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Abstract- This paper presents a strategy to combine the antenna selection technique and the adaptive modulation 
method for multiple input multiple output (MIMO) systems. The MIMO architecture significantly improves the 
performance of wireless systems at the expense of a radio frequency (RF) hardware complexity. However, the 
advantages of MIMO systems can be mainly maintained with simple hardware using antenna selection technique. 
Moreover, in order to improve the efficiency, the adaptive modulation method can be implemented. As a practical 
system design limitation, the perfect channel state information (CSI) may not be achievable. Accordingly, the effect 
of imperfect channel state information (ICSI) in the proposed systems has been investigated.
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I. INTRODUCTION

Multiple Input Multiple Output (MIMO) 
technology can significantly improve the performance 
of systems. This performance can be the diversity 
gain, spatial multiplexing gain or a trade-off between 
these two [1]. These performance improvements come 

at the expense of the hardware complexity. Antenna 
selection is proposed to capture the advantages of 
MIMO systems while keeping low complexity 
hardware. In [2], the authors proposed a method for 
optimal selection of transmit antennas based on the 
capacity maximization. This technique is also studied 
for the Alamouti’s space-time coding [3],[4]. A 
promising approach for the fast antenna subset



selection was proposed by Gorokhov [5]. In [6], 
computational lower-complexity algorithm was 
proposed. In [7-11], authors studied the different 
issues in antenna selection technique.  On the other 
hand, the adaptive modulation (AM) method is a 
technique to increase the average spectral efficiency 
(ASE) in wireless systems. In [12-15], authors
studied the adaptive modulation technique which can 
adapt the transmitter parameters as constellation size
and transmit power to maximize the ASE. The MIMO 
system performance with adaptive modulation in 
presence of CSI imperfection was provided in[16]. In 
this paper, a design that combines antenna subset 
selection and adaptive modulation method has been 
proposed. The proposed scheme maximizes the ASE
of a MIMO system for a given BER constraint and 
constant power considering imperfect channel state 
information.

The paper has been organized as follows: Section II 
introduces the system model.  Section III describes 
the antenna selection algorithm. In the section IV, the 
adaptive modulation has been implemented for the 
proposed system. It is followed by the introducing the 
joint adaptive antenna subset selection and 
modulation mode selection algorithm in ICSI state.
Finally, the simulation results are presented and the 
conclusions are drawn.

II.      SYSTEM MODEL
A MIMO communication system consisting of  Nt 
transmit antennas and Nr receive antennas is 
presented in figure 1. The channel model is 
considered Rayleigh flat fading model.

Fig. 1.MIMO system model

Initially, we assume perfect CSI is available at 
both transmitter and receiver. Later, we investigate 
the effect of CSI imperfection. The matrix channel is 
represented by an Nt×Nr matrix. The entries of H are 
independent from each other and Hi,j~ CN(0,1). The 
channel input is an 1 × Nt column vector x, and the 
channel output is represented by 1× Nr column 
vectors y, respectively. The entries of noise matrix are 

also assumed to be independent and Ni~CN(0,σ2). 
The channel input/output equation can be written as:

y = xH + n                                                            (1)

Fig. 2. MIMO system and eigen subchannel equivalent model

Applying a Singular Value Decomposition (SVD) to 
H, it can be expressed as:

                  H = UDVH                                          (2)

where D is an Nt× Nr nonnegative and diagonal 
matrix with the singular values of H and  main 

diagonal elements ���λi
��

i=1

r
.

Note that {λi}�i=1
r is the eigenvalues of HH . For 

convenience, the eigenvalue vector λ is defined as 
λ≜ [λ1 , … , λr]T .
U=[u1,…,uNt ] and V=[v1,…,vNr ] are Nt × Nt and Nr 
× Nr unitary matrices with left and right singular 
vectors of H as their columns, respectively. Inserting 
(2) in (1), the following can be reached:

                            ý=x́D+ń                                    (3)
Where

  ý  ≜  yVH          x́   xU              ń nVH

Since U and V are unitary matrices, it is important to 
note that the powers of x and x́ are the same, as well 
as y and ý, n and ń. From (3), it can be observed that 
the channel matrix H has been decomposed into r 
parallel eigen-subchannels since D is diagonal. The 
equivalent channel input and output are x́ and ý, 
respectively. The subchannel power gains are 
represented by λ, which constitute a random process 
due to the randomness of the channel entries of H. 
According to (3), if the channel matrix H or the 
vectors (U,V,λ) are perfectly available at both the 
transmitter and receiver, the equivalent system model 
can be shown in Fig 2.
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III. ANTENNA SELECTION ALGORITHM

Antenna selection is a promising way of capturing 
a large portion of the channel capacity in MIMO 
systems at reduced hardware cost and computational 
complexity. In order to make antenna selection, 
instead of computing the capacity for all possible 
combinations of selected antennas (as in the optimal 
selection procedure), several suboptimal selection 
algorithms can be used [5], [6]. In this paper, the 
suggested algorithm in [6] has been applied. The 
algorithm starts with one antenna per step. In each 
step, the objective was to select one more antenna 
leading to the highest increase in the capacity. In the
nth step of the algorithm, the channel matrix 
corresponding to the n selected receive antennas was 
denoted by Hn . The Hn matrix contains n rows of H  
matrix (in the same order as H),  corresponding to the 
selected antennas. The jth row of H matrix is  its 
Hermitian transpose by hj. In the (n+1)th step, the 
receive antenna corresponding to the  Jth row of H is 
selected. In this selection,

C(Hn+1)=C(Hn)+log2 det( + ρ
Nt
αJ,n)                   (4)        

where, for any j, the value of αj,nrepresents the 
contribution of the jth receive antenna to the capacity 
expression under the log function if the antenna is 
selected in the (n+1) step of the algorithm. Finding J 
that maximizes C(Hn+1) in (4) is equivalent to 
obtaining:

                 J=argmax αj,n                                         (5)
                            j
that 
                   αj,n  ≜ hj Bnhj

H                                  (6)
and
           Bn ≜ (INt + ρ

Nt
HnHn

H)−1                          (7) 

IV. ADAPTIVE MODULAION

Adaptive modulation is a technique to increase the 
average spectral efficiency in wireless systems. In 
comparison to fixed modulation order scheme, this 
technique provides the higher rate and more efficient 
used in the resources. Adaptive modulation algorithm
can be implemented to improve spectral efficiency by 
adjusting the modulation size depending on the 
condition of fading channels.  In this case, more bits 
are transmitted when the channel quality is good. 
Using this technique, we need feedback signal from 
receiver to transmitter to show the channel state 
information (CSI). The objectives to use the adaptive 

modulation over a Rayleigh fading channel with CSI 
at the transmitter are to maximizing the spectral 
efficiency at a target BER and minimizing BER at a 
given throughput.

In the first state, a constant transmit power cutoff 
threshold was selected. The SNR thresholds are to be 
solved to maximize spectral efficiency while 
satisfying certain constraints. The average power 
constraint is

∫ S( )∞
0 pi( ) ≤ S �                                            (8)

where γ0 is threshold, and the constant transmit 
power  S(γ)=S satisfies

S
S

= 1
∫ pi (γ)dγ∞
γ0

                                                     (9)

To satisfy the instantaneous BER constraint 
BER(γ) ≤ BER������ for all γ and to maximize spectral 
efficiency, the BER constraint must be satisfied at 
each boundary point γj:

BER(γj) ≈  c1exp⁡[
−c2γ j

1

∫ p i (γ )dγ∞
γ0

2c3k j−c4
] ≤ BER        (10)

              0  ≤  j  ≤  N-1

For a constant transmit power, BER(γ) ≤ BER(γj) for 
γj≤γ≤γj+1,therefore, the optimal rate region 
boundaries γj (1≤j≤N-1) can be obtained by solving 
(10) and c1, c2, c3 , are positive  fixed constant, and 
c4 is a real constant that is depending on type of 
modulation and approximation.

V. ANTENNA SELECTION WITH ADAPTIVE 
MODULATION WITH CSI IMPERFECTION

The system model is shown in Fig 2. This means 
that there are r SISO subchannels. Because of 
selecting antenna, the pdf of eigenvalue of  HHH was 
irregular. To obtain the probability distribution 
function of λi, 

We Assume Wishart distributed the marginal 
probability density function of the k:th largest 
eigenvaluet is given by:

pk(λk) = Q ∫ dλk−1
∞
λk

 ∫ d∞
λk−1

λk−2…

…∫ d∞
λ3

λ2 ∫ dλ1
∞
λ2

∫ dλk+1
λk

0

…∫ dλr
0 λr+1p(λ1, … , λr)                                     (11)



If Q is constant, the pdf is normalized to unity, and

p(λ1, … , λr)=
 Kr,n ∏  �e−λ iλi

n−m�r
i=1  ∏  (λi − λj)2r

ij˂               (12)

where

 Kr,n ≜
πr(r−1)

ᴦr (n)ᴦr  (r)
  

    ᴦr (a) =  πr(r−1)/2   ∏ ᴦr
i=1 (a − i + 1)     

                                      
If it is desirable to normalize the marginal pdf to have 
the property∫ pk(λk)dλk = 1∞

0 , the normalization 
constant Q is used. Therefore, the spectral efficiency 
is given by:

R 
B

 =∑ ∑ kjpi(γ j  ≤γ≤γ j+1)
N−1
j=0

r−1
i=0                           (13)

So far, we assume perfect CSI is available at both
transmitter and receiver. We refer to these systems as 
ideally designed MIMO AM systems. Now, we 
investigate the effect of imperfect CSI and evaluate 
the ASE performance in the presence of CSI 
imperfection. The imperfect CSI is represented by the 
channel matrix H�, which is related to the initial 
channel matrix H as,

H =ρH�+σ∈Ξ                                             (14)

where Ξ is the CSI imperfection matrix. Note that it is 
assumed that ideal CSI is known to the transmitter 
and receiver. The entries of both H� and Ξ are 
modelled as independent Gaussian variables,
furthermore, H� and Ξ are independent of each other. 
Thus, we can write Ξj,i∼ CN(0,1) and H� i,j∼ CN(0,1), 
where σϵ2 reflects the accuracy of the CSI, and

ρ2 ≜ 1-σϵ2,

Similar to (2), by applying a SVD to H�,we have

H�  = U�D�V�H                                                           (15)

D� = diag[�λ�1,…, �λ�m ]

where all notations have similar meaning as those in 
(3). Since the variable rate system is designed under a 
perfect CSI assumption, it should take the imperfectH�. 
The equivalent system (3) becomes

ý =U�H(HV�x́+n)                                                  (16)

=ρD�x́ +σ∈U�HΞV�x́ + n�´

Ξ́= U�HΞV�x́

ýi=(ρ�λ�i+σ∈[Ξ́]i,i)x́ i+∑ σ∈[Ξ́]j,j x́ jm
j=1,j≠i +n�´i   (17)                                                                              

The first term shows information-carrying 
component and other term shows the cross 
subchannel interferences. This term is treated as 
interferences and thus the SNR of the ith subchannel 
with equal power allocation is defined as

γj́  = 
(ρ2λ�i+σϵ2 ) P

m
(σn2+σϵ2

(m−1)P
m )

  
ρ2λ�i≫ σϵ2������

γj́ =
(ρ2 λ̂i

P

mσn2
)

(1+σϵ2(m−1) P

mσn2
)
=

λ̂i
P

mσn 2

Kρ
  (18)

Kρ ≜ �1 + σϵ2(m − 1)γ0�/ρ2 and γ0 =
P

mσn2

VI. SIMULATION RESULTS

In this section, the bit error rate (BER) and ASE 
performances of our system are evaluated by several 
simulations over a large number of channel 
realizations. For discrete rate cases it is assumed that 
different MQAM signal constellation 
(4QAM,16QAM,64QAM,64QAM) are available. In
addition BPSK is used in some cases. i.e. . kj= SEj= j  
with SE0= 0, which means no transmission.

To simplify the implementation, the power is equally
distributed to each active transmit antenna  
(i.e.,uniform power allocation). Moreover, SNR 
boundaries in Rayleigh  fading are computed as 
follows:

BER(γj) ≈  c1exp⁡[
−c2γ j

1
∫ p i (γ )dγ∞
γ0

2c3k j−c4
] ≤ BER         (19)

Using MQAM modulation, the constants in (10)
are:
c1=0.2,c2=1.5,c3=1,c4=1

Therefore,

BER(γj) ≈  0.2exp⁡[
−1.5γ j

1
∫ p i (γ )dγ∞
γ0

2c3k j−c4
] ≤ BER     (20)

and

γj = 2
3

ln(5BERt)( 2kj −  1)                               (21)



If Q is constant, the pdf is normalized to unity, and

p(λ1, … , λr)=
 Kr,n ∏  �e−λ iλi

n−m�r
i=1  ∏  (λi − λj)2r

ij˂               (12)

where

 Kr,n ≜
πr(r−1)

ᴦr (n)ᴦr  (r)
  

    ᴦr (a) =  πr(r−1)/2   ∏ ᴦr
i=1 (a − i + 1)     

                                      
If it is desirable to normalize the marginal pdf to have 
the property∫ pk(λk)dλk = 1∞

0 , the normalization 
constant Q is used. Therefore, the spectral efficiency 
is given by:

R 
B

 =∑ ∑ kjpi(γ j  ≤γ≤γ j+1)
N−1
j=0

r−1
i=0                           (13)

So far, we assume perfect CSI is available at both
transmitter and receiver. We refer to these systems as 
ideally designed MIMO AM systems. Now, we 
investigate the effect of imperfect CSI and evaluate 
the ASE performance in the presence of CSI 
imperfection. The imperfect CSI is represented by the 
channel matrix H�, which is related to the initial 
channel matrix H as,

H =ρH�+σ∈Ξ                                             (14)

where Ξ is the CSI imperfection matrix. Note that it is 
assumed that ideal CSI is known to the transmitter 
and receiver. The entries of both H� and Ξ are 
modelled as independent Gaussian variables,
furthermore, H� and Ξ are independent of each other. 
Thus, we can write Ξj,i∼ CN(0,1) and H� i,j∼ CN(0,1), 
where σϵ2 reflects the accuracy of the CSI, and

ρ2 ≜ 1-σϵ2,

Similar to (2), by applying a SVD to H�,we have

H�  = U�D�V�H                                                           (15)

D� = diag[�λ�1,…, �λ�m ]

where all notations have similar meaning as those in 
(3). Since the variable rate system is designed under a 
perfect CSI assumption, it should take the imperfectH�. 
The equivalent system (3) becomes
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For different  kj, the different  γj are obtained. The 
rate adaptation of MQAM is done based on the
received SNR as follows:

γ𝑖𝑖𝑖𝑖 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖  
𝑃𝑃𝑃𝑃

𝑚𝑚𝑚𝑚σn 
2

where γi is received SNR which is compared with 
SNR threshold. Accordingly, the suitable modulation 
size is selected.
Since there is r sub-channel, we can exert our 
algorithm on each sub-channel to find the suitable 
modulation size for each sub-channel and finally 
obtain ASE of the system from (19). Moreover , we 
can compute average BER as the ratio of average 
number of error bits and average number of bits:

BER =E [number  of  error  bits  per  transmission ]
E [number  of   bits  per  transmission ]

         (22)

Fig.3 shows the  analytical  ASE versus SNR with 
and without CSI imperfection for Nt=2, Nr=5, Lr=2, 
transmit and receive and selected antenna 
configuration,respectively. kj=1,2,…,6 bits/symbol 
set of signal constellations were used, a target BER of 
10−3 in each mode was considered and then the 
thresholds from (10) were achieved.

As expected, the ASE reduced with increasing the 
CSI imperfection. For example, if  σϵ2=10−3 the gap 
between perfect CSI diagram and diagram with σϵ2 =
10−3 is about 6 dB and this gap is reduced by 
increasing σϵ2. Note that, the spectral efficiency is 
more affected by  imperfect channel estimation in 
high SNR regions.

Fig.3 ASE versus SNR with perfect and imperfect CSI for Lr=2 and 
BER=10−3

Fig.4 shows the  analytical  ASE versus SNR for 
Nt= 3,Nr = 5, Lr =3 transmit and receive and selected 
antenna configurations, respectively. The set of 

signal constellations kj = 1,2,4,6 bits/symbol were 
used and a target BER of 10−3 in each mode was 
considered. In comparison with Fig .3, the results 
show that by decreasing receive antennas, ASE is 
also decreasing.

Fig.4  ASE versus  SNR forLr=3 and BER=10−3

Fig.5 ASE versus σϵ2 for Lr=2 and BER=10−3

Fig.5 shows the  analytical  ASE versus σϵ2 for
Nt= 2,Nr =5,Lr =2 transmit, receive and selected 
antenna configurations, respectively. The set of signal 
constellations kj = 1,2,4,6 bits/symbol were used 
and a target BER of 10−3 in each mode was 
considered. As it’s expected ,ASE is reduced by 
increasing  σϵ2. The high SNR regions is more 
sensitive to σϵ2 than to low  SNR region. When σϵ2

increases to nearly 10−1 ,the ASE starts to fall 
because the the system  cannot detect the CSI 
imperfection and thus  overestimates the sub-channel 
SNR. Fig.6 shows the  analytical  average BER  
versus σϵ2 for  Nt= 2 , Nr =5 , Lr =2, transmit, receive 
and selected antenna configurations respectively. The 
set of signal constellations kj = 0,2,4,6 bits/symbol 
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