 
alternative policy has been suggested, where the server 
uses EDF simulation. As noted, the BOINC 
middleware uses EDF algorithm (or its derivations) to 
implement the scheduling of the host's CPU cycles. 
Thus, when a workRequest is received from a host, the 
server implements the EDF algorithm. This algorithm 
is used in the host system to select new jobs. Work set 
request message from a host includes a list of all the 
in-progress jobs on the host system, with their 
deadlines and completion times. The server selects 
new jobs which are compatible with the host from its 
database (as a job set) and runs EDF simulation using 
information of this new job set and that of not-
completed jobs' (which are received from the host).
These information includes their deadlines and 
estimated completion times. In fact, this method
simulates the host CPU scheduling algorithm (EDF 
method) for existing jobs on the host system and the 
new elected job. If the results of this simulation shows 
no interference in jobs' normal execution or does not
force a deadline miss for this new job or running-jobs 
on the host (i.e., all jobs will be able to complete 
within their deadlines), the new job will be selected for 
transmission. Using this policy, the server collects an 
appropriate work set and sends it to the host system. In 
this policy, jobs will be evaluated before transmission 
to consider the deadline limitations. So, it is able to 
improve the utilization of the host system and reduce 
the waste criterion. Election procedure in this policy is 
bound by deadline restrictions. Therefore, it cannot 
use all the capacity of the host system to implement 
the applications; parts of the donated CPU cycles of 
the host system may not be used whereupon the host 
system power may be wasted. This issue is against the 
volunteer computing nature that tries to use CPU 
cycles of the volunteer system efficiently to perform 
volunteer applications sooner and faster. 

In this paper, purpose was reducing the idleness 
factor of the host system and simultaneously keeping
the waste factor at the low rate, whereupon the number
of efficiently executed work (i.e., a set of jobs that 
have successfully completed within their deadlines)
would be increased.

IV. THE PROPOSED APPROACH

Since a good scheduling and an appropriate task
selection on the server-side middleware can greatly 
alter the conditions, optimization of the used policies 
will have an effective role in expanding the
volunteers’ tendency to offer their resources to this 
environment.

As noted, none of the currently used policies of the
work send issue can maximize the usage of CPU 
capacity the host system (reasons were mentioned 
earlier). Therefore, we proposed a new mechanism 
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here, called XEDF simulation policy. This policy uses
two steps for selecting and transmitting the jobs.

In the first step, similar to the EDF simulation 
policy, new jobs are selected as many as possible. The 
server puts the selected jobs in an initial queue, named
initial_work queue. As noted before, the choice is 
made according to deadline restrictions.

In the next step, the server provides a new set of 
jobs for the idle time of the host system; called
extra_work queue. These new jobs are selected from 
the jobs that have greater deadlines. This distance can 
be at least equal to the sum of the total size of the 
remained execution time of the existence jobs on the 
host and the new jobs that are selected in the first step. 
In fact, we use a post-processing method. The server
selects the jobs that can be possibly sent to the host 
during the next work request. Similar to the first step, 
the server selects the new jobs according to the 
mentioned condition in the EDF simulator. Now, we 
have two sets of jobs; one set includes the jobs 
selected by the host in the first step and another 
includes the jobs that existed on the host before the 
last request. In the second step, priority of these sets 
are assumed to be higher than the extra_work set and 
all jobs after completion of these jobs are new (the 
reasons of this assumption will be explained later).

Then, the selected jobs in the first step 
(initial_work set) and the selected jobs in the second 
step (extra_work set) are sent to the host. First, the 
host runs the available jobs in its system along the new 
selected jobs in the first step (initial_work). If the host 
experiences an idle cycle on its CPU due to the 
completion of the jobs of the first queue, it moves the 
jobs selected in the second step (extra_work set) to the 
ready queue in order to schedule and execute them. In 
addition, the host enables the flag of the extra_work
set usage.

In the next work request of the host from the 
server, the host reports the extra_work usage flag to 
the server besides the information of the existing jobs.
If this flag is not activated, the server finds that the 
jobs of the extra_work set are not used. Therefore, the 
server protects this collection in extra_work set. Then,
in the second step, it chooses the new jobs based on 
these jobs. During this procedure, the jobs with missed
deadlines or the jobs with useless execution (the jobs 
that their deadlines are before the next connection) are 
removed from the queue.

The results showed that this work send policy 
reduced idleness, had no tangible increase in waste 
factor and ultimately increased the total efficiently 
executed work in the host system.

V. EVALUATING OF THE PROPOSED APPROACH

A. Scheduling Scenarios
The simulator used for evaluating the proposed 

policy was ClientSim simulator [9]. This tool simulates 
the logic of the CPU scheduling policy, the work fetch 
policy, the job completion time estimation using DCF 
and the work send policy in each host. Core of the 
simulator is based on BOINC. It was possible to 
separate the code of scheduling from the code of 
network and memory access. Therefore, with a few 

changes, the simulator is connected to the common 
scheduling code of BOINC. In fact, only the part of 
the BOINC code, which is used to access the network 
(RPC for communication between servers and 
projects), is replaced with the stubs of simulator (stub 
is a part of the work that executes the middleware 
role). Therefore, the implemented scheduling
mechanism and most of the main code of the 
simulated host are known for the BOINC source code 
[10].

The simulator accepts and uses some basic 
characteristics for each host, middleware and each 
project.

Parameters for each host are:

Number and speed of CPUs,

Fraction of time that the host is available,

Availability intervals as an exponential 
distribution with avail parameter,

Connection intervals of the host system.

Parameters for the BOINC middleware on the host 
side are:

CPU scheduling intervals,

Amount of queued jobs,

Amount of additional jobs that can be stored,

Maximum number of CPUs, memory and disk 
that can be used by BOINC projects,

Maximum resource share of BOINC projects 
from the CPU of the host,

Parameters for each project are:

A resource share of each project,

A latency bound (i.e., a job deadline),

An estimated FPOPS for each job,

Normal distribution of FPOPS for each job,

Any combination of these parameters is called a 
scenario.

We defined two projects to evaluate the proposed
XEDF simulation policy and compared it with other 
policies. Each project had a different latency bound 
and a different job size (FPOPS). A standard deviation 
was defined for the execution duration of each job in
each project. This means that specific processing time 
of each job can be calculated from the assumed 
standard deviation of job size of a project as usual.

Simulation duration was 27 days and each CPU 
scheduling cycle was assumed 60 seconds. The rate of 
the availability of the host was considered 0.8 [10], 
[11] and the range of the availability was calculated
using an exponential distribution with User 
access to the internet was given 0.55 per day and the 
host buffer size was considered 0.55 per day, too
(simulation needs a large enough job buffer because
the common EDF simulation policy only offers a good 
response in this mode [10]). The host used two CPU
cycles to perform BOINC jobs (the most common 
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number of CPU cycles for the regular Internet users) 
and the speed of each CPU was set to 1e9 [10]. 
Resource share of both projects was considered equal. 
The basic job size in one of projects was twice as big 
as that of another project and the amount of buffer size
was 13.2 times larger than the largest project (thus,
changes in standard deviation of the rate of job size in 
each project ultimate various amounts of job sizes). It 
should be noted that values of mentioned parameters
are based on real estimations.

The studies were based on two criteria: waste and 
idleness (which were discussed in part 3).
Consequently, the total amount of efficiently executed 
work that can be run by the host system was 
considered as the third criterion.

B. Evaluation Results
Except the EDF algorithm, the processor can be 

scheduled with the Least Slack Time (LST) algorithm 
(also called Least Laxity First, LLF), too. In this 
algorithm, the lowest priority is assigned to the job
with the lowest laxity. The laxity is the maximum time 
that a job can wait for CPU usage (with basic speed)
without missing its deadline.

The value of laxity was calculated from the 
following formula:

T rem = E - (t - R),

T slack = D - (t + T rem),

where “E” is the execution duration of the job, “R”
is the arrival time of the job to the system, “D” is the 
deadline of job, “T rem” is the remaining time of the 
start of the job execution, “T slack” is the amount of 
laxity of the job at the time of t<D.

Since the laxity of a job varies in the time, its 
priority will change, too. Of course, there are different 
versions of this algorithm, but all of them follow the 
above pattern for laxity [12]. 

We considered the LST algorithm, alongwith the 
EDF algorithm in the present evaluation, because they
are two of known algorithms in distributed computing 
and volunteer computing environments. Indeed, the 
CPU scheduling of the host system was implemented 
in two methods using the EDF algorithm and the LST 
algorithm whereupon the work send policies were 
divided into four categories including:

A policy based on “x” seconds work request 
(mentioned as X_Sched)

EDF simulation policy (mentioned as 
EDF_Sched)

LST simulation policy (mentioned as LST_Sched.
It is similar to the EDF simulation policy. Their
difference is in the job selection method. The
earlier method uses deadline restriction, whereas 
the later one uses laxities)

XEDF simulation policy (mentioned as
XEDF_Sched)

First, the total amount of efficiently executed work
that can be performed by the host (the number of 
executed jobs that were completed successfully), the 

idleness factor and the waste factor of the volunteer 
system were studied. The evaluations were based on 
various amounts of latency bounds for each job. The 
amount of latency bounds was set based on the ratio of 
the size of the host’s system buffer and this ratio 
varied between 0.3 and 4.5 times larger than the buffer 
size.

According to Fig. 1, it can be determined that, for 
each of the four policies mentioned above, when the 
latency bound increased, the total efficiently executed 
work increased, too. This increase is because the 
pressure on the CPU of the host system to perform 
tasks faster decreased while the latency bound 
increased. However, when we used the XEDF 
simulation policy, while the latency bound increased,
the total amount of efficiently executed work that was 
performed by the host was more than that of other 
three policies. The reason was that the host used the 
extra_work set for the idle time of its system. In fact, 
when the host system experimented an idle cycle, it 
could transfer the extra_work set to its ready queue to 
be run thus it can prevent the CPU from remaining
idle.

Fig. 2 shows the idleness fraction of the host system 
when it used each of the implemented policies with 
different latency bounds. As can be seen, with 
increasing the size of the latency bound for each
policy, the idleness fraction was reduced. This is 
because the server could choose more jobs than before 
(based on the deadline restriction in two of the policies 
and the laxity restriction in the other one). However, it 
can be seen that the percentage of the idleness factor in
the XEDF simulation policy was less than that of other 
policies. This is because our proposed policy used
both the extra_work set and a prediction of the idle 
time of the host system. It may sound that the 
reduction was not significant, but it is better to note 
that the value of the idleness fraction should be
considered along with the waste fraction and the total 
amount of the efficiently executed work that was 
performed by the host. In other words, the 
denominator used to calculate the idleness factor had
different values in each of the four policies (it was
equal to the total number of jobs available in the host 
system). This reduction in conjunction with the total 
amount of efficiently executed work and the waste 
factor should be considered in evaluation. In the 
XEDF simulation policy, the idleness factor
incremented for higher latency bounds in comparison 
with other policies. This is because the number of jobs 
that could be sent by the server to the host system was 
limited by the buffer size of the host system and the 
server could not transmit jobs more than the buffer 
size of the volunteer system.
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Fig. 1 The comparison of the total efficiently executed work had 
done by the host system

Fig. 2 The comparison of the idleness factor of the host system

Fig. 3 demonstrates the waste factor of the host 
system. As can be observed, when the latency bound 
of jobs was smaller than the buffer size of the host
system, the X policy should cause higher waste 
fraction due to its lack of attention to the deadline 
restriction when it elected work. The XEDF 
simulation policy seemed better than the EDF 
simulation policy and the LST simulation policy;
because it received more jobs than others and also it 
selected jobs based on the server limitation of
deadlines (which was also affected the laxity). The 
XEDF simulation policy selected all jobs according to 
this restriction. It caused less idleness fraction beside
higher executed work and less waste fraction. When
the latency bound was larger than the buffer size of the 
host, all four policies had very little waste fraction. In 
this case, waste fraction of the XEDF simulation 
policy increased slightly. This (slightly) increase could 
be omitted when we considers the increase in the total 
efficiently executed work.

Finally, Fig. 4 presents the increased percentage of 
the total amount of efficiently executed work that was 
performed by the host using the XEDF simulation 
policy in comparison with other policies. It can be 
seen that the total amount of efficiently executed work 
increased up to 70% and the average increased by
38%.

Fig. 3 The comparison of the waste fraction of the host system

Fig. 4 The increased percentage of the total efficiently executed 
work had done by the host system (utilization)

In the next scenario, the effect of increasing the 
standard deviation of each job (the job’s size in each 
project) was studied. This study was considered 
because of evaluating the effect of variance of jobs’
size among three discussed criteria. In this case,
different sizes of jobs were presented when the host 
received the jobs from different projects; so each job
had a different size.

Two different modes were considered for 
evaluation. These cases were based on the ratio of the 
latency bound to the host system’s buffer size. In the 
first case, a situation was considered in which the 
latency bound of projects was larger than the host 
system’s buffer size. In the second case, the latency 
bound of projects was less than the buffer size. This 
may put the host under pressure because it should 
complete the jobs in a short period.

Fig. 5 gives the amount of total efficiently
executed work done by the host for different standard 
deviations in the first case. The standard deviation of 
“10” meant that the jobs’ sizes of projects were getting
close to one another and the standard deviation of 
“1000” meant that the jobs’ sizes had much different 
values. It can be seen that when the standard deviation 
increased, the total efficiently executed work 
decreased; because the server was limited in work 
selection since slots were larger and may not fit in the 
remained suggested time in the X policy or may cause 
missing deadlines in other simulation policies (EDF, 
LST and XEDF). However, the results indicated that 
the XEDF simulation policy improved the total 
efficiently executed work more than other policies. In 
addition, unlike other policies, with increasing the 
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standard deviation, the total efficiently executed work 
had less decrease in the XEDF simulation policy.
Because, when the number of jobs increased, the 
probability of ascending the size of jobs in the 
extra_work and initial_work sets and allowed work 
selection range increased. Therefore, increasing the 
standard deviation had less effect.

Fig. 6 shows the idleness fraction of the host 
system with increasing standard deviation in the first 
case. It can be seen that, in all four policies, with 
increasing the standard deviation, the idleness factor 
increased (the cause of this event was mentioned 
before in the total efficiently executed work).
Nevertheless, the idleness fraction of the host system 
in the XEDF simulation policy was less than those of
other policies; because it predicted the idle time of the 
host and provided extra jobs for these times. 
Consequently, the amount of total efficiently executed 
work for the project increased.

Fig. 5 The comparison of the total efficiently executed work had 
done by the host system when the latency bound is higher than the 

host system’s buffer size.

Fig. 6 The comparison of the idleness factor of the host system 
when the latency bound is higher than the host system’s buffer size.

Fig. 7 presents the waste factor of the host system 
based on the standard deviation increment. While 
increasing the standard deviation, the waste factor 
remained low for four policies because the number of 
jobs downloaded by the host was few. Of course, the 
XEDF simulation policy had higher (very partial) 
waste fraction than other policies, but it was close to 

others when the standard deviation increased. The 
reason of this was due to downloading more jobs by 
the host system in the XEDF simulation policy
compared with other policies. So, the proposed policy
in this paper can offset this partial increase by the 
increase in the total efficiently executed work which 
was done by the host system.

Fig. 8 shows the amount of total efficiently
executed work performed by the host in the second 
case, i.e., the case in which the latency bound was 
smaller than the buffer size. While the standard 
deviation increased, the total efficiently executed work 
increased using the XEDF simulation policy. Of 
course, the amount of executed work was less than the 
case in which the latency bound was larger than the 
buffer size; because the work selection was limited.
However, considering the existence of a secondary 
queue for idle times of the host system in the XEDF 
simulation policy, this method was able to perform 
more efficiently jobs relative to other methods. In 
addition, it can be seen that, the less the diversity of 
work size based on FPOPS, the better the results 
provided by both the EDF and LST simulation 
policies, compared with the X and proposed policies.

Fig. 9 demonstrates the idleness factor of the host 
system with the standard deviation increment in the 
second case. As can be seen, with the standard 
deviation increase, the idleness factor increased for all 
the four policies (the reason was mentioned before).
Nevertheless, it was always less for the X and XEDF 
simulation policies. The reason is that in the EDF and 
LST simulation policies, the server could not select 
and send a large amount of work for the host. These 
two policies had a less amount of latency bound than 
the buffer size of the host. If the number of jobs 
increased, the host would not be able to complete the 
jobs in their deadlines. However, the X policy that 
selected jobs without considering the tasks' deadlines 
sent them according to the host's demand; therefore, its 
idleness factor was less. In addition, in the XEDF 
simulation policy due to the existence of the secondary 
queue, the previous case would be true.  In fact, this 
amount of idleness must be considered with the total 
available jobs in the host system; consider Fig. 8 and
10.

Fig. 10 presents the waste factor of the host system 
in the second case with different values of standard 
deviation. As can be seen, with increasing standard 
deviation, the waste factor always decreased; because 
the number of downloaded jobs decreases.
Nevertheless, this reduction was faster for the XEDF 
simulation policy; because the number of downloaded 
jobs was more than that of other policies and the fast 
reduction of waste factor, lower value of idleness 
factor and higher amount of totally downloaded jobs
resulted in an increase in the amount of total 
efficiently executed work.
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Fig. 7 The comparison of the waste factor of the host system when 
the latency bound is higher than the host system’s buffer size.

Fig. 8 The comparison of total efficiently executed work had done 
by the host system when the latency bound is smaller than the host 

system’s buffer size.

Fig. 9 The comparison of the idleness factor of the host system 
when the latency bound is smaller than the host system’s buffer 

size.

Fig. 10 The comparison of the waste factor of the host system when 
the latency bound is higher than the host system’s buffer size.

VI. CONCLUSION

Human beings are developing in the science world 
and along this progress, the need for new and, of 
course, cheaper resources increases. Therefore, using 
the introduced computational method can effectively
help in solving scientific computational problems 
(along the storage issues).

Currently, companies find earlier computational 
solutions or tools very expensive. Therefore, they can 
benefit from the volunteer computing environment. 
For example, manufacturers can use these features in 
computational analysis and processing simulations of 
complex production lines. This will fire the bottleneck 
problem and weaknesses in the effects of processing 
and prediction of changes and help to make jobs 
cheaper and more efficient.

One of the very important issues in volunteer 
computing is the middleware; what is the structure of 
the middleware, how much complexity must be 
tolerated or what architecture should be followed and 
issues like these. The volunteer computing network 
administrators are careful, but they have not full 
control on their resources. Therefore, the scheduling 
issue is important. Most executed work is done 
according to frequent estimations. Server scheduling is 
a part of this scheduling issue and optimizing it will 
help in increasing the number of jobs for the projects. 

In this article, using the XEDF simulation policy,
there was an attempt to upload more jobs on the host 
system and increase the total efficiently executed work 
done by the host system. It can be seen that, the total 
amount of efficiently executed work increased up to 
70% and the average increased by 35%. This 
improvement can increase the speed of the project’s 
execution; thus, the scientific goals can be improved –
by efficiently using the host system.
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