
Practical Detection of Click Spams Using

Efficient Classification-Based Algorithms

Mahdieh Fallah

Department. of Computer Engineering

Yazd University

Yazd, Iran

m.fallah@stu.yazd.ac.ir

Sajjad Zarifzadeh*

Department of Computer Engineering

Yazd University

Yazd, Iran

szarifzadeh@yazd.ac.ir

Received: 15 December, 2017 - Accepted: 18 March, 2018

Abstract — Most of today’s Internet services utilize user feedback (e.g. clicks) to improve the quality of their services.

For example, search engines use click information as a key factor in document ranking. As a result, some websites cheat

to get a higher rank by fraudulently absorbing clicks to their pages. This phenomenon, known as “Click Spam”, is

initiated by programs called “Click Bot”. The problem of distinguishing bot-generated traffic from the user traffic is

critical for the viability of Internet services, like search engines. In this paper, we propose a novel classification-based

system to effectively identify fraudulent clicks in a practical manner. We first model user sessions with three different

levels of features, i.e. session-based, user-based and IP-based features. Then, we classify sessions with two different

methods: a one-class and a two-class classification that both work based on the well-known K-Nearest Neighbor

algorithm. Finally, we analyze our methods with the real log of a Persian search engine. Experimental results show that

the proposed algorithms can detect fraudulent clicks with a precision of up to 96% which outperform the previous
works by more than 5%.

Keywords-bot; click spam; user session modeling; classification;

I. INTRODUCTION

Over the last decade, search engines have provided
free, easy and quick access to the vast amount of
information available in the Internet. Whenever a query
is submitted to a search engine, many relevant web
pages are retrieved and returned back to the user. The
search engines rank results based on many factors
including link structure [1], textual features [2] and so
on. Today, search engines incorporate user feedback
(e.g. clicks) as an important factor in document ranking
in order to return better results [3, 4, 5]. Since most of
users only pay attention to the top results [6], malicious
web sites abuse and manipulate the search result page
by forging user clicks in order to raise their input traffic

* Corresponding Author

[7, 8] and rank to top positions. Attackers can generate
fake clicks by hiring people or using bots. Bots are
automated software programs issuing too many queries
or producing excessive clicks. Because these clicks are
not performed by real users, this phenomenon is called
“Click Spam”. Hence, the problem of distinguishing
spam traffic from the real user traffic is critical for the
performance and economy of search engines.
Specifically, this kind of traffic could harm search
engines by increasing the response time of real users,
consuming search engine bandwidth, changing search
result ranking and negatively influencing other
decisions (like query auto-completion or query
recommendation) that are made based on user histories
[9].

Volume 10- Number 2 – Spring 2018 (63 -71)

Technical Note

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 1 / 9

https://ijict.itrc.ac.ir/article-1-330-en.html

On the other hand, the main source of search
engine’s revenue is from the online advertising. The
online advertising annual revenue was reported $72.5
billion in 2016 which has increased by 21.8%,
compared to 2015 [10]. In this regard, search engines
are seen as ad networks which usually display ads in
two different ways: 1) showing ads or sponsored results
that are relevant to the user query beside the search
results (like the Google AdWords [11] model) and 2)
displaying ads in related web sites or publishers (like
the Google AdSense [12] model). Advertisers are
charged based on the number of clicks on their ads
which is according to the famous Pay-Per-Click (PPC)
model [13]. In the latter case where search engines
display ads in website of relevant publishers, they give
a portion of the click revenue to the publisher that the
click is done through it. This kind of click spam may be
issued by publishers or advertisers. An unethical
publisher is motivated to make more money and an
advertiser is induced to deplete its competitors budget.
Ad networks should detect such clicks because they
may lose their credit and reputation among advertisers,
if this problem is not unraveled properly.

Based on the above discussion, there are two
different kinds of click spam in search engines: 1) click
spam on organic search results with the goal of raising
website ranking in the search engine result page and 2)
click spam on sponsored results to exhaust advertisers’
budget. The latter is also referred to as “Click Fraud”,
since it is directly linked to the flow of money.
Regardless of the click spam type, search engines
should effectively detect and distinguish them from the
normal traffic. However, the focus of this paper is on
the first type of click spam.

In the early years, spammers usually used a fixed
number of IP addresses for generating their abnormal
traffic, therefore it was easy to detect and confront them
through IP blacklists. But, they gradually improved
their skills such that most of today attacks are
automated and distributed by using networks of bots
and malwares [14, 15, 16]. Thus, identifying them has
been a very hard and complicated task. For example, the
authors in [15] reported a DNS changer malware that
could affect 4 million users and made its owners $14
million by click fraud over a period of four years. As a
result, many researchers have concentrated in recent
years on the problem of identifying bot-generated
traffic in search engines and other similar web services.

In this paper, we propose a novel classification-
based method to detect invalid clicks. Our proposed
method consists of the following three steps: 1)
Modeling user sessions, 2) Classifying user sessions as
either normal or abnormal, 3) Updating the training
dataset to enhance the classification accuracy. One
main contribution of this work is that unlike the
previous algorithms, we consider all major aspects of
user behaviors through extracting three levels of
features (session, user and IP) to precisely characterize
bots and humans. More importantly, our system is
designed to work in an online environment through
combating the processing and storage overhead of
running classification algorithms. Finally, the results of
our experiments confirm the superiority of the proposed
method by more than 5% (with respect to the precision

parameter) in comparison with a couple of recent
algorithms.

The rest of the paper is organized as follows:
Section II discusses the related work. In Section III, we
first describe the set of features we use to model user
sessions and then propose our click spam detection
algorithm which works based on a modified version of
the K-Nearest Neighbor classification algorithm.
Section IV presents the evaluation results and finally,
we conclude the paper in Section V.

II. RELATED WORK

In the last decade, there has been an increasing
interest in identifying click frauds over the Internet.
Juels and Stamm [17] describe the advertising network
model and discuss the issue of click fraud in these
networks. They provide a complete taxonomy of hit
inflation techniques and devise a stream analysis
algorithm to detect different fraud attacks. Stone-Gross
et al. [18] use search log of a large online ad exchange
to investigate a variety of characteristics about invalid
user activities, including behaviors related to click
fraud. The approach proposed by Dave et al. [19] can
find users that have the highest revenue for each
publisher and identify fraudulent publishers through
comparing the revenue generated by their users and the
revenue generated from the users of honest publishers.
This method could catch six different classes of click
attacks. Oentaryo et al. [20] introduce a system to detect
click fraud patterns in online advertisements using
different data mining techniques. Kitts et al. [21]
describe a data mining system to combat click fraud
which is the result of their 5-year experience in
Microsoft adCenter. PremiumClicks [22], Bluff ads
[23], and bot signatures creation [24] also help to
identify authenticated users from automated bots to
mitigate click fraud. The above works concentrate on
the detection of click fraud and hence, they are not
directly related to our work.

There are some works that consider both click fraud
and click spam together. Yu et al. [25] present
SBotMiner, a system that can automatically identify
bot-generated search traffic. They gather a group of
users who share at least one identical query and click,
and examine the aggregated properties of their search
activities. This system can detect distributed low-rate
bot-generated search traffic. Kang et al. [26] propose a
semi-supervised system for identifying spam traffic
from that of genuine human users. They first use the
CAPTCHA technique along with some simple
heuristics to extract a large set of training samples from
the data log, and then develop a semi-supervised
learning algorithm to improve the classification
performance. Wang et. al. [27] propose a Sybil
detection system which identify fake identities using
server side clickstream models. They group similar user
click-streams into the same cluster by calculating the
distances between click-stream sequences. Similarly, in
[28], the researchers propose an unsupervised system
which can cluster similar users by partitioning a
similarity graph on click-stream data. This system uses
iterative feature pruning to partition the user clusters.

The other category of approaches investigates user
session activities for detecting click spam. In [29],

Volume 10- Number 2 – Spring 2018 64

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 2 / 9

https://ijict.itrc.ac.ir/article-1-330-en.html

Sadagopan and Li model each user session as a
sequence of 2-tuples (user action, page number) with a
Markov chain and calculate the distance of every
session from the average using the Mahalanobis
distance measure. A high distance implies an abnormal
session and all clicks done in such a session are
considered as spam. Li et al. [30] also model user
sessions but with a sequence of 3-tuples (user action,
action objective, time interval between actions). They
also propose two bipartite-graph propagation
algorithms (called user-session and session-pattern
graphs) to achieve a higher precision and recall in click
spam detection. Wang and et al. [31] use a hierarchical
clustering technique to partition different user
behaviors and detect abnormal activities. Also, their
proposed tool can predict users’ future behavior. At last,
Shakiba et al. [32] devise a stream clustering approach
to identify malicious behaviors by leveraging linguistic
features and behavioral characteristics of users.

In this work, we consider different characteristics of
click spam behavior through extracting various session-
based, user-based and IP-based features. Then, we
propose a classification method to identify fraudulent
clicks in a fast and practical manner.

III. THE PROPOSED METHOD

Like other recent works, our work focuses on
identifying abnormal user sessions. But, we expand it
by using user-level and IP-level information. Fig. 1
shows a schematic view of the processing flow in our
system. It consists of two phases: offline and online. In
the offline phase, we produce an initial set of training
samples. Classifying sessions as normal/abnormal and
updating the training dataset are done in the online
phase. We discuss the details of two phases in the next
sections.

A. Data Model

The data used in this work is derived from the user
activity log of a popular Iranian local search engine
(parsijoo.ir). The majority of users working with this
search engine is from the domestic Intranet. Each time
a user submits a query, clicks on a result or clicks on
next page links, the search engine creates a new record
in the user activity log. This record includes time
information, submitted query, page number, clicked
URL, IP address and user ID. It is notable that the first
time a user enters the search engine website, a unique
user ID is assigned to him and then stored in the cookie
of his browser. The user ID never expires, unless the
user cleans his cookies. Records are processed

sequentially based on their time information and then
features are calculated.

Now, we briefly describe the features we use in the
classification process. The features are categorized into
three levels (session, user and IP) as explained below,
respectively.

1) Session-Level Features
At the first level of features, we examine the within-

session activities. When a user opens the search engine
website in his browser, a unique session ID is assigned
to him by the webserver. This session ID expires after a
certain period of inactivity (usually 30 minutes) and
then a new session ID is assigned to the user again on
his next visit. During the session, the user might
perform different activities in the website: he may
submit a query, browse result pages, click on search
result links, click on sponsored links, click on a specific
page number, revise his query and so on. In this study,
we only consider three types of activities:

𝑄𝑖: Submitting a query (which 𝑖 refers to different
queries). For example, Q1 represents a query and Q2
represents another query which is different from Q1.

𝑊𝑖: Clicking on a web result or any other link on the
page (which 𝑖 refers to different URLs).

𝑁: Clicking on different page numbers of search
results. This click can be on the “Next Page” link,
“Previous Page” link or a specific page number link.
We take into account the following important features
for identifying session-level spams:

 Markovian probability of session activity
sequence: this feature (proposed in [29]) is
calculated by multiplying the probability of the
individual state transitions within the session.

 Total number of web clicks (W)

 Total number of query submissions (Q)

 Total number of next clicks (N)

 Total number of session activities (sum of Q, W
and N)

 Proportion of clicks on distinct URLs to the total
number of web clicks

 Proportion of clicks on distinct domains to the
total number of clicks

 Rate of query submissions inside the session

 Rate of clicks inside the session

Fig. 1: System overview

Volume 10- Number 2 – Spring 2018

65

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 3 / 9

https://ijict.itrc.ac.ir/article-1-330-en.html

 Rate of Next clicks inside the session

 Rate of all activities inside the session

The last six features, to the best of our knowledge,
are introduced here for the first time and the rest have
been used in previous works as well [29]. The value of
all features is normalized into the range of [0-1] using
the Min-Max normalization method.

2) User-Level Features
The session-level features are calculated per each

user session, but a user may have established multiple
sessions thus far. Since a unique user ID is assigned to
each user (which is valid as long as the user does not
delete the cookie information in his browser), we can
capture the whole user activities through extracting
user-level features. More precisely, the user-level
features are exactly the same as session-level ones, but
they are averaged over all sessions belonging to the
same user.

3) IP-Level Features
Many of bots do not execute JavaScript and/or they

disable cookies, hence the search engine falsely assigns
a new user ID as well as a new session ID, for each of
their requests. Thus, only session-level and user-level
features are not enough to characterize spam clicks; we
need to use IP information as well. As a result, we
consider the following IP-level features:

 IP type (Local Iran IP / Global IP)

 Total number of activities sent by IP address

 Total number of web clicks made by IP address

 Total number of queries submitted by IP address

 Total number of next clicks made by IP address

 Proportion of distinct clicked URLs to the total
number of web clicks made by IP address

 Proportion of distinct clicked domains to the
total number of web clicks made by IP address

 Proportion of total number of users to the total
number of activities made by IP address2

B. Training Dataset

Because of the search engine scalability issue, it is
practically impossible to manually label search log
records as bot/human for generating training dataset. In
some services like email or electronic banking, every
user must pass CAPTCHA challenge [33] in order to
access the service but this strategy is not good for search
engines, since the goal of search engines is to respond
user queries as quickly as possible with minimum user
interactions. However, Costa et al. [34] proposed the
image clickable CAPTCHA idea which makes such a
CAPTCHA less frustrating and humans can solve it
quickly and accurately. But as mentioned, showing
CAPTCHA to all users is not a good idea. Kang et al.
[26] proposed an approach for training data generation
which is 0-cost. They suggested to show CAPTCHA
only to users that exceed from some heuristic

2 Unlike real users, most of bots receive a new user ID per each request.
3 More precisely, if 𝑡 = (𝑡1, 𝑡2 , … , 𝑡𝑚) and 𝑥 = (𝑥1 , 𝑥2 , … , 𝑥𝑚) , then ‖𝑡 −

 𝑥‖𝐿2
= √(𝑡1 − 𝑥1)2 + ⋯ + (𝑡𝑚 − 𝑥𝑚)2.

thresholds. They showed that with this approach, on
average, only less than 1% of whole users are requested
for CAPTCHA verification while most of them do not
verify the challenge. It means these users are bot
programs which could not have resolved the
CAPTCHA challenge. Similar to this work, we here use
some simple heuristics such as user activity volume in
a short time intervals and IP blacklists to generate an
initial set of abnormal sessions. In this scenario, if the
user behavior exceeds from some defined thresholds,
we present a CAPTCHA to him. The user may not
respond, respond wrongly or respond correctly to the
challenge. In the first two cases, we label the user
session as bot. In the other side, among all user sessions
which have the minimum distance from the average
activity, we randomly select some sessions and label
them as normal. Thus, we collect an initial set of
normal/abnormal sessions. Finally, we calculate the
session-level, user-level and IP-level features (as
described before) for these sessions and use them as the
initial training dataset. As we will say later, the dataset
is updated during the classification process.

C. Classification Algorithm

In order to classify sessions, we use the famous K-
Nearest Neighbor (KNN) algorithm [35] which is a
non-parametric method used frequently for
classification and regression purposes. In this work, we
devise two variants of KNN algorithm, i.e. two-class
and one-class classification. It is worth mentioning that
the KNN algorithm suffers from two key problems: 1)
memory consumption, 2) computational complexity.
The first problem arises because of storing the whole
training data in memory and the second is caused by
calculating the distance of a new point from all training
samples. As the number of training samples increases,
these two problems become more challenging, but we
try to tackle them by revising the KNN algorithm.

1) Two-Class Classification Algorithm
As suggested by its name, this classifier uses both

“abnormal” and “normal” samples in the training
dataset. Assume that 𝑚 is the number of features we

have calculated for each sample. Let 𝑇 = {(𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁

denote the training dataset, where 𝑥𝑖is a training sample
(a vector in the 𝑚-dimensional feature space) and 𝑦𝑖 is
the corresponding class label, i.e. 0 as normal and 1 as
abnormal. For a test object 𝑡 , its class label is
determined in two steps:

First, the distance of the test object from every
training sample is computed using the Euclidean
distance:

𝑑(𝑡, 𝑥𝑖) = ‖𝑡 − 𝑥𝑖‖𝐿2
 (1)

where ‖𝑥‖𝐿2
 is 𝐿2 norm of 𝑥 vector3 . The 𝐾 training

points that have the smallest distance from the test
object constitute its neighborhood. In the rest, we use
𝑁𝑁 to indicate the neighborhood of our test object.
Second, the class label of the test object is determined
by the majority vote of training samples in its
neighborhood, i.e.:

Volume 10- Number 2 – Spring 2018 66

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 4 / 9

https://ijict.itrc.ac.ir/article-1-330-en.html

𝑦′ =
𝑎𝑟𝑔𝑚𝑎𝑥
𝑦 ∈ {0,1} ∑ 1

(𝑥𝑖
𝑁𝑁,𝑦𝑖

𝑁𝑁)

, 𝑖𝑓 𝑦𝑖
𝑁𝑁 = 𝑦 (2)

where (𝑥𝑖
𝑁𝑁 , 𝑦𝑖

𝑁𝑁) is the 𝑖th training sample in 𝑁𝑁 and
𝑦′ is the predicted class label. Bear in mind that we use
0 and 1 to refer to normal and abnormal class labels,
respectively.

In (2), all training samples equally impact on the
determination of class label 𝑦′ , but it is more logical to
weigh the contribution of neighbors, in a way that the
closer neighbors contribute more compared to the
farther ones. For example, a common weight scheme is

to give each neighbor a weight of 1 𝑑2⁄ , where 𝑑 is the

distance between the test object and the neighbor.
Consequently, we can rewrite (2) as follows:

𝑦′ =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑦 ∑
1

𝑑2
(𝑡, 𝑥𝑖

𝑁𝑁)
(𝑥𝑖

𝑁𝑁,𝑦𝑖
𝑁𝑁)

, 𝑖𝑓 𝑦𝑖
𝑁𝑁 = 𝑦 (3)

where 𝑑(𝑡, 𝑥𝑖
𝑁𝑁) is the distance of test object 𝑡 from 𝑖th

training point in its neighborhood.

We also introduce a counter field 𝑐𝑖 and add it to

each training sample, i.e. 𝑇 = {(𝑥𝑖 , 𝑦𝑖 , 𝑐𝑖)}𝑖=1
𝑁 . This

field describes the number of samples that a training
point can represent. In other words, a point in the
training dataset can be representative of more than one
sample. Thus, instead of adding more and more data
points to the training dataset for the sake of improving
the classification accuracy, we can update this field for
those training points that are close to the test object. As
a result, we can limit the number of training points
based on the available memory (we discuss more about
this issue in Section III.D). We also incorporate this
counter in the classification score of test object 𝑡:

𝑠𝑐𝑜𝑟𝑒(𝑡) =

∑
𝑐𝑖

𝑑2
(𝑡, 𝑥𝑖

𝑁𝑁)
∗ 𝑦𝑖

𝑁𝑁𝐾
𝑖=1

∑
𝑐𝑖

𝑑2
(𝑡, 𝑥𝑖

𝑁𝑁)
𝐾
𝑖=1

 (4)

The value of classification score is normalized into
the range [0-1]. In fact, as much as the above score is
higher, the object 𝑡 is relatively closer to the abnormal
points inside its neighborhood. Put it another way, a
lower value means human behavior, while a higher
value indicates a greater chance of bots. We set two
thresholds for the classification score: 𝐻𝑇 (human
threshold) and 𝐵𝑇 (bot threshold). If the calculated
score is lower than HT, the new point is classified as
“human” or “0”, and if the calculated score is greater
than BT, the new point is considered as “bot” or “1”.
Otherwise, the new point is classified as “unknown”. In
the evaluation section, we discuss how to set theses
thresholds.

2) One-Class Classification Algorithm
In the one-class algorithm, we only use “abnormal”

samples in our training dataset. The main advantage of
this algorithm compared with the previous two-class
one is that the size of training dataset is reduced and
thus, the computational overhead and the response time
decrease substantially. Similar to the previous section,
we first describe the one-class algorithm and then

modify it for our work. Let 𝑇 = {𝑥𝑖}𝑖=1
𝑁 denote the

training dataset, where 𝑥𝑖 is a training sample vector in
the 𝑚-dimensional feature space. For a test object 𝑡, its

class label is determined in two steps: First, like the
two-class method, the distance of the test object from
the training points is computed and 𝐾 points that have
the smallest distance are considered as the
neighborhood of 𝑡. Second, the label of test object 𝑡 is
assigned as abnormal, if the following inequality holds:

∑ 𝑑(𝑡, 𝑥𝑖
𝑁𝑁)𝐾

𝑖=1

∑ 𝑑(𝑥𝑖
𝑁𝑁 , 𝑛𝑒𝑎𝑟(𝑥𝑖

𝑁𝑁))𝐾
𝑖=1

< 𝛿 (5)

where 𝑑(𝑥𝑖
𝑁𝑁 , 𝑛𝑒𝑎𝑟(𝑥𝑖

𝑁𝑁)) is the distance of 𝑖th training
point in the test object’s neighborhood from its nearest
neighbor in the training dataset. Clearly, a higher value
for the above ratio entails that the object 𝑡 is closer to
the abnormal points inside its neighborhood.

Again, to mitigate the memory consumption
problem and increase the classification accuracy, we
add a counter field to each training sample, which

implies that 𝑇 = {(𝑥𝑖 , 𝑐𝑖)}𝑖=1
𝑁 . We first reverse the

inequality in (5) to define the similarity between object
𝑡 and its neighbors as follows:

∑
1

𝑑(𝑡, 𝑥𝑖
𝑁𝑁)

𝐾
𝑖=1

∑
1

𝑑(𝑥𝑖
𝑁𝑁 , 𝑛𝑒𝑎𝑟(𝑥𝑖

𝑁𝑁))
𝐾
𝑖=1

>
1

𝛿
 (6)

Then, we add the counter field as a coefficient into the
above relation:

∑
𝑐𝑖

𝑁𝑁

𝑑(𝑡, 𝑥𝑖
𝑁𝑁)

𝐾
𝑖=1

∑
𝑐

𝑖

𝑁𝑁(𝑥𝑖
𝑁𝑁)

𝑑(𝑥𝑖
𝑁𝑁 , 𝑛𝑒𝑎𝑟(𝑥𝑖

𝑁𝑁))
𝐾
𝑖=1

>
1

𝛿
 (7)

where 𝑐𝑖
𝑁𝑁 is the counter field of 𝑖th training sample in

the neighborhood of 𝑡. Now, we explain our strategy for
updating the counter field of training points. Later, we
describe our analysis about the settings of δ.

D. Updating Training Data

We start our algorithm with an initial set of training
samples, but for the sake of increasing the classification
accuracy, we need to add more training samples over
time. Adding more samples results in a more memory
and processing overhead in the classification process.
Hence, we introduce a counter field for every training
sample with an initial value of 1. After classification, if
the test object 𝑡 is labeled as “normal” or “abnormal”,
then the counter field of every training point in its
neighborhood is updated in proportion to its distance
from the test object. As much as the counter field of a
training point has a higher value, that point will have a
more contribution in classifying new points as “normal”
or “abnormal”.

One advantage of the proposed system is that it can
be easily deployed in an online environment. If a
session is classified as “abnormal”, the CAPTCHA
challenge will be shown to the user. If the user cannot
resolve the challenge, the corresponding feature vector
is added to the training dataset as “abnormal” and
otherwise, the vector is added as “normal”. However,
we put a limit on the number of training samples based
on the memory and processing constraints. As a result,
after classifying the test object 𝑡, the training dataset is
updated according to the following scenario:

Volume 10- Number 2 – Spring 2018

67

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 5 / 9

https://ijict.itrc.ac.ir/article-1-330-en.html

1. First, for every training sample 𝑖 in the
neighborhood of object 𝑡 , if the distance of
sample 𝑖 from the test object is less than 𝛼
threshold and its label is the same as 𝑡 , the
counter field of training point 𝑖 is updated as
below:

𝑐𝑖 = 𝑐𝑖 + (1 −
𝑑(𝑡, 𝑥𝑖

𝑁𝑁)

∑ 𝑑(𝑡, 𝑥𝑗
𝑁𝑁)𝐾

𝑗=1

) (8)

 Based on our experiments, the value of 𝛼 is
set to 0.2.

2. Then, if all training points in the
neighborhood set do not have the same label as
the test object 𝑡, the new point is added to the
training dataset as below:

 If the size of training dataset is smaller
than the limit, the new point is added to
the training dataset.

 Otherwise, we first add the new point and
then find two closest samples (with the
same label) in the training set and merge
them together. For merging, we calculate
the average of feature vectors and sum up
their counters. It means two points
(𝑥𝑖 , 𝑐𝑖) and (𝑥𝑗 , 𝑐𝑗) are deleted and the

new point (
𝑥𝑖+ 𝑥𝑗

2
, 𝑐𝑖 + 𝑐𝑗) is added to the

training dataset.

IV. EVALUATION AND DISCUSSION

A. Evaluation Model

In this section, we evaluate the result of our
proposed methods in different aspects and compare
them with previous methods. We use one week of user
activity log (1 Dec 2016 – 7 Dec 2016) for generating
the training dataset which contains more than 6 million
requests and over 1.5 million unique sessions (note that
DDoS attacks are abandoned by the front firewall and
thus, there is no record belonging to such attacks in the
log). Also, we use the log of the next week (8 Dec 2016
- 14 Dec 2016) for evaluation and test purposes. We
first model all sessions according to the features
introduced in Section 3.A and then use them in our
classification algorithms. We validate our training
dataset under two conditions: with and without
updating the training dataset. Then, we evaluate the
performance of our classifiers and choose the best value
for various thresholds using experimental results. We
finally compare the precision of our work with some of
last related works.

B. K-Fold Cross-Validation

We prepare a dataset with 10000 samples (5000
normal and 5000 abnormal), which are labeled
manually. For validation and comparison purposes, we
use the popular K-fold cross-validation technique [36]
in which the dataset is randomly partitioned into K
equal-sized subsets. From K subsets, one is retained as
the validation data for testing the model, and the
remaining are used for training. The cross-validation
process is then repeated K times, while each of the 𝐾
subsets is used exactly once as the validation data. The
cross-validation method uses the classification
accuracy measure, defined as:

𝐶𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 (9)

where “True Positive (TP) / True Negative (TN)” is the
 number of points which are correctly
classified as abnormal/normal. Also, “False Positive
(FP) / False Negative (FN)” is the number of
“normal/abnormal” points which are incorrectly
classified as “abnormal/normal”. All these values can
be counted simply, because each point in the dataset is
labeled either normal or abnormal. Therefore, the
classification accuracy is calculated as the proportion of
true results (true positives and true negatives) among all
cases examined. Moreover, like other works in the
literature [29, 30], we evaluate the performance of our
classification algorithm using the precision measure:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10)

The results from the K folds are averaged to get the final
value. We use 10-fold cross-validation (i.e. K=10).

C. Evaluation Results

First, we investigate the impact of neighborhood
size, or K in the KNN algorithm, on the accuracy of our
algorithms. Initially, the counter field of all training
samples is “1”. We apply our cross-validation twice,
once without updating the counter filed of training
samples, and another time with updating the counter
field. The result of validation for both classifiers is
shown in Fig. 2 (the left and the right figures refer to the
result of two-class and one-class classifiers,
respectively). In both, the comparison of two cases
(with and without counter) for different values of
neighborhood size shows that with updating the counter
field, the classification accuracy is enhanced up to 3%.
Also, we see that when using the counter field, two
classifiers would be less sensitive to the value of K,
which alleviates one of the KNN challenges. Based on

Fig. 2: The impact of neighbourhood size on the accuracy of proposed methods (left:

two-class classification, right: one-class classification)

Volume 10- Number 2 – Spring 2018 68

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 6 / 9

https://ijict.itrc.ac.ir/article-1-330-en.html

this result, we select K=5, which yields the most
accuracy.

Now, we discuss how to choose the best values for
𝐻𝑇, 𝐵𝑇 and δ thresholds. Fig. 3 depicts the frequency
distribution of session scores obtained from the two-
class method in 10 equal-sized bins in the range [0-1].
From the figure, we can see that when the counter is not
used, 92% of sessions have a score less than 0.1 and 7%
of sessions have a score higher than 0.9, while after
adding and updating the counter field, 95% of sessions
get a score less than 0.1 and for only 4.5% of sessions,
the score is greater than 0.9. According to the algorithm,
we know that a higher score implies that the session is
more likely to be abnormal. Hence, we set 0.1 and 0.9
for 𝐻𝑇 and 𝐵𝑇 thresholds, respectively.

From Fig. 3, we can also see that in the counter-
sensitive method, 2.5% fewer sessions are classified as
abnormal. Therefore, for more experiments, we
randomly sample 200 sessions with a score in the range
of [0.9-1] to evaluate the classifier precision manually
and determine what proportion of sessions is correctly
classified as abnormal. The results are shown in Table
1.

The results in Table 1 reveal that the proposed
counter-sensitive algorithm can identify abnormal
sessions with a precision of about 95.5% which has up
to 10% enhancement comparing with the no-counter
algorithm. In addition, it can be observed that without
using the counters, the system has more false positives,
while with the counters, we can catch abnormal
sessions with a more precision and as a result, fewer
sessions are labeled as abnormal. A deeper
investigation of sessions which are incorrectly detected
as abnormal demonstrates that the normal points in the
training data cannot cover all aspect of real user
behaviors. Since our goal is just to detect abnormal
sessions, we can simplify the problem and focus only
on abnormal points by using the one-class classification
algorithm.

 Table 1: Precision of two-class classification for sessions with score

range of [0.9-1]

 #Session #Correct Precision (%)

Without Counter 200 170 85

With Counter 200 191 95.5

Table 2: Precision of one-class classification for sessions with

different score ranges

Score Range #Session #Correct Precision (%)

[0.5-0.6) 41 2 4.87

[0.6-0.7) 23 3 13.04

[0.7-0.8) 18 5 27.77

[0.8-0.9) 19 17 89.47

[0.9-1) 15 14 93.33

[1-∞) 84 83 98.80

Unlike the two-class algorithm, the calculated score
of one-class classification in (7) lies in the range [0-∞).
Similar to the above analysis, we first obtain the
frequency distribution of session scores. The bin size is
0.1, but we aggregate scores greater than 1 in the last
bin. The results are displayed in Fig. 4.

Again, we randomly sample 200 sessions from
those with a score greater than 0.5 and examine the
precision of one-class algorithm in detecting abnormal
sessions. The results are shown in Table 2. Remind that
as much as a session gets a higher score, it is more likely
to be abnormal. Because the detection of spam behavior
requires a high precision, we take sessions with a score
greater than 0.8 as abnormal. As a result, we consider
1.25 for 𝛿 threshold in (7), resulting to a precision of
about 97%. In other word, just 3% of sessions (with a
score greater than 0.8) are wrongly classified as
abnormal. It must be noted the setting of our thresholds
is data-dependent and thus they cannot be generally
configured to the same values. The above analysis
confirms that the proposed one-class classification has
a higher precision on our data. Moreover, since we do
not need to store normal points in the training dataset,
the computational and storage overhead of the system
is reduced substantially.

D. Comparison with Previous Works

Finally, we compare the performance of our
algorithm with two previous click spam detection
methods [29, 30], known as typical/atypical and
bipartite algorithms, respectively. For the
typical/atypical algorithm, we model each user session
as a sequences of (user action, page number) with a
Markov chain and calculate the distance of each session
from the average using Mahalanobis distance measure
and then, consider the sessions belonging to the top one
percentile of the distance distribution as abnormal.

Fig. 3: Score frequency distribution of sessions for two-class
classification algorithm

Fig.4: Score frequency distribution of sessions for one-class
classification algorithm

Volume 10- Number 2 – Spring 2018

69

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 7 / 9

https://ijict.itrc.ac.ir/article-1-330-en.html

Table 3: Precision obtained with difference algorithms

Algorithms Precision (%)

Typical/ATypical 89

Bi-partite graph propagation 91.5

Proposed two-class algorithm 95.5

Proposed one-class algorithm 96.61

Also, in the bipartite algorithm, we first model user
sessions as sequence of (user action, action objective
and time interval between actions) and then apply the
user-session bipartite graph propagation algorithm on
these sessions. Finally, we consider sessions with a
score higher than 0.9 as abnormal. In addition, we
randomly sample 200 sessions for manual
investigation.

The precision of the three approaches are illustrated
in Table 3. Our two-class approach outperforms the
previous works by 4% and more interestingly, the one-
class approach shows about 5.1% improvement. It
should also be noted that both typical/atypical and
bipartite algorithms work only in offline environment,
while our proposed algorithms are able to detect click
spams in online environment with a lower memory and
CPU overhead.

V. CONCLUSION

In this paper, we propose a couple of novel and
efficient classification-based algorithms for detecting
spam sessions and clicks. We first present some
important features of normal/abnormal behaviors in the
web which are helpful in distinguishing humans from
bots. Then, we propose our two-class and one-class
classification algorithms to detect click bots. The
proposed algorithms work based on the KNN algorithm
and we overcome the problem of classic KNN
algorithm including high memory consumption and
excessive processing by using a simple counter field
which is updated regularly with the new data. Our
proposed algorithms can detect spams with a precision
of up to 96% which is higher than previous algorithms.

REFERENCES

[1] Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank
citation ranking: Bringing order to the web. Technical Report

1999-66, Stanford InfoLab (1999)

[2] Marchiori, M.: The quest for correct information on the web:
Hyper search engines. Computer Networks 29(8), 1225–1236

(1997)

[3] Agichtein, E., Brill, E., Dumais, S.: Improving web search
ranking by incorporating user behavior information. In:

Proceedings of the 29th International ACM SIGIR Conference
on Research and Development in Information Retrieval,

SIGIR’06, pp. 19–26. ACM, New York, NY, USA (2006)

[4] Chapelle, O., Zhang, Y.: A dynamic bayesian network click
model for web search ranking. In: Proceedings of the 18th

International Conference on World Wide Web, WWW’09, pp.
1–10. ACM, New York, NY, USA (2009)

[5] Kim, H.J., Tong, S., Shazeer, N.M., Diligenti, M.: Modifying
search result ranking based on implicit user feedback (2016).

US Patent 9,235,627

[6] Liu, Y., Cen, R., Zhang, M., Ma, S., Ru, L.: Identifying web
spam with user behavior analysis. In: Proceedings of the 4th

International Workshop on Adversarial Information Retrieval

on the Web, AIRWeb ’08, pp. 9–16. ACM, New York, NY,

USA (2008)

[7] Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering
analysis of network traffic for protocol and structure-

independent botnet detection. In: Proceedings of the 17th
Conference on Security Symposium, SS’08, pp. 139–154.

USENIX Association, Berkeley, CA, USA (2008)

[8] Schluessler, T., Goglin, S., Johnson, E.: Is a bot at the
controls?: Detecting input data attacks. In: Proceedings of the

6th ACM SIGCOMM Workshop on Network and System
Support for Games, NetGames ’07, pp. 1–6. ACM, New York,

NY, USA (2007)

[9] Dou, Z., Song, R., Yuan, X., Wen, J.R.: Are click-through data

adequate for learning web search rankings? In: Proceedings of
the 17th ACM Conference on Information and Knowledge

Management, CIKM ’08, pp. 73–82. ACM, New York, NY,
USA (2008)

[10] I. A. Board. 2016 (Full Year) Internet Advertising Revenue

Report. http://www.iab.net

[11] Google: Google Adwords. https://www.google.com/adwords

[12] Google: Google AdSense. https://www.google.com/adsense

[13] Szetela, D., Kerschbaum, J.: Pay-Per-Click Search Engine
Marketing: An Hour a Day. SYBEX Inc., Alameda, CA, USA

(2010)

[14] Miller, B., Pearce, P., Grier, C., Kreibich, C., Paxson, V.:
What’s clicking what? techniques and innovations of today’s

clickbots. In: Proceedings of the 8th International Conference
on Detection of Intrusions and Malware, and Vulnerability

Assessment, DIMVA’11, pp. 164–183. Springer-Verlag,
Berlin, Heidelberg (2011)

[15] Alrwais, S.A., Gerber, A., Dunn, C.W., Spatscheck, O., Gupta,
M., Osterweil, E.: Dissecting ghost clicks: Ad fraud via

misdirected human clicks. In: Proceedings of the 28th Annual
Computer Security Applications Conference, ACSAC’12, pp.

21–30. ACM, New York, NY, USA (2012)

[16] Pearce, P., Dave, V., Grier, C., Levchenko, K., Guha, S.,
McCoy, D., Paxson, V., Savage, S., Voelker, G.M.:

Characterizing large-scale click fraud in zeroaccess. In:
Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’14, pp. 141–
152. ACM, New York, NY, USA (2014)

[17] Metwally, A., Agrawal, D., Abbad, A.E., Zheng, Q.: On hit

inflation techniques and detection in streams of web
advertising networks. In: 27th International Conference on

Distributed Computing Systems, AIRWeb ’08, pp. 52–52
(2007)

[18] Stone-Gross, B., Stevens, R., Zarras, A., Kemmerer, R.,

Kruegel, C., Vigna, G.: Understanding fraudulent activities in
online ad exchanges. In: Proceedings of the 11th ACM

SIGCOMM Conference on Internet Measurement Conference,
IMC ’11, pp. 279–294. ACM, New York, NY, USA (2011)

[19] Dave, V., Guha, S., Zhang, Y.: Viceroi: Catching click-spam

in search ad networks. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications

Security, CCS ’13, pp. 765–776. ACM, New York, NY, USA
(2013)

[20] Oentaryo, R., Lim, E.P., Finegold, M., Lo, D., Zhu, F., Phua,

C., Cheu, E.Y., Yap, G.E., Sim, K., Nguyen, M.N., Perera, K.,
Neupane, B., Faisal, M., Aung, Z., Woon, W.L., Chen, W.,

Patel, D., Berrar, D.: Detecting click fraud in online
advertising: A data mining approach. Journal of Machine

Learning Research 15(1), 99–140 (2014)

[21] Kitts, B., Zhang, Y.J., Wu, G., Brandi, W., Beasley, J., Morrill,

K., Ettedgui, J., Siddhartha, S., Yuan, H., Gao, F., Azo, P.,
Mahato, R.: Click Fraud Detection: Adversarial Pattern

Recognition over 5 Years at Microsoft, pp. 181–201. Springer
International Publishing, Cham (2015)

[22] Juels, A., Stamm, S., Jakobsson, M.: Combating click fraud via

premium clicks. In: Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium, SS’07, pp. 2:1–

2:10. USENIX Association, Berkeley, CA, USA (2007)

[23] Haddadi, H.: Fighting online click-fraud using bluff ads.
SIGCOMM Computer and Communication Review, 40(2), pp.

21–25 (2010)

Volume 10- Number 2 – Spring 2018 70

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 8 / 9

https://ijict.itrc.ac.ir/article-1-330-en.html

[24] Kitts, B., Zhang, J.Y., Roux, A., Mills, R.: Click fraud

detection with bot signatures. In: Proceedings of the 2013 IEEE
International Conference on Intelligence and Security

Informatics (ISI), pp. 146–150 (2013)

[25] Yu, F., Xie, Y., Ke, Q.: Sbotminer: Large scale search bot
detection. In: Proceedings of the 3th ACM International

Conference on Web Search and Data Mining, WSDM ’10, pp.
421–430. ACM, New York, NY, USA (2010)

[26] Kang, H., Wang, K., Soukal, D., Behr, F., Zheng, Z.: Large-

scale bot detection for search engines. In: Proceedings of the
19th International Conference on World Wide Web, WWW

’10, pp. 501–510. ACM, New York, NY, USA (2010)

[27] Wang, G., Konolige, T., Wilson, C., Wang, X., Zheng, H.,

Zhao, B.Y.: You are how you click: Clickstream analysis for
sybil detection. In: Proceedings of the 22nd USENIX

Conference on Security, SEC’13, pp. 241–256. USENIX
Association, Berkeley, CA, USA (2013)

[28] Wang, G., Zhang, X., Tang, S., Zheng, H., Zhao, B.Y.:

Unsupervised clickstream clustering for user behavior
analysis. In: Proceedings of the 2016 CHI Conference on

Human Factors in Computing Systems, CHI ’16, pp. 225–236.
ACM, New York, NY, USA (2016)

[29] Sadagopan, N., Li, J.: Characterizing typical and atypical user

sessions in clickstreams. In: Proceedings of the 17th
International Conference on World Wide Web, WWW ’08, pp.

885–894. ACM, New York, NY, USA (2008)

[30] Li, X., Zhang, M., Liu, Y., Ma, S., Jin, Y., Ru, L.: Search
engine click spam detection based on bipartite graph

propagation. In: Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, WSDM ’14, pp.

93–102. ACM, New York, NY, USA (2014)

[31] Wang, G., Zhang, X., Tang, S., Zheng, H., Zhao, B. Y.
Unsupervised Clickstream Clustering for User Behavior

Analysis. In Proceedings of the CHI’16 Conference on Human
Factors in Computing Systems , pp. 225–236. New York, NY,

USA (2016)

[32] Shakiba, T., Zarifzadeh, S., Derhami, V. Spam query detection
using stream clustering. Springer World Wide Web, 21(2), pp.

557–572 (2018)

[33] Ahn, L.V., Blum, M., Hopper, N.J., Langford, J.: Captcha:

Using hard ai problems for security. In: Proceedings of the
22nd International Conference on Theory and Applications of

Cryptographic Techniques, EUROCRYPT’03, pp. 294–311.
Springer-Verlag, Berlin, Heidelberg (2003)

[34] Costa, R.A., de Queiroz, R.J.G.B., Cavalcanti, E.R.: A

proposal to prevent click-fraud using clickable captchas. In:
Proceedings of IEEE 6th International Conference on Software

Security and Reliability Companion (SERE-C), pp. 62–67
(2012)

[35] Cover, T., Hart, P.: Nearest neighbor pattern classification.

IEEE Transaction on Information Theory, 13(1), pp. 21–27
(2006)

[36] Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation.

Encyclopedia of Database Systems pp. 532–538 (2009)

AUTHOR BIOGRAPHIES

Mahdieh Fallah received
the B.Sc. degree in Information
Technology Engineering from
the Isfahan University of
Technology, Isfahan, Iran, in
2013, and the M.Sc. degree in
Computer Networks from Yazd
University, Yazd, Iran, in 2016.
Her current research interests
include networking, computer
security, distributed computing

and big data analytics. She is currently working at
Parsijoo, the first Persian search engine.

Sajjad Zarifzadeh
received his Ph.D in Computer
Science and Engineering from
University of Tehran, Iran, in
2012. He is currently an
assistant professor in Yazd
University, Iran. His research
interest is primarily on big-
data applications and Internet
services. The results of his

research have been published in well-known
conferences and journals, including ACM IMC, ACM
SIGMETRICS, WWW, IEEE Communication
Magazine, Elsevier Computer Networks, Elsevier
Computer Communications, etc.

Volume 10- Number 2 – Spring 2018

71

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

Powered by TCPDF (www.tcpdf.org)

 9 / 9

https://ijict.itrc.ac.ir/article-1-330-en.html
http://www.tcpdf.org

