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Abstract— A fusion method for spectral-spatial classification of hyperspectral images is proposed in this paper. In the 

proposed framework, at first, the dimension of hyperspectral image is reduced by several state-of-the-art spectral 

feature extraction methods, i.e., Binary Coding Based Feature Extraction (BCFE), Clustering Based Feature Extraction 

(CBFE), Feature Extraction Based on Ridge Regression (FERR), Feature Extraction Using Attraction Points (FEUAP), 

Feature Extraction using Weighted Training samples (FEWT), and Feature Space Discriminant Analysis (FSDA). 

Then, the spatial features are calculated from the spectral features extracted from each spectral feature extraction 

method individually using the proposed smoothing filters and morphological operators. Finally, majority voting 

decision rule is used to obtain the final classification map. The proposed framework, in addition to removing the useless 

spatial information such as noise and distortions, adds useful spatial information such as shape and size of objects 

presented in scene image. The use of complement information obtained from six spectral feature extraction methods 

with different ideas for class discrimination, significantly improves the classification results. The proposed framework 

provides in average 6.64%, 7.07%, 8.23%, 7.52% and 20.52% improvement in classification results of three real 

hyperspectral images compared to generalized composite kernel (GCK), multiple feature learning (MFL), weighted 

joint collaborative representation (WJCR), original hyperspectral bands stacked on extended morphological profile 

(HS+EMP) and original hyperspectral bands (HS), respectively in terms of overall accuracy. 

Keywords- spectral-spatial features; feature transformation; classification; majority voting; hyperspectral data. 

 

I. INTRODUCTION  

High spectral dimensionality of hyperspectral images 

allows accurate classification of different land cover 

                                                        
* Corresponding Author 

types. Supervised classifiers such as neural networks 

[1], Bayesian [2] and kernel-based methods [3]-[4] 

have provided good performance in terms of 

classification accuracy. By increasing the data 
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dimensionality with a fixed number of training 

samples, the classification accuracy is first increased to 

a point and after that with increasing the data 

dimensionality, the classification accuracy is 

decreased. This is known as Hughes phenomenon [5]. 

Due to high dimension of hyperspectral images and 

because of limited number of available training 

samples, dealing with Hughes phenomenon is one of 

the main challenges of hyperspectral image 

classification. The high computational burden is 

another difficulty of using high spectral 

dimensionality. To solve these difficulties, feature 

reduction methods have been suggested [6]-[11].  

     In addition to spectral information, spatial 

characteristics have also been shown to be very useful 

for hyperspectral image classification [12]-[13]. 

Kernel-based methods such as support vector 

machines (SVMs) have been widely utilized because 

of their insensitivity to the curse of dimensionality. 

Composite kernels with integrating the spectral and 

spatial information provide significant improvement in 

hyperspectral image classification [14]. Standard 

composite kernels and also multiple kernel learning 

methods generally need convex combinations of 

kernels [15]. Moreover, their parameters optimization 

is difficult. The generalized composite kernel (GCK) 

method has been proposed to overcome these 

limitations [16]. Multiple kernels can be linearly 

combined without any restriction of convexity in GCK. 

Combination of the spectral and spatial information is 

done by GCK without any weight parameter.  

     Different spectral-spatial features have been used 

for hyperspectral image classification. These features 

are divided into two main groups: linear features and 

nonlinear ones. On the one hand, some methodologies 

such as maximum noise fraction [17] and independent 

component analysis [18] use the linear features 

extracted from the original spectral information. On the 

other hand, nonlinear features can be more effective for 

class discrimination in some cases. Some examples of 

the nonlinear transformations based techniques for 

modelling the inherent nonlinearity of data are kernel 

methods, manifold regularization ones [19], and 

extended multi-attribute profile [20]. Since generally 

both linear and nonlinear class boundaries exist in the 

scene, multiple feature learning (MFL) [21] has been 

introduced to integrate multiple linear and nonlinear 

features. The multinomial logistic regression (MLR) 

[22], with its flexibility in construction of nonlinear 

kernels, is exploited in both GCK and MFL methods.  

     The nearest subspace classification is coupled with 

a distance-weighted Tikhonov regularization in the 

nearest regularized subspace (NRS) classifier [23]. In 

NRS, each testing sample is represented via a linear 

combination of training pixels within each class. The 

label of class that best approximates the test pixel is 

assigned to it. However, NRS just exploits the spectral 

features and ignores the spatial characteristics at 

neighboring locations. The joint collaborative 

representation (JCR) method has been introduced in 

[24] to overcome the indigenous disadvantage of the 

NRS classifier. JCR uses a joint collaborative model of 

training samples. Therefore, JCR involves the 

contextual information in classification. The weighted 

JCR (WJCR), which is an improved version of JCR 

[25] uses more efficient collaborative representation 

with considering the similarity between the center 

pixel and its neighbors.  

     Morphological profiles (MPs) are efficient and 

popular tools for spatial feature extraction [26]-[27]. 

MP produces a multi-scale decomposition from a 

single band using opening and closing operators. A MP 

concatenates a closing profile and an opening profile. 

The extended morphological profile (EMP) is the 

generalization of MP for hyperspectral data [28]. 

     A spectral-spatial classification method is proposed 

in this paper that is an extended version of work 

presented in IST 2016 symposium [40]. The proposed 

method removes the useless spatial characteristics and 

adds useful spatial ones to improve the class 

discrimination. In [40], the full hyperspectral cube is 

divided to some sub-cubes containing the adjacent 

bands. But, in this work, different feature extraction 

methods containing complementary information are 

used instead of them.  At first, the high dimension of 

hyperspectral image is reduced using some state-of-

the-art spectral feature extraction methods: Binary 

Coding Based Feature Extraction (BCFE) [6], 

Clustering Based Feature Extraction (CBFE) [29], 

Feature Extraction Based on Ridge Regression (FERR) 

[30], Feature Extraction Using Attraction Points 

(FEUAP) [31], Feature Extraction using Weighted 

Training samples (FEWT) [8], and Feature Space 

Discriminant Analysis (FSDA) [11]. These feature 

extraction methods are different approaches which use 

different ideas to produce appropriate spectral features 

for classification aims. This step reduces the data 

dimensionality and degrades the Hughes phenomenon. 

In each subgroup, we apply the proposed smoothing 

filter, which removes the spectral-spatial distortions 

such as noise from data. The morphological filters are 

applied to the smoothed images to add useful 

contextual information to them. Then, the spectral-

spatial features in each subgroup are given to an 

appropriate classifier. The final classification map is 

obtained by majority voting (MV) rule from decisions 

made from all subgroups.  

     The extracted spectral features from the BCFE, 

CBFE, FERR, FEUAP, FEWT, and FSDA methods, 

contain complementary information and have 
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minimum overlap with respect to each other. So, the 

aggregation of decisions obtained from each group of 

features through the decision fusion using MV rule 

achieves high classification accuracy. The 

experimental results on three real hyperspectral images 

show the good performance of the proposed method 

compared to some state-of-the-art spectral-spatial 

classification methods such as GCK, MFL, WJCR, and 

integration of hyperspectral (HS) with EMP, which is 

denoted by HS+EMP. 

     The reminder of this paper is continued as 

follows. The feature extraction methods are represented 

in section II. The proposed method is introduced in 

section III. The experimental results are discussed in 

section IV. Finally, section V concludes the paper. 

 

II. FEATURE EXTRACTION METHODS 

A) BCFE 

The BCFE method extracts 𝑚 features from 𝑑 original 

spectral bands by decomposition of the whole spectral 

signature of each pixel to 𝑚  segments. Then, it 

calculates the weighted mean of spectral bands in each 

segment and considers it as a new extracted feature. 

Two characterizations of binary coded class means is 

used to obtain a weight for each band. The first 

characteristic is the binary values of class means in 

each band and the second characteristic is the positive 

and negative edges of class means in each band. The 

BCFE calculates just a simple weighted mean. So, it is 

faster than supervised feature extraction methods such 

as linear discriminant analysis (LDA) [32], 

nonparametric weighted feature extraction (NWFE) 

[33], generalized discriminant analysis (GDA) [34], 

and median-mean line based discriminant analysis 

(MMLDA) [35] that need to calculate the scatter 

matrices. Moreover, BCFE achieves more 

classification accuracy than other feature extraction 

methods using limited training samples because other 

mentioned methods need to estimate the second-order 

statistics (scatter matrices) while BCFE just needs to 

estimate the first-order statistics, i.e., class means. Let 

𝒙 = [𝑥1 𝑥2 ⋯ 𝑥𝑑]𝑇  represents a pixel of 

hyperspectral image where 𝑑 is the number of spectral 

bands and 𝒚 = [𝑦1 𝑦2 ⋯ 𝑦𝑚]𝑇  denotes the 

extracted feature vector. For extraction of 𝑚 features 

from 𝑑 spectral bands, the spectral signature of each 

pixel is partitioned to 𝑚 segments containing 𝐾 bands 

where 𝐾 = ⌊
𝑑

𝑚
⌋. In each part, the weighted mean of 

bands is considered as a new extracted feature as 

follows: 

      𝑦𝑗 = ∑ 𝑤𝑖𝑥𝑖
𝑗𝐾
𝑖=(𝑗−1)𝐾+1   , 1 ≤ 𝑗 ≤ 𝑚 − 1          (1)                               

   𝑦𝑚 = {
∑ 𝑤𝑖𝑥𝑖

𝑑
𝑖=(𝑚−1)𝐾+1  ;   𝑚𝐾 < 𝑑 (𝑚 <

𝑑

𝐾
)

∑ 𝑤𝑖𝑥𝑖
𝑚𝐾
𝑖=(𝑚−1)𝐾+1  ;   𝑚𝐾 = 𝑑 (𝑚 =

𝑑

𝐾
)

   (2)                                                                         

The weight in each band is calculated by: 

    𝑤𝑖 = 𝛼(𝑤1)𝑖 + (1 − 𝛼)(𝑤2)𝑖    ;   (1 ≤ 𝑖 ≤ 𝑑)    (3)                                 

where 0 ≤ 𝛼 ≤ 1  is a positive real-valued free 

parameter, which is tuned in the training process, and 

constitutes a tradeoff between the information 

contained in the values of bands (related to 𝑤1) and the 

information contained in the edges of bands (related to 

𝑤2 ). To understand how to calculate weights 𝑤1  and 

𝑤2 , the authors refer the readers to [6]. 

 

B) CBFE 

The CBFE method considers a vector associated with 

each spectral band which contains the mean values of 

training samples of all classes in that band. Then, a 

clustering algorithm such as k-means groups the 

vectors in some clusters. The mean of spectral bands 

whose associated vectors are located in the same 

cluster is considered as an extracted feature. CBFE just 

calculates the first order statistics of training samples, 

i.e., mean vectors and thus works well in the small 

sample size situations. In the CBFE method, the mean 

vector of training samples is calculated in each class 

and the matrix 𝐀 is composed using the mean values as 

follows: 

                𝐀 = [

𝑚11 𝑚12

𝑚21 𝑚22
    

⋯ 𝑚1c

⋯ 𝑚2c

⋮ ⋮
𝑚d1 𝑚d2

    
⋮ ⋮
⋯ 𝑚dc

]                     (4) 

where 𝑚𝑖𝑗  is the mean of training samples of 𝑗th class 

in the 𝑖th band. The matrix 𝐀 can be rewritten using the 

row vectors 𝐚𝑖  (𝑖 = 1, 2,… , 𝑑):  

                                𝐀 = [

𝐚1

𝐚2

⋮
𝐚𝑑

]                                  (5) 

where 𝐚𝑖  (𝑖 = 1,2, . . , 𝑑) is the vector corresponding to 

𝑖th dimension and contains the mean values of training 

samples for 𝑐 classes. If two vector 𝐚𝑖  and 𝐚𝑗  (𝑖 ≠ 𝑗) 

become similar, then bands 𝑖  and 𝑗  are highly 

correlated. So, one of them can be removed. Based on 

this idea, the vectors 𝐚𝑖  (𝑖 = 1,2, . . , 𝑑)   are grouped 

into some clusters using a clustering algorithm such as 

k-means. The mean of spectral bands whose associated 

vectors are located in a cluster is considered as an 

extracted feature. The number of clusters determines 

the number of extracted features (12 features are 

extracted using CBFE in this work). 

Volume 10- Number 1 – Winter 2018  
 

3 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
24

-0
4-

10
 ]

 

                             3 / 12

https://ijict.itrc.ac.ir/article-1-227-en.html


 

C) FERR 

In the FERR method, a feature vector is defined for 

each dimension, and then, modeled as a linear 

combination of its farthest neighbors. By solving the 

ridge regression model, the representation coefficients 

are calculated and considers as the entries of the 

projection matrix. FERR can extract each number of 

features and has good efficiency in the small sample 

size situations. By Assuming 𝒙𝑑×1  as the original 

feature vector of each pixel of hyperspectral image, the 

aim is extraction of 𝑚 features from it using a linear 

transformation such as  𝒚𝑚×1 = 𝐀𝑚×𝑑𝒙𝑑×1 (𝑚 ≪ 𝑑). 

The matrix of class mean is represented as follows 

where 𝑐  and 𝑑  are the number of classes and the 

number of spectral bands, respectively: 

                   

[
 
 
 
 
𝑚11

𝑚21

𝑚31

 

𝑚12

𝑚22

𝑚32

 

𝑚13

𝑚23

𝑚33

 

⋯
⋯
⋯

 

𝑚1𝑐

𝑚2𝑐

𝑚3𝑐

⋮
𝑚𝑑1

⋮
𝑚𝑑2

 
⋮

𝑚𝑑3
 
⋯
⋯ 

⋮
𝑚𝑑𝑐 ]

 
 
 
 

                          (6) 

where  𝑚𝑖𝑗  (𝑖 = 1, 2,… , 𝑑; 𝑗 = 1, 2, … , 𝑐) is the mean 

of class 𝑗 in 𝑖th band. Feature vectors in 𝑑 bands are 

defined as follows: 

    𝒉𝑖 = [𝑚𝑖1 𝑚𝑖2     ⋯ 𝑚𝑖𝑐]𝑇  ;    𝑖 = 1, 2,… , 𝑑   (7)                               

By considering 𝒉𝑖 as a central feature vector: 𝒒𝑖 = 𝒉𝑖, 

𝑚  farthest neighbors of 𝒒𝑖  among 𝒉𝑗(𝑗 =

1,2, . . , 𝑑 ; 𝑗 ≠ 𝑖)  are obtained and denoted by 

𝒉𝑖1, 𝒉𝑖2,… , 𝒉𝑖𝑚. Then, 𝒒𝑖 is represented using a linear 

combination of 𝑚 farthest neighbors: 

𝒒𝑖 = 𝑤𝑖1𝒉𝑖1 + 𝑤𝑖2𝒉𝑖2 + ⋯+ 𝑤𝑖𝑚𝒉𝑖𝑚 + 𝜺   ; 𝑖 =

1,2,… , 𝑑                                                                    (8) 

where 𝑤𝑖1, 𝑤𝑖2, … ,𝑤𝑖𝑚  are the representation 

coefficients. The other form of (8) is given by: 

         (𝒒𝑖)𝑐×1 = (𝐇𝑖)𝑐×𝑚(𝒘𝑖)𝑚×1 + 𝜺𝑐×1                 (9)                                                

where         

        𝐇𝑖 = [𝒉𝑖1 𝒉𝑖2 … 𝒉𝑖𝑚]   ; 𝑖 = 1,2,… , 𝑑           (10) 

       𝒘𝑖 = [𝑤𝑖1 𝑤𝑖2 …𝑤𝑖𝑚]𝑇   ; 𝑖 = 1,2,… , 𝑑           (11) 

To avoid the singularity problem, the ridge regression 

is used. The coefficient vector 𝒘𝑖  is obtained by 

ordinary least square solution as follows: 

     �̂�𝑖 = (𝐇𝑖
𝑇𝐇𝑖 + 𝛿𝐈)

−1
𝐇𝑖

𝑇𝒒𝑖   ; 𝑖 = 1,2,… , 𝑑     (12)                      

Note that the vector �̂�𝑖  describes the relationship 

between the 𝑖th feature vector (𝒒𝑖 = 𝒉𝑖) and 𝑚 feature 

vectors, 𝒉𝑖1, 𝒉𝑖2,… , 𝒉𝑖𝑚 , which have the largest 

distances from it. To obtain the projection matrix, the 

representation coefficients of each band is obtained in a 

similar way. These coefficients vector compose the 

projection matrix after normalization. 

D) FEUAP 

The basic idea of FEUAP is represented as follows: if 

we consider an appropriate attraction point for each 

class, the samples of each class can move toward the 

attraction point of their class using a proper 

transformation. If attraction points of different classes 

are chosen away enough from each other, different 

classes become separable by aggregation of samples of 

each class around the attraction point of the same class. 

The FEUAP method is done in two basic phases: 1- 

obtaining appropriate attraction points, 2- achieving 

the proper transformation to move toward attraction 

points. Two approaches are proposed in [31] to obtain 

the attraction points (selection based on distance 

measure and selection based on dense measure). For 

more details, authors refer the readers to [31]. FEUAP 

has no need to estimate the statistical moments (mean 

vector or scatter matrix) and so works well using 

limited training samples. In FEUAP, the samples in the 

reduced feature space are in such a way that: 1- Each 

sample has minimum distance from the attraction point 

of its class (attraction), 2- Each sample has maximum 

distance from the attraction points of other classes 

(repulsion). Based on this idea, two functions are 

defined, attraction function (𝜓1)  and repulsion 

function (𝜓2):  

                𝜓1 = ∑ ∑ ‖𝒚𝑖𝑐 − 𝒚𝑎𝑐‖2𝑛𝑡𝑐
𝑖=1

𝑛𝑐
𝑐=1                 (13) 

 

            𝜓2 = −∑ ∑ ∑ ‖𝒚𝑖𝑐 − 𝒚𝑎𝑘‖2𝑛𝑐
𝑘=1
𝑘≠𝑐

𝑛𝑡𝑐
𝑖=1

𝑛𝑐
𝑐=1        (14) 

where 𝒙𝑎𝑐   is the attraction point of 𝑐 th class and 

𝒚𝑎𝑐 = 𝐀𝒙𝑎𝑐 is the attraction point of 𝑐th class in the 

new feature space, i.e., 𝒚𝑖𝑐 = 𝐀𝒙𝑖𝑐 . For finding the 

transformation matrix (𝐀), the following optimization 

problem is solved: 

                               min
𝐀

(𝜓 = 𝜓1 + 𝜓2)                 (15) 

 

E) FEWT 

In popular feature extraction methods, all spectral 

bands of each training sample have the same role in the 

feature extraction process. But, different spectral bands 

have different abilities in identification of classes. 

FEWT considers the relative importance of each 

feature (spectral band) in predicting the class label of 

sample as a weight for that feature. Each arbitrary 

feature extraction approach can use these weighted 

training samples. In [8], the weighted training samples 

are used in the supervised locality preserving 

projection (LPP).  
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      Let 𝑿𝑛×𝑑 = [𝒙1, 𝒙2, … , 𝒙𝑛]𝑇  be the training 

samples where 𝑛 is the number of training samples and 

𝑳 ∈ 𝓡𝑛×𝑐  be the class label matrix. The entries of 

matrix 𝑳 are zero or one. If 𝑖th sample belongs to 𝑘th, 

then, in the 𝑖th row of 𝑳 just column 𝑘 is one and other 

columns are zero. The relationship between the 

training samples and the class labels can be modeled as 

follows:  

             𝑳𝑛×𝑐 = 𝑿𝑛×𝑑𝑾𝑑×𝑐 + 𝟏𝑛𝒃𝑇                      (16) 

 

where 𝒃 ∈ 𝓡𝑐×1  is the bias term and 𝟏𝑛  is a 𝑛 × 1 

constant vector whose elements are all one. The entries 

of the weight matrix 𝑾  are 𝑤𝑗𝑘(𝑗 = 1, . . , 𝑑 ; 𝑘 =

1, … , 𝑐) where 𝑤𝑗𝑘 measures the relative importance of 

𝑗th feature (band) in predicting the class 𝑘. The least 

square with ridge regularization is used to calculate the 

weight matrix 𝑾 as follows:  

 

min
𝑾,𝒃

𝜓(𝑾,𝒃) = ‖𝑿𝑾 + 𝟏𝑛𝒃𝑇 − 𝑳‖𝐹
2 + 𝛾‖𝑾‖𝐹

2  (17)                                  

 

𝛾 > 0  is a tradeoff parameter and ‖∙‖𝐹  denotes the 

Frobenius norm. The matrix 𝑾 is obtained using the 

matrix theory:  

                   𝑾 = (𝑿𝑇𝑯𝑿 + 𝛾𝑰𝑑)−1𝑿𝑇𝑯𝑳             (18) 

 

where 𝑯 = 𝑰𝑛 − (1 𝑛⁄ )𝟏𝑛𝟏𝑛
𝑇  and 𝑰𝑛  is an 𝑛 × 𝑛 

identity matrix. The matrix 𝑾 is used for weighting the 

training samples. If 𝒙𝑖  belongs to class 𝑘 , then, the 

bands of 𝒙𝑖 are weighted as follows: 

                     𝑧𝑖𝑗 = 𝑥𝑖𝑗𝑤𝑗𝑘 ; 1 ≤ 𝑗 ≤ 𝑑                    (19) 

    

where 𝑤𝑗𝑘 is the weight of 𝑗th feature in class 𝑘, 𝑥𝑖𝑗 is 

the 𝑗th feature of 𝑖th sample and 𝑧𝑖𝑗  is 𝑗th feature of 𝑖th 

weighted sample. 

 

F) FSDA 

Popular feature extraction methods such as LDA-based 

methods just use the class discrimination for feature 

extraction. In addition to separability between classes, 

FSDA considers the difference between spectral bands 

in the transformed feature space. FSDA extracts 

features such a way that: the extracted features are as 

different from each other as possible, and, separability 

between classes is increased. For extraction of features 

with minimum redundant information, FSDA at first 

estimates the between-spectral band scatter matrix as 

follows: 

         𝑺f = ∑ ∑ (𝒉𝑖𝑗 − �̅�𝑗)
𝑑
𝑖=1 (𝒉𝑖𝑗 − �̅�𝑗)

𝑇𝑛𝑡
𝑗=1          (20) 

where 𝒉𝑖𝑗 and �̅�𝑗 are considered as follows: 

  𝒉𝑖𝑗 = [𝑥𝑖1𝑗 𝑥𝑖2𝑗      ⋯ 𝑥𝑖𝑐𝑗]𝑇 ;    𝑖 = 1, 2, … , 𝑑, 𝑗 =

1, 2,… , 𝑛𝑡                                                                (21) 

                          �̅�𝑗 =
1

𝑑
∑ 𝒉𝑖𝑗

𝑑
𝑖=1                              (22) 

where the 𝑗th training sample of class 𝑘 in 𝑖th feature 

is denoted by 𝑥𝑖𝑘𝑗  (𝑖 = 1, 2,… , 𝑑;  𝑘 = 1, 2,… , 𝑐;  𝑗 =

1, 2,… , 𝑛𝑡   ) and 𝑛𝑡  is the number of training samples 

per class. With maximizing 𝑡𝑟(𝑺f) , the projection 

matrix 𝑾 is calculated and then, the new feature space 

is obtained by: 

(𝒈𝑖𝑗)𝑐×1
= 𝑾𝑐×𝑐(𝒉𝑖𝑗)𝑐×1

 ;    𝑖 = 1, 2, … , 𝑑, 𝑗 =

1, 2,… , 𝑛𝑡.                                                               (23) 

According to 𝑾 transformation, training samples 𝑥𝑖𝑘𝑗 

are transformed to 𝑟𝑖𝑘𝑗  where 𝑟𝑖𝑘𝑗  is the 𝑗 th training 

sample of class 𝑘 in 𝑖th dimension of the transformed 

feature space. Then, the between-class scatter matrix 

(𝑺b) and within-class scatter matrix (𝑺w) are defined 

as follows: 

    𝑺b = ∑ ∑ (𝑹𝑘𝑗 − �̅�)𝑐
𝑘=1 (𝑹𝑘𝑗 − �̅�)

𝑇𝑛𝑡
𝑗=1              (24) 

𝑺w = ∑ ∑ ∑ (𝑹𝑘𝑖 − 𝑹𝑘𝑗)
𝑛𝑡
𝑖=1 (𝑹𝑘𝑖 − 𝑹𝑘𝑗)

𝑇𝑛𝑡
𝑗=1

𝑐
𝑘=1   (25) 

where  

   𝑹𝑘𝑗 = [𝑟1𝑘𝑗 𝑟2𝑘𝑗      ⋯ 𝑟𝑑𝑘𝑗]𝑇  ;    𝑘 = 1, 2, … , 𝑐,

𝑗 = 1, 2,… , 𝑛𝑡                                                         (26)                                       

and 

                 �̅� =
1

𝑐×𝑛𝑡
∑ ∑ 𝑹𝑘𝑗

𝑐
𝑘=1

𝑛𝑡
𝑗=1                         (27) 

To maximize the class discrimination, 𝑡𝑟(𝑺w
−1𝑺b) is 

maximized. For more information, the authors refer the 

readers to [11]. 

 

II. PROPOSED METHOD 

The proposed method is a spectral-spatial 

classification framework that improves the 

classification accuracy by controlling spatial 

information involved in the classification process. The 

flowchart of the proposed method is shown in Fig. 1. 

At first, the huge hyperspectral cube is given to six 

different feature extraction blocks for dimensionality 

reduction. The BCFE, CBFE, FERR, FEUAP, FEWT, 

and FSDA methods are used for feature extraction. 

These feature extraction methods use different 

approaches and ideas for feature transformation and so 

the feature spaces obtained by them contain 

complement information. Using this step of the  
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Fig.1. Block diagram of the proposed spectral-spatial classification framework. 

 

 

proposed method, the dimensionality of data is reduced 

and the Hughes phenomenon is degraded. So, the 

proposed method can work well in small sample size 

situations. Moreover, the complement information 

extracted by different feature extraction methods, after 

spatial processing, are fused using decision rule. 

     Most of the spectral-spatial classification methods 

just add contextual features to data. But, two main 

contributions are used in this work. At first, the useless 

contextual information such as noise which causes 

spectral-spatial distortions is removed. Then, the 

useful spatial information is added to data. The 

proposed smoothing filters and then morphological 

filters are applied to each subgroup of extracted 

features to remove useless spatial information and add 

useful spatial information, respectively.  

     For implementation of the proposed smoothing 

filter, a spatial neighborhood window is considered 

around each central pixel where its spectral feature 

vector is modeled by its surrounding pixels. If 𝒙𝑖
𝑘 

indicates 𝑖 th pixel in 𝑘 th subgroup, it can be 

represented by: 

                          𝒙𝑖
𝑘 = ∑ 𝛼𝑖𝑗

𝑘
𝑗∈𝑤𝑖

𝒙𝑗
𝑘                         (28) 

 

where 𝑤𝑖  is a local window containing (2𝑎 + 1) ×

(2𝑎 + 1) pixels around pixel 𝒙𝑖
𝑘  where 𝑎 indicates the 

radius of the window. 𝒙𝑗
𝑘 denotes 𝑗th neighbor of 𝒙𝑖

𝑘 in 

the local window and 𝛼𝑖𝑗
𝑘  measures the similarity 

between central pixel (𝒙𝑖
𝑘) and its neighbor, (𝒙𝑗

𝑘), in 

subgroup 𝑘. The weight 𝛼𝑖𝑗
𝑘  is defined by: 

 

                            𝛼𝑖𝑗
𝑘 =

1

1+𝑑𝑖𝑠𝑡(𝒙𝑖
𝑘,𝒙𝑗

𝑘)
                       (29) 

where 

      

  𝑑𝑖𝑠𝑡(𝒙𝑖
𝑘 , 𝒙𝑗

𝑘) = (𝒙𝑖
𝑘 − 𝒙𝑗

𝑘)
𝑇
(𝒙𝑖

𝑘 − 𝒙𝑗
𝑘)              (30) 

 

is the Euclidean distance. Then, the morphological 

filters are applied to the smoothed images. In other 

words, the spatial features are added to images using 

EMP. The morphological filters are efficient tools for 

spatial feature extraction. The degree of processing of 

input image is determined by the geometrical 

characteristics of the structure element (SE). The 

opening profile  (Π𝛾)  and closing profile (Π𝜑)  are 

concatenated to provide a MP: 

 

   Π𝛾(𝑧) = {Π𝛾𝜆: Π𝛾𝜆 = 𝛾𝜆
∗ (𝑧), ∀𝜆 ∈ [0, 𝑛]}         (31) 

 

  Π𝜑(𝑧) = {Π𝜑𝜆:Π𝜑𝜆 = 𝜑𝜆
∗  (𝑧), ∀𝜆 ∈ [0, 𝑛]}        (32) 

 

where 𝑧 denotes a pixel of single band image 𝐼, 𝛾𝜆
∗ (𝑧) 

and 𝜑𝜆
∗  (𝑧)  indicate the morphological opening and 

closing operators by reconstruction using SE with the 

size of 𝜆, respectively. A MP consists of 2𝑛 + 1  bands 

is provided from the single band image 𝐼 by applying 

𝑛  opening operators and 𝑛  closing operators by 

reconstruction: 

   𝑀𝑃𝑛(𝐼) = {𝜑1
∗(𝐼), … , 𝜑𝑛

∗(𝐼), 𝐼, 𝛾1
∗(𝐼),… , 𝛾𝑛

∗(𝐼)}  (33) 

 

To handle the hyperspectral images, EMP is used. The 

principal component analysis (PCA) transformation 

[36] as a dimension reduction method is used to reduce 

the hyperspectral image dimensionality. In the 

proposed method in this work, the PCA transformation 

is applied to each subgroup of extracted features to 

reduce the dimensionality from 𝑑𝑖 to  (𝑝 < 𝑑𝑖).  The 𝑝 

principal components (PCs) of data corresponding to 

the 𝑝 largest eigenvalues of covariance matrix of each  
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Table I. The individual results for each of BCFE, CBFE, FERR, FEUAP, FEWT, and FSDA branches in the proposed block diagram 

compared to the final fused result obtained by the MV rule.

 

 

 

 

 

 

 

subgroup are chosen and the remained components are 

discarded. EMP in each subgroup is formalized as 

follows: 

𝐸𝑀𝑃 = {𝑀𝑃𝑛(𝑃𝐶1),𝑀𝑃𝑛(𝑃𝐶2),… 𝑀𝑃𝑛(𝑃𝐶𝑝)}     (34) 

 

The spectral channels are integrated with the spatial 

features extracted by EMP in each subgroup and the 

spectral-spatial features are fed to an efficient classifier 

such as SVM. Finally the classification maps provided 

by different subgroups of extracted features are 

contributed to achieve the final classification map 

using the MV rule. 

 

IV. EXPERIMENTAL RESULTS 

The performance of the proposed method is evaluated 

in comparison with some spectral-spatial classification 

methods such as GCK [16], MFL [21], WJCR [25], 

HS+EMP (an integration of hyperspectral data with 

EMP), and original hyperspectral (HS). In each class, 

20 training samples, which is a small training set 

relative to the high dimension of used datasets, are 

randomly selected for doing experiments and 

evaluation of the proposed method in small sample size 

situation. Three hyperspectral datasets are used in the 

experiments: Indian pines with agriculture/forest 

context and low spatial resolution of 20 m by pixel, 

University of Pavia with an urban context and high 

spatial resolution of 1.3 m per pixel, and Salinas with 

a spatial resolution of 3.7 m. The Indian image 

collected from Northwestern Indiana by Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) has 

145×145 pixels containing 16 classes, and 224 spectral 

channels where the number of channels is reduced to 

200 by removing water absorption bands. Ten classes 

of Indian are selected for doing experiments. 

University of Pavia image acquired by the ROSIS 

instrument over the city of Pavia, Italy has 610×340 

pixels with 115 spectral bands and 9 classes where 103 

spectral channels are remained after discarding noisy 

and water absorption bands. The Salinas hyperspectral 

image collected over the valley of Salinas, Southern 

California by AVIRIS contains 512 × 217 pixels, 16 

classes, and 224 spectral channels where 204 channels 

are remained after removing absorption bands. Several  

 

 

 

 

 

 

 

measurements are used for evaluation of classification 

accuracy: classification accuracy (Acc.), classification 

reliability (Rel.), average accuracy, average reliability, 

overall accuracy as the percentage of correctly 

classified samples and kappa coefficient [37]. In the 

formulas of the accuracy 𝐴𝑐𝑐 = 𝑁/𝐴  and reliability 

𝑅𝑒𝑙 = 𝑁/𝐵 𝑁 denotes the number of testing samples 

that are correctly classified, 𝐴  indicates the total 

testing samples of class and 𝐵  denotes the total 

samples that are labeled as the class. Moreover, the 

McNemars test is used [38] to assess the statistical 

significance of differences in the classification results. 

The sign of McNemars test parameter 𝑍12  indicates 

whether classifier 1 works more accurate than 

classifier 2 (𝑍12 >  0)  or vice versa (𝑍12  <  0) . If 

|𝑍12|  >  1.96 , the difference in the classification 

accuracies of two classifiers is statistically significant. 

SVM implemented by LIBSVM [39] is used as 

classifier in the proposed method, HS+EMP, and HS. 

The polynomial kernel with default parameters in the 

LIBSVM is used. MLR  is used as classifier in GCK 

and MFL (according to their definitions in [16] and 

[21]) and the spectral-spatial version of the nearest 

regularized subspace method is used as classifier in 

WJCR (according to its definition in [25]).  

      The individual results for each of BCFE, CBFE, 

FERR, FEUAP, FEWT, and FSDA branches in the 

proposed block diagram are obtained and compared 

with the final fused result obtained by the MV rule. The 

overall accuracies are reported in Table I. As seen from 

the results, it can be found that the fused results with 

MV rule are the best. It is expected because the features 

extracted by different ideas are fused together which 

provide complementary information for image 

classification. The classification results for Indian, 

Pavia, and Salinas datasets are represented in Tables 

II-IV respectively. The associated ground truth map 

(GTM) and the classification maps are also shown in 

Figs. 2-4.  The McNemars test results are reported in 

Table V. The following conclusions can be seen from 

the obtained results: 

1- The proposed classification framework achieves 

the highest classification accuracy. 

2- In Indian dataset, MFL is superior to GCK, but in 

Pavia dataset, GCK is better than MFL.  

Dataset BCFE CBFE FERR FEUAP FEWT FSDA 
MV 

Indian 84.89 83.54 79.51 73.38 76.02 78.45 
94.05 

Pavia  95.33 94.42 92.97 89.99 90.52 89.90 
98.95 

Salinas  93.57 93.57 93.33 93.04 92.84 93.94 
95.74 
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Table II. The classification results for Indian dataset. 

 
Table III. The classification results for Pavia dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The classification maps for Indian dataset. 

class Proposed GCK MFL WJCR HS+EMP HS 

No Name of class 
# 

samples 
Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Corn-no till 1434 94.21 88.94 71.97 86.50 73.57 72.76 91.21 79.13 80.96 89.58 62.27 55.88 

2 Corn-min till 834 95.68 82.35 86.93 71.57 91.97 79.40 86.09 72.23 87.89 62.54 50.72 34.09 

3 Grass/pasture 497 98.59 92.80 97.38 83.30 96.58 97.76 97.99 92.41 98.39 81.50 93.96 63.54 

4 Grass/trees 747 98.13 96.19 97.59 95.92 97.46 95.54 88.62 99.85 93.44 97.21 86.88 89.52 

5 Hay-windrowed 489 99.59 97.01 99.59 99.80 99.59 
100.0

0 

100.0

0 

100.0

0 
99.39 99.59 99.18 98.38 

6 Soybeans-no till 968 89.88 94.46 85.74 65.05 86.47 73.94 80.99 90.01 84.92 73.52 58.16 57.16 

7 Soybeans-min till 2468 88.21 98.28 73.26 88.11 73.50 88.19 63.86 91.05 73.18 89.94 33.39 57.78 

8 Soybeans-clean till 614 98.05 92.33 92.35 76.93 90.55 84.63 99.84 57.24 78.50 73.59 75.57 47.54 

9 Woods 1294 97.30 
100.0

0 
90.65 99.83 99.15 99.84 86.71 99.56 96.52 

100.0

0 
66.69 98.18 

10 Bldg-Grass-Tree-Drives 380 99.74 95.23 98.16 82.89 96.84 84.02 96.84 61.44 99.74 90.02 81.32 46.33 

Average Acc. and Average Rel. 95.94 93.76 89.36 84.99 90.57 87.61 89.21 84.29 89.29 85.75 70.81 64.84 

Overall Acc. 94.05 84.40 86.12 83.57 85.40 61.08 

Kappa coefficient 0.93 0.82 0.84 0.81 0.83 0.56 

class Proposed GCK MFL WJCR HS+EMP HS 

No Name of class 
# 

samples 
Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Asphalt 6631 99.98 98.73 90.47 87.04 86.85 92.40 81.68 98.71 78.31 98.37 64.27 95.60 

2 Meadows 18649 96.76 
100.0

0 
91.82 98.13 89.92 98.09 91.46 94.40 89.26 98.65 75.90 92.72 

3 Gravel 2099 99.62 84.66 91.19 71.10 87.57 66.38 75.51 73.21 91.62 64.25 76.89 59.40 

4 Trees 3064 91.85 93.09 91.45 86.06 83.52 76.96 97.23 66.27 96.90 88.73 92.62 67.88 

5 Painted metal sheets 1345 
100.0

0 

100.0

0 
99.41 84.57 85.35 

100.0

0 

100.0

0 
99.12 98.14 84.83 99.63 95.85 

6 Bare Soil 5029 
100.0

0 

100.0

0 
90.50 92.16 97.41 84.79 80.77 88.63 95.63 76.22 81.13 56.16 

7 Bitumen 1330 
100.0

0 
98.64 98.80 65.08 99.62 94.04 98.42 79.77 99.40 58.29 92.48 43.10 

8 Self-Blocking Bricks 3682 86.83 
100.0

0 
75.20 96.35 93.54 81.65 88.67 80.54 77.24 88.74 76.15 75.95 

9 Shadows 947 
100.0

0 
99.41 99.47 87.71 81.31 96.25 97.68 

100.0

0 
99.37 99.58 99.79 99.89 

Average Acc. and Average Rel. 97.23 97.17 92.03 85.35 89.45 87.84 90.16 86.74 91.76 84.18 84.32 76.28 

Overall Acc. 98.95 90.59 90.03 88.70 88.76 77.77 

Kappa coefficient 0.97 0.88 0.87 0.85 0.85 0.72 

GTM Proposed GCK MFL WJCR HS+EMP HSGTM Proposed GCK MFL WJCR HS+EMP HSProposed

GTM Proposed GCK MFL WJCR HS+EMP HS
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Table III. The classification results for Salinas dataset. 

 

 

 

Fig. 3. The classification maps for Pavia dataset. 

  

Fig. 4. The classification maps for Salinas dataset. 

  

class Proposed GCK MFL WJCR HS+EMP HS 

No Name of class 
# 

samples 
Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Brocoli_green_weeds_1 2009 
100.0

0 
90.50 

100.0

0 

100.0

0 

100.0

0 

100.0

0 
43.06 74.19 

100.0

0 
98.38 97.11 99.90 

2 Brocoli_green_weeds_2 3726 97.34 
100.0

0 
99.49 

100.0

0 
98.93 

100.0

0 
91.81 74.94 95.12 

100.0

0 
99.14 98.32 

3 Fallow 1976 98.76 99.50 99.80 96.62 99.80 99.85 
100.0

0 
99.90 95.45 98.33 99.14 95.47 

4 Fallow_rough_plow 1394 99.43 89.87 99.21 97.88 99.43 97.47 99.00 97.11 99.64 97.13 99.57 94.42 

5 Fallow_smooth 2678 97.52 99.18 98.69 98.62 98.36 99.28 98.32 99.32 98.10 96.44 98.02 98.65 

6 Stubble 3959 98.59 
100.0

0 
98.71 

100.0

0 
94.42 

100.0

0 
97.30 

100.0

0 
95.98 

100.0

0 
97.50 99.95 

7 Celery 3579 99.02 98.84 99.75 
100.0

0 
99.44 99.50 99.86 99.97 99.55 93.74 99.69 96.88 

8 Grapes_untrained 11271 96.14 96.57 78.74 94.91 69.56 92.81 89.14 86.64 74.49 97.80 70.19 81.58 

9 Soil_vineyard_develop 6203 
100.0

0 

100.0

0 
99.94 98.41 99.27 98.12 99.27 99.63 97.95 99.51 98.13 98.93 

10 
Corn_senesced_green_

weeds 
3278 95.35 

100.0

0 
93.11 97.32 95.30 99.55 98.96 93.19 91.76 82.77 89.48 76.28 

11 
Lettuce_romaine_4wee

ks 
1068 99.85 

100.0

0 
98.31 90.28 98.78 96.97 98.88 99.81 99.81 89.43 97.57 85.06 

12 
Lettuce_romaine_5 

weeks 
1927 98.78 99.59 

100.0

0 
98.27 99.84 97.52 99.90 

100.0

0 
97.98 98.18 98.39 93.54 

13 
Lettuce_romaine_6 

weeks 
916 98.29 93.59 99.89 95.81 99.34 95.89 99.56 97.85 97.49 77.12 98.91 98.05 

14 
Lettuce_romaine_7 

weeks 
1070 98.45 96.71 98.32 96.60 97.76 95.18 97.48 98.12 92.43 77.81 97.01 89.95 

15 Vineyard_untrained 7268 95.64 95.84 93.26 74.61 92.09 64.61 80.17 84.19 95.69 75.84 72.33 66.13 

16 
Vineyard_vertical_trelli

s 
1807 95.75 

100.0

0 
97.51 

100.0

0 
96.29 

100.0

0 
97.62 

100.0

0 
95.79 94.59 94.36 99.30 

Average Acc. and Average Rel. 98.06 97.51 97.17 96.21 96.16 96.05 93.15 94.05 95.45 92.32 94.16 92.03 

Overall Acc. 95.74 93.85 91.40 91.78 92.04 88.34 

Kappa coefficient 0.95 0.93 0.90 0.91 0.91 0.87 

GTM Proposed GCK MFL WJCR HS+EMP HS
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Table V. The McNemars test results.

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3- In Indian, HS+EMP is superior to WJCR. But, in 

Pavia, the performances of HS+EMP and WJCR 

are similar.  

4- The worst classification results are related to the 

use of just spectral bands (HS).  

5- The spatial neighborhood information 

significantly attenuates the salt and pepper noise 

in classification maps obtained by the proposed, 

GCK, MFL, WJCR, and HS+EMP methods. 

 

The main advantages of the proposed framework can 

be represented as follows: 

The use of different feature extraction methods with 

different ideas provides the useful features for 

classification. The features obtained by different 

feature extraction methods contain complement 

information and have minimum overlap with respect to 

each other. This is an important principle in the 

decision fusion rule.  

1- It copes with the small sample size problem with 

dimensionality reduction of hyperspectral image 

and by providing some groups of useful extracted 

features and classification of each subgroup 

individually. 

2- The useless spatial information such as noise and 

distortions is removed from the image by applying 

the smoothing filter on each subgroup of data. 

 

 

 

 

3- The useful spatial information is added to data by 

applying morphological filters to the smoothed 

images. 

 

4- For exploiting the complement information 

contained in different subgroups of extracted 

features, the MV rule is used as a decision fusion 

technique. 

 

V. CONCLUSION 

A spectral-spatial classification framework was 

proposed in this paper. The proposed method uses the 

complement groups of spectral features extracted from 

several different state-of-the-art feature extraction 

methods with minimum redundant information. The 

proposed framework utilizes the smoothing filters for 

removing the useless spatial information while utilizes 

the morphological filters for adding the useful spatial 

information to hyperspectral image. The proposed 

method copes with the curse of dimensionality by 

feature extraction of the high dimensional data in six 

different groups and data processing on each subspace 

individually. The experimental results on Indian 

hyperspectral image with low spatial resolution and 

Pavia and Salinas hyperspectral images with high 

spatial resolution demonstrate the superiority of the 

proposed framework compared to several spectral-

spatial classification methods. 

 

 

Indian 

 Proposed GCK MFL WJCR HS+EMP HS 

Proposed 0 15.41 10.01 20.78 14.09 57.11 

GCK -15.41 0 -5.11 2.16 -2.99 42.57 

MFL -10.01 5.11 0 6.33 2.02 43.05 

WJCR -20.78 -2.16 -6.33 0 -4.99 39.65 

HS+EMP -14.09 2.99 -2.02 4.99 0 42.10 

HS -57.11 -42.57 -43.05 -39.65 -42.10 0 

Pavia 

 Proposed GCK MFL WJCR HS+EMP HS 

Proposed 0 40.72 44.14 48.68 50.56 86.70 

GCK -40.72 0 3.04 9.84 11.29 53.58 

MFL -44.14 -3.04 0 6.69 6.70 50.67 

WJCR -48.68 -9.84 -6.69 0 -0.29 45.46 

HS+EMP -50.56 -11.29 -6.70 0.29 0 45.72 

HS -86.70 -53.58 -50.67 -45.46 -45.72 0 

Salinas 

 Proposed GCK MFL WJCR HS+EMP HS 

Proposed 0 15.93 2.41 3.02 3.00 20.17 

GCK -15.93 0 22.84 14.79 14.28 43.81 

MFL -2.41 -22.84 0 -2.45 -4.56 21.34 

WJCR -3.02 -14.79 2.45 0 -1.79 21.75 

HS+EMP -3.00 -14.28 4.56 1.79 0 25.28 

HS -20.17 -43.81 -21.34 -21.75 -25.28 0 
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