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Abstract --  Sequential pattern mining is an interesting data mining problem with many real-world applications. Though new 

applications introduce a new form of data called data stream, no study has been reported on mining sequential patterns from the 

quantitative data stream. This paper presents a novel algorithm, for mining quantitative streams. The proposed algorithm can mine 

exact set of fuzzy sequential patterns in sliding window and gap constraints entailing the most recent transactions in a data stream. 

In addition, the proposed algorithm can also mine non-quantitative or transaction-based sequential patterns over a data stream. 

Numerical results show the running time and the memory usage of the proposed algorithm in the case of quantitative and customer-

transaction-based sequence counting are proportional to the size of the sliding window and gap constraints. 

 

Keywords - Data Stream, Fuzzy Sequential Pattern Mining, Gap Constraint, Sliding Window. 

 

I.      INTRODUCTION   

  The development of database systems and the availability 

of massive data caused data mining to be a necessary process 

to extract understandable and usable high-level knowledge. 

Sequential pattern mining is among the most important 

studies in the data mining field with many real-world 

applications such as customer behavior analysis, DNA 

sequence analysis, and intrusion detection. 

  The sequential pattern mining problem was first 

introduced by Agrawal, and Srikant: “Given a set of 

sequences, where each sequence consists of a list of elements 

and each element consists of a set of items, and given a user-

specified min_support threshold, sequential pattern mining is 

to find all frequent subsequences, i.e., the subsequences 

whose occurrence frequency in the set of sequences is no less 

than min_support” [1, 2]. Many algorithms have been 

proposed to mine sequential patterns in sequential databases 

like Apriori-All [1] and GSP [3], or PrefixSPAN [2]. 

  In recent years, emerging applications have introduced a 
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new form of data called Data Stream. A data stream is an 

unbounded sequence in which new elements are generated 

consecutively. Any mining method for data streams must 

consider two critical constraints. The first constraint is the 

memory usage constraint meaning all the stream data cannot 

be stored in memory. The second constraint says that each 

stream component can be looked at once, without performing 

any blocking operation. Because of these constraints, 

traditional data mining methods developed for static 

databases like PrefixSPAN cannot be applied for mining data 

streams [4]. 

  The existent sequential pattern mining algorithms for data 

streams like SS-MB and SS-BE [4], PLWAP-Based 

Algorithms [5] and the algorithm proposed in [6], use the 

batch processing to store the last n transactions in memory. 

The batching process performs mining in each batch and 

neglects the relationship between transactions in subsequent 

batches which prevents mining sequential patterns whose 

items are distributed over some subsequent batches. Also, 

these algorithms do not consider the quantitative sequential 

databases, which necessarily lead to another loss of 
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information when they use the binary representation of 

numerical data [7, 8]. Moreover, these algorithms do not 

account for the user-specified constraints in order to mine 

patterns more efficiently; and also some of them are not exact 

and they mine approximate sequential patterns as they cannot 

mine some sequences [9].  

  The proposed method in this paper uses a new time-based 

moving sliding window and time gap which are defined as 

user constraints. These enable the proposed method to mine 

the following patterns: 

• Complex sequential patterns which cannot be mined by 

batch-based algorithms,  

• The exact set of constrained sequential patterns over a 

data stream. 

  It is well-worth mentioning that the proposed method 

fuzzifies the input data to face the quantitative data stream, 

and representing them as fuzzy categorical items, which 

enables the proposed method to output fuzzy sequential 

patterns in terms of fuzzy items and itemsets. 

The remaining of this paper is organized as follows. Section 

II introduces the basic concepts and the problem of sequential 

pattern mining in static and stream databases. Section III 

introduces the constrained sequential pattern mining. Section 

IV presents the proposed algorithm. In Section V, some 

experiments are conducted to analyze the proposed, and the 

conclusion is stated in Section VI. 

 

II.      PROBLEM STAEMENT 

  The problem is to mine the exact set of constrained fuzzy 

sequential patterns over a quantitative data stream. Let I = {I1, 

I2, … , Ip} be the set of all items. An itemset is a nonempty set 

of items, like e1 = I1 I2. A concurrent itemset is the one whose 

items happen concurrently, and are denoted by surrounding 

parentheses, like e2 = (I4 I7). A sequence is an ordered list of 

itemsets. A sequence s is denoted  < e1e2e3 … el > , where 

itemset e1 occurs before e2, and e2 before e3, and so on[  

HYPERLINK \l "Jia06"  10 ]. Fuzzy itemset is a set of fuzzy 

items, and it can be donated as a pair of sets (set of items, set 

of fuzzy sets associated to each item’s quantity) or as a list of 

fuzzy items, like ([I1, low: 0.6] [I3, med: 1] [I6, high: 0.25]), 

which shows three concurrent items with their fuzzified 

quantities. 

The main challenge in data stream mining is the limited 

resources of time and memory. Data mining has been studied 

extensively in static datasets, where data mining algorithms 

can handle reading the input data several times, like the 

algorithms proposed in [1, 2, 3]. When the source of data 

items is a data stream, not all data can be loaded into the 

memory, and off-line mining algorithms with the static 

dataset is no longer technically feasible due to the features of 

data streams [11, 12]. The following constraints are forced 

due to data stream features model [12]: 

• The length of a data stream is potentially infinite, and it 

would be impossible to store all elements. Thus, only a 

small part is stored and processed. 

• As the elements of a data stream are received fast, they 

should be processed in real time. 

The above constraints limit the amount of memory and the 

time-per-item that the stream mining algorithm can use. 

While the existent algorithms use batch processing to face the 

above limitations, this paper uses time-based moving sliding 

window and gap constraints to handle the above limitations 

as well as limitation of the batch processing for mining 

sequential patterns over multiple subsequent batches. Also, to 

face the data loss in the quantitative sequential pattern 

algorithms over data streams, the proposed method fuzzifies 

numerical data, and then it mines sequential patterns over the 

fuzzified data. 

III.      SLIDING WINDOW & GAP CONSTRAINTS 

  Mining without user- or expert-specified constraints may 

generate numerous patterns that are of no interest. Thus, user-

specified constraints are incorporated into the mining 

algorithm to reduce the search space and mine the only 

patterns that are of interest to the user [10, 13]. In this paper, 

moving sliding window and gap constraints are used to face 

the limitations of stream mining. 

  A Sliding Window or duration constraint is defined only 

in sequence databases where each transaction has a time-

stamp. It requires that the pattern appears frequently in the 

sequence database such that the time-stamp difference 

between the first and last transactions in the pattern is shorter 

than a given constant [13]. Thus, the transactions in a sliding 

window are assumed to be concurrent. 

  A gap constraint is defined only in sequence databases 

where each transaction in every sequence has a timestamp. It 

requires that the pattern appears frequently in the sequence 

database such that the timestamp difference between every 

two adjacent transactions - be longer than a given gap [13, 

14]. 

  Sliding window and gap constraints are defined by two 

membership functions in term of time difference, as shown in 

Figure 1 [15, 16, 17]. 

 

Figure 1:  Sliding window & gap constraints 

 

IV.      THE PROPOSED METHOD 

 

  The proposed method consists of three phases as shown 

in Figure 2 and the pseudo-code of the proposed method, 

Constrained Fuzzy Stream Sequence Miner (CFSSM), is 

shown in Figure 3. In the first phase, data streams are 

buffered.  
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Figure 2:  Flowchart of the CFSSM method 
 

 

The second phase fuzzifies the quantitative data in order to 

represent them as fuzzy categorical data. This representation 

avoids data loss caused by a binary representation of 

numerical data. And finally, fuzzy sequential patterns are 

mined by CFSSM algorithm in the third phase. These phases 

are described in detail in Subsections IV-A to IV-C. The 

solution quality of the proposed method is discussed in 

Subsection IV-D. 
 
 
 
 

CFSSM_Method 

Inputs: Data_Stream, Mining_Parameters 

Output: Set_of_Sequential_Patterns 

  

 1:  While (~EndOfStream && ~UserDemandFlag) 

 2:     Data Stream Buffering 

  3:     Update Customer Fuzzy Database 

  4:      For each Customer 

  5:          Sliding_Process_Algorithm 

  6:          Update_Sequence_Tree_Algorithm 

 7:      End For 

 8:  End While 

 9:  Scan the Sequence Tree in depth 

10:  Show Sequential Patterns where   count > min_count 

Figure 3:  CFSSM pseudo code 
 
 

A. Data Stream Buffering 

  In data streams, the entire data of each customer is not 

available, and they are generated continuously. Each 

transaction in a quantitative data stream has a customer-ID, a 

transaction type, a time-stamp, and a quantity value, as shown 

in Table 1. 

 
 

Table 1:  Quantitative data stream sample 

Quantity Time-Stamp Transaction Customer-ID 

 

 

 

  In CFSSM, to face the limitations of data streams, as 

mentioned in section 2, a new time-based moving sliding 

window is proposed to buffer the most recent transactions of 

which their time-stamp value satisfies user-specified sliding 

window and gap constraints. Thus, the last part of the stream 

(current database) which has been buffered is updated when 

a new transaction from the stream is received. It should be 

noted that the number of transactions in the current database 

is related to the frequency by which the data are received, and 

it might be variable in time. 

  For example, suppose the constraint values in Figure 1, 

are set to p=2, q=6, and the stream be as given in Table 2. 

Also let the most recent transaction, called now, be the one 

whose time-stamp is 15. By receiving this data, the moving 

sliding window and gap are moved in such a way that “q”, as 

shown in Figure 1, is located at now, Time Stamp of the last 

Transaction in Stream. 

  At this time, Figure 4 shows the correspondence between 

the time-stamps and the parameters of the sliding window and 

the gap constraints. Thus, some transactions are removed 

from the current database whose time-stamps are less than 9. 

These transactions are shown in grey in Table 2, and the 

buffered ones are shown in black in Table 2. 

 
Table 2:  Quantitative data stream sample 

Quantity Time-Stamp Transaction Customer-ID 

5 1 A 1 

8 4 D 2 

2 8 B 3 

3 11 A 1 

1 14 B 1 

5 14 A 2 

1 15 C 1 

3 15 C 2 

 

 

 

Figure 4:  Correspondence between the time-stamps and the 
parameters of the sliding window and the gap constraints 

 

B. Fuzzifying Quantitative Data and Deriving Fuzzy 

Customer-Separated Database 

  In order to avoid data loss caused by the binary 

representation of numerical data, the quantitative data 

buffered in current database is fuzzified, hereinafter called 

fuzzy database, and is expressed by the linguistic terms as 

shown in Figure 5. 

  It’s possible to use one of the following fuzzy cardinality 

count types to fuzzify the quantities [18]: 

• The fuzzy membership value µ(x), 

• The fuzzy membership value if it’s bigger than a specified 

threshold (thr), 

• The crisp count if the fuzzy membership value is bigger 

than a specified threshold (thr). 

  This paper uses the first and the third cardinality count 

types in the examples given in the next subsections. 

  In order to mine sequential patterns from customer 
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behaviors, the current fuzzy database should be divided into 

fuzzy customer-separated databases. It should be noted that 

some transactions may satisfy two fuzzy membership 

functions and will be expressed by two linguistic terms, like 

the first two rows in Table 3, which shows the fuzzy 

customer-separated databases of the example given in Table 

2, for w=2, x=6, y=9, z=13 in Figure 5, using µ(x) for fuzzy 

cardinality count. The pseudo-code of this phase, called 

fuzzifying quantitative data and deriving fuzzy customer-

separated database, is shown in Figure 6. 

Figure 5:  Fuzzy membership functions for quantitative items 
 
 
 
 

Update_Fuzzy_Customer_separated_Database_Algorithm 
Inputs: Buffered_Data_Stream, is_Qunatitative, 

Cardinality_Type  

Output: Fuzzy_Customer_Separated_Databases 

  

  1:  For each transaction in Buffered Data Stream 

     2:     If new_customer_ID 

     3:         create new_customer_database 

     4:         Fuzzify the quantities 

     5:         Generate new fuzzy transactions 

  6:     Else 

     7:         Fuzzify the quantities  

     8:         Generate new fuzzy transactions 

  9:   End For 

Figure 6:  Updating fuzzy customer-separated database pseudo 
code 

 
 
 
 

Table 3:  Quantitative data stream sample 
µquantity Time-Stamp Transaction Customer-ID 
0.75 11 A-low 

1 
0.25 11 A-med 

1 14 B-low 

1 15 C-low 

0.25 14 A-low 

2 
0.75 14 A-med 

0.75 15 C-low 

0.25 15 C-med 
 

 

C. Constrained Sequence Mining Algorithm 

  In this phase, sequential patterns are mined by the Sliding 

Process algorithm from fuzzy customer-separated databases. 

The pseudo-code of the Sliding Process algorithm is shown 

in Figure 7.  
 

  In the Sliding Process algorithm, the sequence to be 

mined is initialized as a null sequence. For each fuzzy 

customer-separated database, the start of the sliding window 

constraint, shown in Figure 1, slides to the Time-stamp of the 

first transaction and all the transactions whose timestamps are 

in this sliding window are assumed to be the first itemset 

(lines 1-7 in Figure 7). After finding the first itemset of a 

sequence, the start of the moving sliding window slides to the 

time-stamp of the next transaction whose time-stamp wasn’t 

in the moving sliding window constraint in the previous 

iteration, and all the transactions whose timestamps are in this 

sliding window are assumed to be the next itemset (lines 8-

12 in Figure 7), this loop (lines 8-12 in Figure 7) is repeated 

until all transactions satisfy one of the moving sliding 

windows, i.e., the end of the first pass.  

At the end of the first pass, one sequence is mined from the 

fuzzy customer-separated database. In order to mine more 

sequences from the fuzzy customer-separated database, pass 

2 starts in which the start of the moving sliding window slides 

to the timestamp of the next transaction that has not yet been 

the start of any previous moving sliding windows, and 

another new sequence is mined. This procedure repeats until 

all sequences are mined from the fuzzy customer-separated 

database.  

  The Sliding Process algorithm passes for the customer 1’s 

database in Table 3 are shown in Table 4.  The starting 

transaction in each pass is shown in bold; and the transactions 

whose time-stamp don’t satisfy the moving sliding window, 

are shown in gray. The count of each sequence can be 

computed by the user-specified fuzzy T-norm between fuzzy 

membership functions of itemsets (µquantity) in each sequence. 

 
 

Sliding_Process_Algorithm 
Inputs: Customer_Fuzzy_Database, Mining_Parameters 

Output: set_of(Sequence, Count) 

  

 1:  For each transaction t whose time-stamp had not been at the 

start of any previous moving sliding windows 

 2:       sequence = < > 

 3:       itemset = {} 

 4:       Slide the start of the moving sliding window to transaction 

t’s time-stamp 

 5:       itemset = set of transactions whose timestamps are in the 

sliding window 

 6:       itemset_count = T-norm (transactions µquantity) 

 7:       add itemset to sequence 

 8:       For each transaction t2 whose timestamp wasn’t in the 

previous sliding window 

 9:           Slide the start of the moving sliding window to 

transaction t2’s time-stamp 

10:           itemset = set of transactions whose timestamps are in 

the sliding window 

11:           itemset_count = T-norm (transactions µquantity) 

12:           add itemset to sequence 

13:       End For 

14:       sequence_count = T-norm(itemsets of sequence) 

15:       Add (sequence, sequence_count) to the output set 

16:  End For 

Figure 7:  Sliding process pseudo code 

 
 

Table 4:  Sliding process on customer 1's database 

µquantity Time-Stamp Transaction Pass 
0.75 11 A-low 

1 

0.25 11 A-med 

1 14 B-low 

1 15 C-low 

0.75 11 A-low 

0.25 11 A-med 

1 14 B-low 

1 15 C-low 

0.75 11 A-low 

2 
0.25 11 A-med 

1 14 B-low 

1 15 C-low 
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  After the Sliding Process algorithm, Update Sequence 

Tree Algorithm is called to insert the sequences into the 

sequence tree that contains the sequences and the count of 

each item (Figure 8). 

 
 

Update_Sequence_Tree_Algorithm 

Input: Set_of(sequences, count) 

 
  1:  For each Sequence 

  2:  currrntNode = Root 

  3:      For each itemset of the sequence 

     4:          If itemset is in currrntNode’s children 

     5:              update the count of the child 

     6:              currrntNode = child 

  7:          Else 

   8:              Generate new node with itemset properties 

   9:              currrntNode = new node 

 10:      End For 

 11:  End ForFigure 8:  Update sequence tree pseudo code 
 

 

  According to the definition of stream mining, sequential 

patterns should be available whenever the user demands. 

Thus, when that happens, the algorithm scans the Sequence 

Tree in depth to output the sequential patterns. 

  For example, if the stream was only the bold part of the 

stream given in Table 2, and user demands the patterns with 

minimum as T-norm and min_count=0, after processing the 

current database of customer 1, the tree would be like Figure 

9. By scanning the Sequence Tree in depth, the Sequential 

Patterns shown in Table 5 would be generated; and after 

Sliding Process on the current database of customer 2, the tree 

would be updated to Figure 10. 
 
 

Table 5:  Sequential patterns 
Count Sequence 
0.75  < A-low, B-low >  

0.75  < A-low, C-low >  

0.75  < A-low(B-low, C-low) >  

1.25  < C-low >  

 

 

  In the proposed method, two sequence counting types can 

be used: 

• Customer-Transaction-based Sequence counting 

• Transaction-based Sequence counting 

 

The above example shows a customer-Transaction-based 

sequence counting method, wherein the stream is divided into 

customer’s databases and the sequence found in each 

customer’s database would be updated in the sequence tree. 

However, in the transaction-based sequence counting, the 

whole stream would be assumed to be generated by one 

customer, thus the stream wouldn’t be divided into customer 

databases. 

Also, the user can specify whether the algorithm mine 

quantitative sequences or not. In the non-quantitative case, 

the module Fuzzifying quantitative data of the proposed 

method (Figure 2) is discarded, and the module Deriving 

fuzzy customer-separated database is discarded in the case of 

transaction-based sequence counting. 

 

 
Figure 9:  The sequence tree after sliding process on the current 

database of customer 1 

 
 

D. Solution Quality 

  As mentioned in subsection IV-C, the proposed method in 

 
 

Figure 10:  The sequence tree after sliding process on the current database of customer 2 
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this paper uses a new time-based moving sliding window 

and time gap which are defined as user constraints. These 

enable the proposed method to mine the following patterns: 

• Complex sequential patterns which cannot be mined by 

batch-based algorithms, 

• The exact set of constrained sequential patterns over a 

data stream, which cannot be mined by existent 

algorithms which work on binary representation of data. 

  Also, the outputs of the proposed method, which mines 

the exact set of constrained sequential patterns over a data 

streams, and the Constrained PrefixSPAN on the same static 

database, would be the same, in terms of equality constraints. 
 
 

Table 6:  non-quantitative data stream 
Time-Stamp Transaction 

1 A 

4 D 

5 B 

11 A 

14 B 

14 A 

15 C 

15 C 

 

 

  Here is a simple transaction-based and non-quantitative 

example to show the differences between the proposed 

method and batch-based algorithms. For the stream given in 

Table 2, suppose the constraint parameters in Figure 1 be p=2, 

q=5, and the crisp count, as mentioned in section IV-B, be 

used. For batch_size=4 in batch-based algorithms, two 

different batches will exist in Table 2 as shown in Table 6. As 

said before, the relations between transactions in these two 

batches are discarded in the batch-based algorithms, e.g. the 

relation between the fourth and fifth transaction is discarded, 

and the sequence <AB> won’t be mined for min_count=2. 

  In this paper, the new time-based moving sliding window 

and time gap are proposed. For the given example, these 

constraints are shown in Figure 11, for different time-stamps 

in the stream. Thus, the proposed method can mine the 

sequence <AB> with a count equal to two in this stream, 

while in batch-based algorithms, the count of the sequence 

<AB> will be one. 

 

 
Figure 11:  Stream buffering in different time-stamps with 

corresponding transactions (a) now = 5, (b) now = 15 
 
 
 

  The main advantages of the proposed algorithm are: 

• Mines the exact set of fuzzy sequential patterns over 

quantitative or non-quantitative data stream, 

• The ability to mine non-constrained or constrained 

sequential patterns over data streams, 

• The ability to mine both transaction-sensitive streams and 

customer-transaction-sensitive data streams. 

 

 

V.      EXPERIMENTAL RESULTS 

  In this section, the performance of the proposed method, 

CFSSM, is investigated by some experimental studies. All 

experiments were conducted on a 2.53GHz Intel Core 2 Duo 

PC with 4GB main Memory, running Microsoft Windows 7 

operating system. All algorithms were implemented in C#. 

The results are shown for two data streams, T10I4D100K and 

T40I10D100K, which are generated from the synthetic data 

generator described by Agrawal et al in [19]. The parameters 

of these datasets are T: the average size of transactions, I: the 

average size of the maximal potentially frequent itemsets, and 

D: the number of transactions (in 1000). To use these datasets 

in this algorithm, a customer-ID, in range of 1-100 is 

randomly assigned to each transaction (itemset), and also a 

quantity value, in range of 1-10 is randomly assigned to each 

item. It is well-worth mentioning that there is no numerical 

sequential data stream available in standard datasets. Several 

experiments were conducted for different characteristics of 

transactions and types of data. The results are labeled as 

follows: Q, nQ, CT and T which indicate to Quantitative data, 

non-Quantitative data, Customer-Transaction-based 

Sequence Counting, and Transaction-based sequence 

counting, respectively. Figure 12 and Figure 13 show the 

results on T10I4D100K and Figure 14 and Figure 15 show 

the results on T40I10D100K. In the following figures, the 

mining type “Q, CT” is the main routine of the CFSSM 

algorithm, which is described by example in previous 

sections.  

  Figure 12 and Figure 14 show the results under different 

gap sizes, where the sliding window size is 10, for different 

mining parameters. As the gap grows the running time and 

memory usage will increase because more transactions are 

stored in the memory to scan. The running time and memory 

usage are smaller in the case of mining non-Quantitative 

sequential patterns rather than mining Quantitative ones, 

because of less computational burden and also smaller data 

structures created during the process. The memory usage is 

smaller in the case of mining Customer-Transaction-based 

sequential patterns rather than Transaction-based sequence 

counting ones, because of more sliding processes in a bigger 

customer database with more transactions.  

  Figure 13 and Figure 15 show the results under different 

sliding window sizes, where the gap size is 150, in the case 

of Q, CT. The running time increases when the sliding 

window size is growing up, as more transactions are stored in 

memory, thus there will be more iterations in the Sliding 

Process algorithm, in Figure 7. This means the more available 

memory, the longer and the more complex sequential patterns 

CFSSM can mine. 

 

Volume 11- Number 1 – Winter 2019 (36 -44) 41 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
24

-0
4-

10
 ]

 

                               6 / 9

https://ijict.itrc.ac.ir/article-1-435-en.html


 

 

 

 
(a) 

 
(b) 

Figure 12: Results on T10I4D100K Dataset:  
(a) runtime for different gap sizes for different mining parameters, where sliding window size = 10,  

(b) memory usage for different gap sizes for different mining parameters, where sliding window size = 10 
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(a) 

 
(b) 

Figure 14: Results on T40I10D100K Dataset:  

(a) runtime for different gap sizes for different mining parameters, where sliding window size = 10,  
(b) memory usage for different gap sizes for different mining parameters, where sliding window size = 10 
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(a) 

 
(b) 

Figure 13: Results on T10I4D100K Dataset in case of Q, CT:  
(a) runtime for different sliding window sizes, where gap size = 150,  

(b) memory usage for different sliding window sizes, where gap size = 150 
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VI.      CONCLUSION 

 

  In this paper, a new method, CFSSM, including new time-

based moving sliding window and gap constraints, was 

proposed to mine quantitative streams which can mine the 

exact set of constrained fuzzy sequential patterns. It also can 

mine non-Quantitative or Transaction-based sequential 

patterns over a data stream. The proposed method uses the 

fuzzy set concept to mine fuzzy sequential patterns from 

numerical data stream. Experimental studies showed that the 

running time and the memory usage of the proposed 

algorithm in the case of quantitative and customer-

transaction-based sequence counting are nearly proportional 

to the size of the fuzzy sliding window and gap constraints.  
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(a) 

 
(b) 

Figure 15: Results on T40I10D100K Dataset in case of Q, CT:  

(a) runtime for different sliding window sizes, where gap size = 150,  
(b) memory usage for different sliding window sizes, where gap size = 150 
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