Volume 10, Issue 4 (12-2018)                   2018, 10(4): 22-31 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yaghubi-Namaad M, Ghaffarpour Rahbar A, Alizadeh B. Network Planning Policies for Joint Switching in Spectrally-Spatially Flexible Optical Networks. International Journal of Information and Communication Technology Research 2018; 10 (4) :22-31
URL: http://ijict.itrc.ac.ir/article-1-407-en.html
1- Faculty of Electrical Engineering Sahand University of Technology Tabriz, Iran
2- Faculty of Electrical Engineering Sahand University of Technology Tabriz, Iran , ghaffarpour@sut.ac.ir
3- Faculty of Applied Mathematics Sahand University of Technology Tabriz, Iran
Abstract:   (1786 Views)
The spectrally and spatially flexible optical networks (SS-FON) are the promising solution for future optical transport networks. The joint switching (J-Sw) paradigm is one of the possible switching schemes for SS-FON that brings optical component integration alongside with acceptable networking performance. The network planning of J-Sw is investigated in this paper. The formulation of resource allocation for J-Sw is introduced as in integer linear programming to find the optimal solution. To find the near-optimal solution, the heuristic algorithms are initiated with sorted connection demands. The way connection demands are sorted to initiate the heuristic algorithms affects the accuracy of algorithms. Therefore, six different sorting policies are introduced for J-Sw. Moreover, the heuristic algorithm called joint switching resource allocation (JSRA) algorithm is introduced, especially for J-Sw. The heuristic algorithm performance initiated with different sorting policies is investigated through simulation for a small-size network. The optimality gap is the most important indicator that shows the effect of each sorting policy on the near-optimal solution. The new sorting policy of connection demands called descending frequency width (DFW) policy achieved the least optimality gap. Also, the JSRA performance initiated with these sorting policies is investigated for a real network topology. The obtained results indicate that DFW shows better performance than other sorting policies in realistic networks, too.
Full-Text [PDF 1062 kb]   (1025 Downloads)    
Type of Study: Research | Subject: Network

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.