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Abstract—Many process-aware organizations need to monitor the execution of their Business Processes (BP). 
Changes in BP execution can be reported as events while real-time detection of event patterns from such events can 
help the monitoring of model-execution conformance or business activities. Complex Event Processing (CEP) 
techniques can detect event patterns that are specified as CEP rules. Given the high rate of events and numerous 
number of complex rules, existing CEP-based solutions are not scalable. We present a novel scalable Event Driven 
Process Monitoring Mechanism (EDBPM) using distributed CEP. Events are partitioned by process instance 
identifier and the events of each partition is dispatched to a compute node. As such, the processing load of BP 
monitoring is distributed adaptively to compute nodes in a load balanced manner. Using a prototyped 
implementation of EDBPM we show that EDBPM scales well horizontally, i.e. increases in throughput are nearly 
linear when the number of compute nodes increases. Compared to CPU and memory balancing in a general purpose 
distributed CEP-based solution, EDBPM keeps the CPU load doubly balanced and does balance the memory too, 
which is lacking in similar solutions. 

 

Keywords-Business Process Management, Business Process Monitoring, Complex Event Processing, Scalability, Load 
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I. INTRODUCTION 
All deficiencies of a complex system cannot be 

resolved and not all violations of its behavioral 
constraints can be predicted during design and 
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development of the system. On the other hand, the full 
behavior of a system is observable and all of its 
deficiencies and violations are detectable only at 
runtime. Keeping track of a system’s behavior and 
interaction of the system with its environment and also 
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interactions between its components during operation is 
called runtime monitoring [1]. One of the most 
important issues in most organizations is the monitoring 
of their business processes. Therefore, most of the 
proposed monitoring frameworks are developed for 
Business Process (BP) monitoring [1]. The main types 
of monitoring in a Business Process Management 
System (BPMS) are Business Activity Monitoring 
(BAM) [2], Service Level Agreements (SLA) 
violations monitoring [3] and execution-model 
conformance monitoring [4, 5]. 

The state changes of objects within the context of a 
BPMS are represented by events [6]. In a computing 
system, an event is produced, processed and stored as a 
data object [7]. Events may contain some attributes 
such as happening time, corresponding process 
instance, activity and user identifiers [8, 9]. Therefore, 
in a BPMS, an event set may be larger or equal in 
cardinality to its corresponding generated log set.  

Using event aggregation, correlation and pattern 
detection, notable changes in Key Performance 
Indicators (KPI), execution status according to SLAs 
and execution deviations from models could be 
investigated. To the best of our knowledge, the best 
technology for such a monitoring in a real-time or 
almost real-time manner is Complex Event Processing 
(CEP) and the researchers of the BPM domain have not 
introduced any better solution [1, 8, 10, 11]. Therefore, 
CEP has been used widely in recent related works such 
as the works reported in [2, 12–17]. The result of CEP 
may trigger a reactor or even pro-actor system and can 
be visualized as notifications or graphs to show a 
detected issue, its root causes and its degree of 
importance [8, 18]. Furthermore, the result of CEP 
could be a feedback for the activities of running 
processes [19] and even a rule tuning system that 
modifies monitoring rules according to the current 
status of the system [11]. 

In general, CEP solutions abstract the behavior of a 
system by extracting high-level information from 
lower-level system events in a real-time or almost real-
time manner [7]. This event abstraction is done through 
event aggregation, correlation, and pattern detection. 
Therefore, the best way for (almost) real-time event 
pattern detection through BP execution monitoring and 
extracting higher-level information (e.g. fraud detection 
from financial transaction logs) is the CEP deployment. 

Nowadays, organizations have complex processes 
and high rates of process instance generation through 
concurrent process executions. So CEP systems are 
faced with high rates of input events and numerous 
complex rules, and performance, scalability, and low 
latency have become big challenges in BP monitoring 
[20]. In other words, for sound (Definition 9, defined in 
Section 5) and real-time operation of a CEP system, 
efficient load distribution and sufficient resource 
allocation are the biggest challenges.  

The first step towards enhancement of BP 
monitoring using CEP is to optimize the generation of 
monitoring rules (queries on the generated events). 
Most existing research works such as those reported in 
[3–5, 21] have focused on optimized CEP rule 
generation. However, there is no work on the scalability 

of the processing of BP monitoring rules. Therefore, a 
better solution for scalable BP monitoring using CEP is 
needed in addition to general solutions proposed for 
Distributed CEP (DCEP) such as  [2, 22]. In other 
words, a proper integration of a CEP system in a 
specific domain such as BPM leads to better 
performance. 

In this paper, we present a novel Scalable Business 
Process Monitoring Mechanism (EDBPM) using CEP 
for isolated process instances that scales out the BP 
monitoring via distribution of the processing load on a 
set of compute nodes. The main attributes of EDBPM 
that make it novel include: 

• Balancing the load of multiple resource types 
among multiple compute nodes 

• Elasticity (the ability of runtime addition / 
removal of compute nodes) 

• Adaptability with process instance generation 
rates (input event rates) 

• CEP engine independence 

• Heterogeneity support (compute nodes and/or 
CEP engines running on nodes) 

We have organized the rest of the paper as follows. 
Section 2 presents related works. Section 3 highlights 
our motivation by outlining an important application of 
BP monitoring. Section 4 explains the performance 
challenge that is addressed by EDBPM. Section 5 
present a formal specification of the problem to be 
resolved by EDBPM. Section 6 presents the EDBPM in 
detail. Section 7 reports the results of our experiments 
with a prototype implementation of EDBPM and 
Section 8 concludes the paper.  

II. RELATED WORK 
Some previous works such as [23] had focused on 

offline conformance checking or pre-mortem and non-
real-time processing of events that persist in a database 
such as HBase [19]. These works are not suited to 
monitoring of  systems whose generated events should 
be processed in real-time manner.  

The first step in the enhancement of performance of 
BP monitoring systems using CEP is optimization of 
rule generation. For example in [3, 4] resource 
utilization is improved by reduction of complexity of 
rules. In such solutions, the workload of the system is 
assumed constant and known while the process instance 
generation and activities have dynamic nature and one 
cannot predict the workload of a real organization. 
Some other works, have tried to reduce monitoring 
rules for monitoring of a process. For example 
Backmann et al. [5] have used RPST [24] for workflow 
fragmentation and generated fewer number of rules 
from the workflow tree, and another work [25] has tried 
to improve this rule generation for the monitoring of 
choreography. Optimization of resource utilization is 
not enough when a BPMS generates high rates of input 
events and there are a high number of monitoring rules 
for many complex business processes. 

On the other hand, general-purpose DCEP 
mechanisms could be used to deal with the challenges. 
Some generic distributed CEP mechanisms have been 
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proposed that by dispatching input events [26, 27] or 
partitioning CEP rules [28, 29], distribute the 
processing load among different compute nodes. These 
mechanisms include many simplifying assumptions 
and preprocessing to balance the load and handle 
dependencies of CEP nodes, resulting in high 
processing and communication overheads. 

To the best of our knowledge, no approach is 
proposed for integrating a CEP engine cluster and a 
BPMS to monitor its processes. EDBPM provides a 
scalable CEP mechanism for monitoring of business 
processes. It partitions the generated events by a BMPS 
and distributes processing load of the events among a 
cluster of CEP nodes. 

III. SAMPLE APPLICATION: CONFORMANCE 
MONITORING 

There are two types of BP models, normative and 
descriptive. Normative models show the constraints 
that a BP should comply with it at runtime. They are 
used to influence reality. Descriptive models are used 
to capture or predict reality by using process mining 
[30]. On the other hand, all changes in a BPMS are 
logged as a set of sequences of events called traces [9]. 
These logs could be processed in two ways. The first is 
post-mortem or offline that only considers logs of 
terminated process instances. The second is pre-mortem 
or online processing that refers to the log processing of 
running or alive process instances [30].  

The online processing of logs to detect deviations of 
processes from their normative models is called 
compliance monitoring. Compliance monitoring is the 
processing of the logs of a BPMS, in order to detect any 
violations in the constraints (defined as rules) of the 
processes. These constraints may correspond to various 
aspects, e.g. behavior profiles [4] or even non-
functional requirements such as security [31].  

Offline cross-checking between descriptive and 
normative model and logs and quantification of 
discrepancies between the log and the model is called 
conformance checking [32]. In conformance checking, 
discrepancies between the normative model and the 
logs refer to the deviation in the process execution 
while discrepancies between the descriptive model and 
the logs refer to model insufficiency and necessity of 
promotion of the model. If a model is not fit, it should 
be extended and if an extra behavior (that never occurs 
in reality) exists in the model, it should be pruned [9]. 

We call real-time crosschecking between the 
descriptive model and the normal model and logs and 
quantification of discrepancies as conformance 
monitoring. It is more general than compliance 
monitoring. In conformance monitoring, execution 
control of processes and the descriptive model can be 
promoted using real-time detection of deviations and 
model deficiencies. In addition, real-time monitoring in 
this context is more specific than online monitoring. In 
real-time monitoring, generated events are processed 
upon their generation and before they are stored 
persistently. Thus same as CEP [33], we do not make a 
query on persisted events; queries are applied to input 
streams. 

IV. PROBLEM STATEMENT 
Increased complexity and usage of BPMSs has led 

to increases in the rate of process instance generation 
and the number of concurrent executing processes and 
as a result the rise in the rate of input events. 
Consequently, the monitoring of big and complex BPs 
needs a high number and more complex CEP rules. 
Thus, performance is an important challenge in the 
context of BP monitoring using CEP. Most existing 
related works have focused on optimizing CEP rule 
generation from process models [3, 5, 21]. Furthermore, 
the performance and scalability enhancements to CEP 
have been studied in general quite independent of 
applications (e.g. BP monitoring). In contrast, in this 
paper we propose a mechanism that enhances the 
performance and scalability of CEP specifically for BP 
monitoring application by integrating CEP and BP 
monitoring more efficiently. 

There are two types of Distributed CEP (DCEP).  
The first is EPN [34] that consists of several event 
processing agents and each agent processes a particular 
part of a rule. Therefore, in an EPN, an agent cannot 
process a rule alone because CEP rules are matched 
collaboratively by many agents. The second type of 
DCEP include systems that are built from a cluster of 
CEP engines, wherein each engine can process any rule 
independent from the others. In this type of DCEP 
systems, the processing load should be distributed on 
compute nodes in such a way that each node is only 
concerned with a portion of input events [27, 35] and/or 
with matching a given subset of CEP rules [36–38]. 
However, since BP monitoring is stateful in the sense 
that the history of previous activities of a process 
instance must be available upon processing of a newly 
arrived activity of the instance (event), and there are 
correlations among processing of rules for a process 
instance, general purpose rule partitioning mechanisms 
have high communication overheads for sharing the 
state of rules among compute nodes. Furthermore, rule 
improvement techniques such as refined process 
structure tree (RPST) [39] are not suited to these 
general purpose CEP mechanisms. 

Also according to the stateful nature of CEP and BP 
monitoring, load distribution through event dispatching 
may lead to false detection of patterns because of event 
dependencies. For example, if we have “A occurs 
after B” rule and the event dispatcher sends events 
of type A to a node and events of type B to another node, 
the pattern is never detected. 

A couple of solutions can be suggested to eliminate 
errors of event pattern detection when using event 
dispatching in a DCEP. The first solution would be to 
multicast shared events in multiple rules. For example, 
in Figure 1, one can think of dispatching events of type 
A to the left node, dispatching events of type C to the 
right node, and dispatching events of type B to both 
nodes. In this solution, event multicasting may waste 
network resources. The second solution is to create a 
shared memory for partial pattern matches. This can 
cause lots of processing overhead while accessing the 
shared memory. A better solution would be to partition 
events into independent subsets and then dispatch each 
part to a separate CEP node. For example, in Figure 1, 
events could be partitioned into two parts: (1) events of 
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type A and events of type B  whose x attributes are 
greater than 50, and (2) events of type C and events of 
type B  whose x attributes are less than 50. 

 
Figure1. Event partitioning mechanism 

Unfortunately, most existing load balancing 
mechanisms do not adapt to load changes that arise due 
to changes in input event rate (process instances’ rate) 
[36–38]. However due to the dynamic nature of 
organizations, it is often required that load balancing be 
adaptable to transient changes in the rate of input 
events. On the other hand, the workload of BP 
monitoring may increase or decrease for a period, 
requiring changes to the number of active CEP nodes. 
It is thus necessary to provide support for elastic 
number of compute nodes at runtime without stopping 
BP monitoring. 

Another challenge of distributed BP monitoring is 
heterogeneity. A computer cluster may well consist of 
heterogeneous compute nodes running even different 
CEP engines. Therefore, if a proposed mechanism for 
scalable CEP supports heterogeneity, it should not 
depend on the types of computers and the types of CEP 
engines.  

In this paper, we propose EDBPM for horizontal 
scaling of BP monitoring using CEP. It scales out the 
system using adaptable load balancing via runtime 
event partitioning that can work elastically on 
heterogeneous environments. 

V. FORMAL PROBLEM DEFINITION 
Before presentation of EDBPM, we formally define 

the problem that is addressed by it. Therefore, we define 
the process model, the model execution, process 
instance, event and related concepts of an event-driven 
BPMS hereafter. 

Definition 1  (Process Instance). A tuple 𝑃𝑃 =
(𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚,𝐴𝐴𝐴𝐴) is a process instance, wherein 𝑝𝑝𝑝𝑝𝑝𝑝  is a 
globally unique identifier for the process instance, 𝑚𝑚 
is the process model that 𝑃𝑃 is instantiated from it and 
𝐴𝐴𝐴𝐴  is the set of activity instances of the process 
instance. 
 

Definition 2 (Event Type). An event type 𝜏𝜏 =
(𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝,𝛢𝛢𝛢𝛢𝛢𝛢) has a unique identifier, and an 
attribute type set. The attribute type set 𝛢𝛢𝛢𝛢𝛢𝛢 
specifies the event type has what attributes. 

Definition 3 (Event Type Set). The event type set 𝛢𝛢 of 
a system is the set of all valid event types of the system. 

Definition 4 (Event). Event is an object 
𝜀𝜀 = (𝜏𝜏, 𝑡𝑡𝑒𝑒𝑡𝑡𝑒𝑒𝑡𝑡𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝𝑝𝑝, 𝑡𝑡𝑝𝑝𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑝𝑝, 𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡) . The event 
is an instance of type 𝜏𝜏 ∈ 𝛵𝛵 . It has a unique event 
identifier 𝑡𝑡𝑒𝑒𝑡𝑡𝑒𝑒𝑡𝑡𝑝𝑝𝑝𝑝 , a 𝑝𝑝𝑝𝑝𝑝𝑝  that identifies the event 
generated during the execution of a process instance, a 
𝑡𝑡𝑝𝑝𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑝𝑝 that indicates the occurrence time of the 
event, and a set of attributes 𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 whose numbers and 
types conform with the specification of 𝜏𝜏. 
 

Given the stated definitions, we formally define the 
problem space of EDBPM in the context of a specified 
number of compute nodes for BP monitoring that uses 
a specified set of resource types for running CEP 
engines. 

Definition 5 (System Current Utilization function). If 
we have a node set 𝛭𝛭 = {𝑚𝑚1,  𝑚𝑚2,  … ,  𝑚𝑚𝑛𝑛} and a CEP 
engine runs on each node, and there are 𝑘𝑘 resource 
types on each node, the System Current Utilization 
(SCU) function Γ(t)  denotes the utilization of each 
resource at each node at time t 

Γ(t) = �
𝛾𝛾11(𝑡𝑡) ⋯ 𝛾𝛾1𝑘𝑘(𝑡𝑡)
⋮ ⋱ ⋮

𝛾𝛾𝑛𝑛1(𝑡𝑡) ⋯ 𝛾𝛾𝑛𝑛𝑘𝑘(𝑡𝑡)
� 

wherein 𝛾𝛾𝑖𝑖𝑖𝑖(𝑡𝑡) shows the utilization of resource 𝑗𝑗 at 
node 𝑝𝑝 and 0 ≤ 𝛾𝛾𝑖𝑖𝑖𝑖 ≤ 1. 

The output of SCU function is a matrix that shows 
the utilization of each resource type in each compute 
node at any moment in time. The average of each 
column of Γ(t) yields the average utilization of each 
resource type in the system. System Utilization (SU) 
function returns a vector that contains this information. 

Definition 6 (System Utilization function). The SU 
function Ψ(𝑡𝑡)  returns a vector 
[𝜓𝜓1(𝑡𝑡),𝜓𝜓2(𝑡𝑡), … ,𝜓𝜓𝑘𝑘(𝑡𝑡)]  that denotes the average 
resource utilization over all nodes and 𝜓𝜓𝑖𝑖 denotes the 
average utilization of resource 𝑗𝑗 at time t.  

𝜓𝜓𝑖𝑖(𝑡𝑡) = 1 𝑒𝑒� � 𝛾𝛾𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 

We define the load imbalance of each resource type 
in the system using the standard deviation. 

 

Definition 7 (System Imbalance function). The System 
Imbalance (SI) function 𝛪𝛪(𝑡𝑡) =
[𝜎𝜎1(𝑡𝑡),𝜎𝜎2(𝑡𝑡), … , 𝜎𝜎𝑘𝑘(𝑡𝑡)]  denotes the imbalance factor 
(IF) of each resource using standard deviation of 
utilization of the resource in the system and 𝜎𝜎𝑖𝑖(𝑡𝑡) 
shows the standard deviation of resource 𝑗𝑗 at time t. 
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𝜎𝜎𝑖𝑖(𝑡𝑡) = �1 𝑒𝑒� � (𝛾𝛾𝑖𝑖𝑖𝑖(𝑡𝑡) −𝜓𝜓𝑖𝑖(𝑡𝑡))2
𝑛𝑛

𝑖𝑖=1
 

 

Definition 8  (Total System Imbalance). Because 
for all resource types of all nodes 0 ≤ 𝛾𝛾𝑖𝑖𝑖𝑖 ≤
1 , we can define Total System Imbalance 
(TSI) as the average standard deviation of all 
resource types at time t. 

𝛢𝛢𝑇𝑇𝐴𝐴(𝑡𝑡) = 1
𝑘𝑘� � 𝜎𝜎𝑖𝑖

𝑘𝑘

𝑖𝑖=1
(𝑡𝑡) 

 

Definition 9  (Soundness of CEP). A CEP mechanism 
is sound if and only if all occurred complex events are 
detected by the mechanism and all detected complex 
events by the mechanism have actually been occurred. 
In other words, there is no false negative and no false 
positive detection when using the mechanism. 

 

Definition 10 (Dynamic Event Partitioning problem). 
Suppose CEP engines on all nodes can detect all event 
patterns that are defined for conformance checking. 
The Dynamic Event Partitioning (DEP) problem can 
be resolved by a mechanism that could dynamically 
partition the input events in a way that if events of each 
part are dispatched to a separate node, all defined 
complex events are detected soundly. 

 

Definition 11 (Multiple Resource Load Balanced DEP 
problem). If the system works as long as 𝐿𝐿, the DEP 
problem should be solved in a way to minimize 
1
𝐿𝐿� ∫ 𝛢𝛢𝑇𝑇𝐴𝐴(𝑡𝑡)𝐿𝐿

𝑡𝑡=0 . This is an optimization problem to 
minimize the average of the total system imbalance 
during the system lifetime.  

 

The stated problem is a complex non-linear 
programming like problem. In addition, the 
optimization condition depends on dynamic and non-
deterministic conditions at execution time. Therefore, 
we should propose a heuristic solution to the problem 
using Definition 11. 

VI. EDBPM 
EDBPM distributes the processing load of BP 

monitoring via event partitioning based on process 
instance (as event source) and dispatching of each 
partition to a CEP node. We assume that the monitoring 
of each process instance is independent of others. 
Because most of monitoring tasks in a BPMS are the 
monitoring of workflows, service level agreements and 
some other organizational constraints throughout the 
execution of each process instance independent from 
execution of the other process instances, similar to the 
mechanism in [4], EDBPM does not consider any 
relationship between process instances. Therefore, we 
cover most of the requirements of BP monitoring.  
According to the assumption, when all generated events 

of a process instance are dispatched to a CEP node, 
there is no need for event multicasting or CEP state 
sharing among CEP nodes. In other words, EDBPM 
assigns the monitoring of each process instance to a 
specified CEP node. Also, we assume all input events 
are aligned (alignment issues such as event miss and 
redundancy have been discussed in previous works 
such as [40]) and homogeneous (event heterogeneity 
has been discussed in [15]).  

In EDBPM, events are produced, processed and 
consumed in 4 layers (Figure 2). Event producers are in 
the first layer. BPMSs that are monitored by EDBPM 
are the event producers of the system. Any changes in 
their activities are reported as events and these events 
are the input of the coordinators in the second layer. The 
most costly task of coordinators is in the dispatching of 
input events. Therefore, we can say they filter the input 
events for each CEP node. However, the CEP nodes, in 
addition to filtering of the input events according to the 
rules, detect complex logical and temporal patterns. 
Therefore, we can say, the load of coordinators is very 
low in comparison with CEP nodes. Thus, we focus on 
load balancing of CEP nodes; each coordinator 
subscribes to a subset of event producers and the 
cardinality of these subsets is almost equal. 

Coordinators dispatch input events and monitor 
resource utilizations of CEP nodes. Upon generation of 
a new process instance, one of the coordinators that 
receives the first event of the instance selects a CEP 
node with the least resource utilization among all CEP 
nodes to process producing events of the new process 
instance and add a new entry in the Dispatching Table 
(Definition 12) for this decision. In other words, each 
CEP in EDBPM is responsible for monitoring of a 
subset of running process instances and all produced 
events of each process instance are only dispatched to a 
specific CEP node. So collectively, coordinators 
balance the loads on CEP nodes using resource 
utilization monitoring, event partitioning, and event 
dispatching, i.e. provide scalability via load balancing. 
Furthermore, EDBPM updates its dispatching decisions 
upon new process instance generation and balances the 
system load adaptable to changes in the system 
workload (i. e., the rates of process instance 
generation). 

After coordinators dispatch input events to the next 
layer, CEP nodes in the third layer process the basic 
input events to derive complex events. Each CEP node 
runs an independent CEP engine. The running engines 
can be homogenous or heterogeneous but they should 
have equal monitoring rule sets. Upon derivation of a 
complex event by CEP nodes, they send the event to the 
consumers in the last layer. Consumers may show the 
results in a dashboard, react upon detection of new 
situation or even re-process the output of EDBPM for 
deriving further information such as inter-process 
correlations. 

EDBPM supports elasticity, implying that the 
number of coordinators and CEP nodes can be changed 
at runtime. Because the state of coordinators is stored 
in a shared table (Dispatching Table), addition and 
removal of coordinators only requires synchronization 
with the table and informing the event producers. 
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When a new CEP node is added, it sends its resource 
utilization status to coordinators and coordinators start 
to assign a new task to the new CEP node according to 
the load-balancing policy. For removing a CEP node, 
coordinators stop assigning new monitoring tasks to the 
node to be removed and after the termination of all 
process instances previously assigned to the node, the 
node is removed. 

Because all CEP nodes operate independently, to 
provide support for heterogeneity in EDBPM, it is 
sufficient to implement equivalent rule sets for each 
CEP engine.  

A.  EDBPM Load-Balancing Heuristic Algorithm 
Coordinators of EDBPM assign the monitoring of 

each process instance to a CEP node. Therefore, 
relevant events of a process instance are dispatched to 
that CEP node. Such assignments and dispatching 
policies are registered in Dispatching Table of 
coordinators (Definition 12).  

Definition 12 (Dispatching Table). The Dispatching 
Table has two columns. Items of the first column are 
unique and refer to the identifiers of currently running 
process instances. The second column refers to CEP 
nodes of the system. Each row determines the 
producing events of each running process instance that 
should be dispatched to a CEP node. 

   
Any receiving event in coordinators is handled and 

dispatched by calling the dispatch function (Figure 
3). The function lookups the Dispatching Table for the 
process instance id (𝑝𝑝𝑝𝑝𝑝𝑝) of the event. If the 
corresponding 𝑝𝑝𝑝𝑝𝑝𝑝 is in the table, coordinator 
dispatches the event to the CEP node that is registered 
in the looked up row. If not, coordinator adds a new row 
to the Dispatching Table for the 𝑝𝑝𝑝𝑝𝑝𝑝 to inform other 

coordinators that finding a proper CEP node for 
monitoring of the process instance is in progress. To 
find a proper node, a resource type with the greatest 
value in the current SI vector (the most utilized resource 
type among all CEP nodes) is selected. If the kth 
resource type is selected, coordinator looks for the node 
with the lowest value in the kth column of the current 
SCU matrix (the node whose kth resource type is the 
least utilized among all nodes). The added row in the 
Dispatching Table is updated and the selected CEP 
node identifier is added to the row. 

B.  EDBPM Validation 
The proposed dynamic mechanism partitions events 

dynamically. Therefore, according to Lemma 1, it is a 
valid solution for DEP problem. Also, the mechanism, 
based on Lemma 2, leads to minimum network 
utilization. 

Lemma 1: Our proposed mechanism is a valid 
solution to the DEP problem. 

Proof: We prove it in three steps. Firstly, the 
mechanism is dynamic. Dispatching policy changes 
according to process instance generation throughout 
conformance checking which is not fixed at the system 
startup. Secondly, there is no false positive detection. 
This can be proved by contradiction. Suppose a CEP 
node receives an event that is matched with a pattern 
incorrectly. If this event relates to process instances 
whose conformance checking is done by the node, the 
match is correct but if the event relates to other process 
instances, the dispatcher is not conformant with our 
mechanism. Similarly, suppose a CEP node does not 
receive an event that causes a mismatch. This means 
that an event that is related to an assigned process 
instance in the node, did not receive and it is 
incompatible with our mechanism. Thirdly, there is no 
false negative. This can be proved by contradiction too. 

Figure 2. EDBPM Architecture 
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If a received event does not match with a pattern, it 
means that the event relates to the node and there is no 
error and if the node does not receive an event and 
consequently a pattern does not match, the dispatcher 
works incorrectly.  

 

Lemma 2: Our proposed mechanism minimizes 
network utilization. 

Proof: Because of event partitioning, events are not 
duplicated. In addition, because all rules are on all 
nodes and all partial matches of a process instance’s 
anti-patterns are also on a single node, there is no need 
for state sharing over the network. 

VII. EVALUATION 
To evaluate performance and scalability of 

EDBPM, coordinators and the CEP module have been 
implemented and tested using different scenarios. In 
these scenarios, performance of EDBPM is tested using 
different number of compute nodes and variable input 
rates of process instances. For evaluating the scalability 
of EDBPM, the maximum throughput (Definition 14) 
when the number of compute nodes changes were 
evaluated. The load balancing of EDBPM for a variable 
rate of input process instances was evaluated and 
compared with a distributed CEP that is proposed in 
[36]. 

Our application domain was conformance 
monitoring and we developed a simulator that can 
randomly generate distinct process instances from some 
process models. Each activity instance has a random 
duration time and each activity has a maximum 
duration time. Ninety percent of the generated process 
instances were conformant to the process model and 
others deviated from their model. Because the count 
and the type of deviations were known, result of 
experiments are validated to determine the error rate of 
detected deviations. The error ratio evaluates the 
monitoring system’s functionality that determines the 
system throughput. 

Experiments were performed using a set of virtual 
machines. The specification of the coordinator node 
was as follows: 

• Operating system: Ubuntu server 14.04 

• Processor: 64bit 2 cores 

• Memory: 2GB 

• JVM: 1.8 Oracle 

 
As mentioned before, the load of coordinators is 

very low in comparison with CEP nodes. Therefore we 
did not need more than one coordinator in all of the 
experiments. 

The specification of all CEP nodes was as follows: 

• Operating system: Ubuntu server 14.04 

• Processor: 64bit single core 

• Memory: 2GB 

• CEP Engine: Drools Fusion 6.2 

• JVM: 1.8 Oracle 

A. EDBPM Maximum Throughput 
In order to measure the maximum throughput of 

EDBPM,  different rates of process instances per 
second were iteratively injected into the system with a 
specified number of compute nodes and the maximum 
throughput of the distributed mechanism with that 
specified number of compute nodes is evaluated as 
defined in Definition 14. High load of the system may 
cause event loss (such as CEP engine load shedding, 
buffer overflow, network loss) and therefore detection 
error. 

Definition 13 (Complex Event Detection Error Ratio) 
CEDER is the sum of false positive detections 
(wrongly detected) and false negative detections 
(undetected) over the total number of actually occurred 
complex events. 

Figure 3. Event Dispatching by Coordinators 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛢𝛢 =
𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 positive 𝐶𝐶𝐶𝐶𝑡𝑡 + 𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 𝑒𝑒𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑝𝑝𝑒𝑒𝑡𝑡 𝐶𝐶𝐶𝐶𝑡𝑡

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑡𝑡𝑝𝑝 𝐶𝐶𝐶𝐶𝑡𝑡  

Definition 14 (Maximum Throughput) Maximum 
throughput of a system is considered as the maximum 
process instance generation rate such that CEDER of 
the system is less than an acceptable threshold. 

 

We repeated our experiments by increasing the 
number of compute nodes, starting with one compute 
node up to 8 compute nodes. Figure 4 shows the results 
of experiments. The results show that the EDBPM 
maximum throughput for five different values of 
CEDER increases in a near-linear fashion by increases 
in the number of CEP compute nodes. This is because 
CEP compute nodes work independently on different 
sets of process instances and with increases in the 
number of CEP nodes, the CEP system can process 
events of more process instances concurrently. 

B. Evaluating the Load Balancing 
In order to evaluate the dynamic load balancing 

(load balancing in varying input rates) feature of 
EDBPM, we carried out experiments with varying rates 
of input using 6 and 8 CEP nodes. Therefore, for each 
second of the experiments, input rate were selected 
from 1000 to 4000 process instances per second 
randomly.  

The duration of the experiment was 300 seconds 
and we sampled CPU and memory utilization with a 
rate of one sample per second. We calculated the 
imbalance factor (IF) of CPU (Figure 5-a) and memory 
(Figure 5-b) at each second of the experiment according 
to Definition 7.  

Because of the high rate of events and their small 
size, CPU utilization was higher than memory 
utilization, while jitters of CPU utilization of nodes 
were higher. Therefore, CPU utilization was more 
imbalanced on average. We can see in Figure 5 that at 
the beginning of the experiment we had a warm-up 
period. After warming up, the IF of memory oscillated 
more than the IF of CPU. Since the more imbalanced 
resource type has higher priority in EDBPM load 
balancing, the mechanism tried to balance the load of 
CPU and the observed oscillation of CPU utilization 
was less than that for memory. 

We averaged the sample IFs of CPU and memory 
and recorded the average values in Table I. The 
imbalance factor shows the distribution of utilization 

values of all nodes around the average value and 
therefore the balance of the loads. For example, when 
evaluated EDBPM with 6 nodes, load of CPUs was 
distributed from average load minus 0.073244 till 
average load plus 0.073244. 

Table I shows the load imbalance of CPU has a little 
reduction when the number of nodes is increased. Since 
the load balancing of CPU has more priority, the change 
in the memory imbalance is near zero. 

 

TABLE I.  AVERAGE IF OF CPU AND MEMORY 

C. Comparing Load Balance 
In our second set of experiments, we compared our 

load balancing mechanism with the one proposed by 
Isoyama et al. [1]. In these set of experiments, we used 
8 compute nodes and a coordinator with the same 
specification as in the first set of experiments. We used 
8 processes with different instance generation rates and 
the same number of conformance monitoring rules. The 
total process instance rate was 40000 per second. Load 
balancing mechanism that is proposed by Isoyama et al. 
is based on the number and similarity of the rules.  In 
other words, the mechanism tries to balance the number 
of rules on each CEP node while the rules with similar 
event types are processed in the same CEP node. 
However, the required resources for the processing of 
each rule may differ from the others because of 
differences in the complexity of rules and the rates of 
events. Figure 6-a shows that the CPU load of Isoyama 
et al. mechanism is more imbalanced than EDBPM. 
Thus, some nodes are overrun and have higher CEDER 
(Table II). The high CPU utilization of these nodes 
increased the processing latency resulting in the 
accumulation of events in memory and a growing 
memory IF (Figure 6-b). 

TABLE II.  COMPARATIVE CEDER OF EDBPM AND ISOYAMA 
ET AL. MECHANISM  

Number of Nodes CPU IF Memory IF 

6 0.073244 0.003213 

8 0.070753 0.003228 
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Figure 4. EDBPM Throughput  
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Load Balancing Mechanism CEDER 

EDBPM 0.0121859 

Isoyama et al. mechanism 0.0275938 

 

VIII. CONCLUSION 
In this paper, we proposed a Scalable Business 

Process Monitoring Mechanism (EDBPM) for scalable 
and distributed monitoring of Business Processes (BPs) 
using Complex Event Processing (CEP). In previous 
related works, performance of BP monitoring using 
CEP was enhanced in two ways. On the one hand, some 
researchers have focused on optimizing the CEP rule 

generation for BP monitoring but ignored the 
processing of these rules. On the other hand, some 
others have tried to enhance performance and 
scalability of CEP without considering its applications. 
In contrast, we have considered an integration of CEP 
and BP monitoring by proposing a scalable mechanism 

called EDBPM that uses partitioning of input events 
based on executing process instances on heterogeneous 
platforms to provide adaptable load balancing. We 
implemented EDBPM and our experiments showed that 
with increasing number of CEP nodes, the throughput 
of BP monitoring increased almost linearly. Also, our 
experiments showed adaptability and effectiveness of 
EDBPM load balancing in variable process instance 

Figure 6. Load Balancing of EDBPM. (a) CPU IF (b) Memory IF 

Figure 5. Comparative Load Balancing of EDBPM and Isoyama et al. Mechanism. (a) CPU IF (b) Memory IF 
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generation rates. Finally, we implemented a general 
purpose distributed CEP and our experiments showed 
better performance of EDBPM in comparison to a 
general purposed mechanism proposed by Isoyama et 
al [36]. 

EDBPM can be improved if it includes monitoring 
requirements for the correlation of process instances 
and inter-organizational relations. For this mean, the 
system can get feedback of monitoring of each process 
instance to itself to processing correlation of them or the 
system uses a multi-level CEP that each process 
instance is monitored in the first layer and monitoring 
of the correlations is assigned to the next level. 
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