

Electrical & Computer Engineering Dept.

Kharazmi University, Tehran, Iran

{omid.shakeri, kelarestaghi, farshade, std_agt}@khu.ac.ir

Received: 5 May 2018 - Accepted: 3 November 2018

Abstract -- Sequential pattern mining is an interesting data mining problem with many real-world applications. Though new

applications introduce a new form of data called data stream, no study has been reported on mining sequential patterns from the

quantitative data stream. This paper presents a novel algorithm, for mining quantitative streams. The proposed algorithm can mine

exact set of fuzzy sequential patterns in sliding window and gap constraints entailing the most recent transactions in a data stream.

In addition, the proposed algorithm can also mine non-quantitative or transaction-based sequential patterns over a data stream.

Numerical results show the running time and the memory usage of the proposed algorithm in the case of quantitative and customer-

transaction-based sequence counting are proportional to the size of the sliding window and gap constraints.

Keywords - Data Stream, Fuzzy Sequential Pattern Mining, Gap Constraint, Sliding Window.

I. INTRODUCTION

 The development of database systems and the availability

of massive data caused data mining to be a necessary process

to extract understandable and usable high-level knowledge.

Sequential pattern mining is among the most important

studies in the data mining field with many real-world

applications such as customer behavior analysis, DNA

sequence analysis, and intrusion detection.

 The sequential pattern mining problem was first

introduced by Agrawal, and Srikant: “Given a set of

sequences, where each sequence consists of a list of elements

and each element consists of a set of items, and given a user-

specified min_support threshold, sequential pattern mining is

to find all frequent subsequences, i.e., the subsequences

whose occurrence frequency in the set of sequences is no less

than min_support” [1, 2]. Many algorithms have been

proposed to mine sequential patterns in sequential databases

like Apriori-All [1] and GSP [3], or PrefixSPAN [2].

 In recent years, emerging applications have introduced a

* Corresponding Author

new form of data called Data Stream. A data stream is an

unbounded sequence in which new elements are generated

consecutively. Any mining method for data streams must

consider two critical constraints. The first constraint is the

memory usage constraint meaning all the stream data cannot

be stored in memory. The second constraint says that each

stream component can be looked at once, without performing

any blocking operation. Because of these constraints,

traditional data mining methods developed for static

databases like PrefixSPAN cannot be applied for mining data

streams [4].

 The existent sequential pattern mining algorithms for data

streams like SS-MB and SS-BE [4], PLWAP-Based

Algorithms [5] and the algorithm proposed in [6], use the

batch processing to store the last n transactions in memory.

The batching process performs mining in each batch and

neglects the relationship between transactions in subsequent

batches which prevents mining sequential patterns whose

items are distributed over some subsequent batches. Also,

these algorithms do not consider the quantitative sequential

databases, which necessarily lead to another loss of

Fuzzy Sequential Pattern Mining over

Quantitative Streams

Omid Shakeri Manoochehr Kelarestaghi*1 Farshad Eshghi Ahmad Ganjtabesh

Volume 11- Number 1 – Winter 2019 (36 -44)

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 1 / 9

https://ijict.itrc.ac.ir/article-1-435-en.html

information when they use the binary representation of

numerical data [7, 8]. Moreover, these algorithms do not

account for the user-specified constraints in order to mine

patterns more efficiently; and also some of them are not exact

and they mine approximate sequential patterns as they cannot

mine some sequences [9].

 The proposed method in this paper uses a new time-based

moving sliding window and time gap which are defined as

user constraints. These enable the proposed method to mine

the following patterns:

• Complex sequential patterns which cannot be mined by

batch-based algorithms,

• The exact set of constrained sequential patterns over a

data stream.

 It is well-worth mentioning that the proposed method

fuzzifies the input data to face the quantitative data stream,

and representing them as fuzzy categorical items, which

enables the proposed method to output fuzzy sequential

patterns in terms of fuzzy items and itemsets.

The remaining of this paper is organized as follows. Section

II introduces the basic concepts and the problem of sequential

pattern mining in static and stream databases. Section III

introduces the constrained sequential pattern mining. Section

IV presents the proposed algorithm. In Section V, some

experiments are conducted to analyze the proposed, and the

conclusion is stated in Section VI.

II. PROBLEM STAEMENT

 The problem is to mine the exact set of constrained fuzzy

sequential patterns over a quantitative data stream. Let I = {I1,

I2, … , Ip} be the set of all items. An itemset is a nonempty set

of items, like e1 = I1 I2. A concurrent itemset is the one whose

items happen concurrently, and are denoted by surrounding

parentheses, like e2 = (I4 I7). A sequence is an ordered list of

itemsets. A sequence s is denoted < e1e2e3 … el > , where

itemset e1 occurs before e2, and e2 before e3, and so on[

HYPERLINK \l "Jia06" 10]. Fuzzy itemset is a set of fuzzy

items, and it can be donated as a pair of sets (set of items, set

of fuzzy sets associated to each item’s quantity) or as a list of

fuzzy items, like ([I1, low: 0.6] [I3, med: 1] [I6, high: 0.25]),

which shows three concurrent items with their fuzzified

quantities.

The main challenge in data stream mining is the limited

resources of time and memory. Data mining has been studied

extensively in static datasets, where data mining algorithms

can handle reading the input data several times, like the

algorithms proposed in [1, 2, 3]. When the source of data

items is a data stream, not all data can be loaded into the

memory, and off-line mining algorithms with the static

dataset is no longer technically feasible due to the features of

data streams [11, 12]. The following constraints are forced

due to data stream features model [12]:

• The length of a data stream is potentially infinite, and it

would be impossible to store all elements. Thus, only a

small part is stored and processed.

• As the elements of a data stream are received fast, they

should be processed in real time.

The above constraints limit the amount of memory and the

time-per-item that the stream mining algorithm can use.

While the existent algorithms use batch processing to face the

above limitations, this paper uses time-based moving sliding

window and gap constraints to handle the above limitations

as well as limitation of the batch processing for mining

sequential patterns over multiple subsequent batches. Also, to

face the data loss in the quantitative sequential pattern

algorithms over data streams, the proposed method fuzzifies

numerical data, and then it mines sequential patterns over the

fuzzified data.

III. SLIDING WINDOW & GAP CONSTRAINTS

 Mining without user- or expert-specified constraints may

generate numerous patterns that are of no interest. Thus, user-

specified constraints are incorporated into the mining

algorithm to reduce the search space and mine the only

patterns that are of interest to the user [10, 13]. In this paper,

moving sliding window and gap constraints are used to face

the limitations of stream mining.

 A Sliding Window or duration constraint is defined only

in sequence databases where each transaction has a time-

stamp. It requires that the pattern appears frequently in the

sequence database such that the time-stamp difference

between the first and last transactions in the pattern is shorter

than a given constant [13]. Thus, the transactions in a sliding

window are assumed to be concurrent.

 A gap constraint is defined only in sequence databases

where each transaction in every sequence has a timestamp. It

requires that the pattern appears frequently in the sequence

database such that the timestamp difference between every

two adjacent transactions - be longer than a given gap [13,

14].

 Sliding window and gap constraints are defined by two

membership functions in term of time difference, as shown in

Figure 1 [15, 16, 17].

Figure 1: Sliding window & gap constraints

IV. THE PROPOSED METHOD

 The proposed method consists of three phases as shown

in Figure 2 and the pseudo-code of the proposed method,

Constrained Fuzzy Stream Sequence Miner (CFSSM), is

shown in Figure 3. In the first phase, data streams are

buffered.

Volume 11- Number 1 – Winter 2019 (36 -44) 37

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 2 / 9

https://ijict.itrc.ac.ir/article-1-435-en.html

Figure 2: Flowchart of the CFSSM method

The second phase fuzzifies the quantitative data in order to

represent them as fuzzy categorical data. This representation

avoids data loss caused by a binary representation of

numerical data. And finally, fuzzy sequential patterns are

mined by CFSSM algorithm in the third phase. These phases

are described in detail in Subsections IV-A to IV-C. The

solution quality of the proposed method is discussed in

Subsection IV-D.

CFSSM_Method

Inputs: Data_Stream, Mining_Parameters

Output: Set_of_Sequential_Patterns

 1: While (~EndOfStream && ~UserDemandFlag)

 2: Data Stream Buffering

 3: Update Customer Fuzzy Database

 4: For each Customer

 5: Sliding_Process_Algorithm

 6: Update_Sequence_Tree_Algorithm

 7: End For

 8: End While

 9: Scan the Sequence Tree in depth

10: Show Sequential Patterns where count > min_count

Figure 3: CFSSM pseudo code

A. Data Stream Buffering

 In data streams, the entire data of each customer is not

available, and they are generated continuously. Each

transaction in a quantitative data stream has a customer-ID, a

transaction type, a time-stamp, and a quantity value, as shown

in Table 1.

Table 1: Quantitative data stream sample

Quantity Time-Stamp Transaction Customer-ID

 In CFSSM, to face the limitations of data streams, as

mentioned in section 2, a new time-based moving sliding

window is proposed to buffer the most recent transactions of

which their time-stamp value satisfies user-specified sliding

window and gap constraints. Thus, the last part of the stream

(current database) which has been buffered is updated when

a new transaction from the stream is received. It should be

noted that the number of transactions in the current database

is related to the frequency by which the data are received, and

it might be variable in time.

 For example, suppose the constraint values in Figure 1,

are set to p=2, q=6, and the stream be as given in Table 2.

Also let the most recent transaction, called now, be the one

whose time-stamp is 15. By receiving this data, the moving

sliding window and gap are moved in such a way that “q”, as

shown in Figure 1, is located at now, Time Stamp of the last

Transaction in Stream.

 At this time, Figure 4 shows the correspondence between

the time-stamps and the parameters of the sliding window and

the gap constraints. Thus, some transactions are removed

from the current database whose time-stamps are less than 9.

These transactions are shown in grey in Table 2, and the

buffered ones are shown in black in Table 2.

Table 2: Quantitative data stream sample

Quantity Time-Stamp Transaction Customer-ID

5 1 A 1

8 4 D 2

2 8 B 3

3 11 A 1

1 14 B 1

5 14 A 2

1 15 C 1

3 15 C 2

Figure 4: Correspondence between the time-stamps and the
parameters of the sliding window and the gap constraints

B. Fuzzifying Quantitative Data and Deriving Fuzzy

Customer-Separated Database

 In order to avoid data loss caused by the binary

representation of numerical data, the quantitative data

buffered in current database is fuzzified, hereinafter called

fuzzy database, and is expressed by the linguistic terms as

shown in Figure 5.

 It’s possible to use one of the following fuzzy cardinality

count types to fuzzify the quantities [18]:

• The fuzzy membership value µ(x),

• The fuzzy membership value if it’s bigger than a specified

threshold (thr),

• The crisp count if the fuzzy membership value is bigger

than a specified threshold (thr).

 This paper uses the first and the third cardinality count

types in the examples given in the next subsections.

 In order to mine sequential patterns from customer

Volume 11- Number 1 – Winter 2019 (36 -44) 38

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 3 / 9

https://ijict.itrc.ac.ir/article-1-435-en.html

behaviors, the current fuzzy database should be divided into

fuzzy customer-separated databases. It should be noted that

some transactions may satisfy two fuzzy membership

functions and will be expressed by two linguistic terms, like

the first two rows in Table 3, which shows the fuzzy

customer-separated databases of the example given in Table

2, for w=2, x=6, y=9, z=13 in Figure 5, using µ(x) for fuzzy

cardinality count. The pseudo-code of this phase, called

fuzzifying quantitative data and deriving fuzzy customer-

separated database, is shown in Figure 6.

Figure 5: Fuzzy membership functions for quantitative items

Update_Fuzzy_Customer_separated_Database_Algorithm
Inputs: Buffered_Data_Stream, is_Qunatitative,

Cardinality_Type

Output: Fuzzy_Customer_Separated_Databases

 1: For each transaction in Buffered Data Stream

 2: If new_customer_ID

 3: create new_customer_database

 4: Fuzzify the quantities

 5: Generate new fuzzy transactions

 6: Else

 7: Fuzzify the quantities

 8: Generate new fuzzy transactions

 9: End For

Figure 6: Updating fuzzy customer-separated database pseudo
code

Table 3: Quantitative data stream sample
µquantity Time-Stamp Transaction Customer-ID
0.75 11 A-low

1
0.25 11 A-med

1 14 B-low

1 15 C-low

0.25 14 A-low

2
0.75 14 A-med

0.75 15 C-low

0.25 15 C-med

C. Constrained Sequence Mining Algorithm

 In this phase, sequential patterns are mined by the Sliding

Process algorithm from fuzzy customer-separated databases.

The pseudo-code of the Sliding Process algorithm is shown

in Figure 7.

 In the Sliding Process algorithm, the sequence to be

mined is initialized as a null sequence. For each fuzzy

customer-separated database, the start of the sliding window

constraint, shown in Figure 1, slides to the Time-stamp of the

first transaction and all the transactions whose timestamps are

in this sliding window are assumed to be the first itemset

(lines 1-7 in Figure 7). After finding the first itemset of a

sequence, the start of the moving sliding window slides to the

time-stamp of the next transaction whose time-stamp wasn’t

in the moving sliding window constraint in the previous

iteration, and all the transactions whose timestamps are in this

sliding window are assumed to be the next itemset (lines 8-

12 in Figure 7), this loop (lines 8-12 in Figure 7) is repeated

until all transactions satisfy one of the moving sliding

windows, i.e., the end of the first pass.

At the end of the first pass, one sequence is mined from the

fuzzy customer-separated database. In order to mine more

sequences from the fuzzy customer-separated database, pass

2 starts in which the start of the moving sliding window slides

to the timestamp of the next transaction that has not yet been

the start of any previous moving sliding windows, and

another new sequence is mined. This procedure repeats until

all sequences are mined from the fuzzy customer-separated

database.

 The Sliding Process algorithm passes for the customer 1’s

database in Table 3 are shown in Table 4. The starting

transaction in each pass is shown in bold; and the transactions

whose time-stamp don’t satisfy the moving sliding window,

are shown in gray. The count of each sequence can be

computed by the user-specified fuzzy T-norm between fuzzy

membership functions of itemsets (µquantity) in each sequence.

Sliding_Process_Algorithm
Inputs: Customer_Fuzzy_Database, Mining_Parameters

Output: set_of(Sequence, Count)

 1: For each transaction t whose time-stamp had not been at the

start of any previous moving sliding windows

 2: sequence = < >

 3: itemset = {}

 4: Slide the start of the moving sliding window to transaction

t’s time-stamp

 5: itemset = set of transactions whose timestamps are in the

sliding window

 6: itemset_count = T-norm (transactions µquantity)

 7: add itemset to sequence

 8: For each transaction t2 whose timestamp wasn’t in the

previous sliding window

 9: Slide the start of the moving sliding window to

transaction t2’s time-stamp

10: itemset = set of transactions whose timestamps are in

the sliding window

11: itemset_count = T-norm (transactions µquantity)

12: add itemset to sequence

13: End For

14: sequence_count = T-norm(itemsets of sequence)

15: Add (sequence, sequence_count) to the output set

16: End For

Figure 7: Sliding process pseudo code

Table 4: Sliding process on customer 1's database

µquantity Time-Stamp Transaction Pass
0.75 11 A-low

1

0.25 11 A-med

1 14 B-low

1 15 C-low

0.75 11 A-low

0.25 11 A-med

1 14 B-low

1 15 C-low

0.75 11 A-low

2
0.25 11 A-med

1 14 B-low

1 15 C-low

Volume 11- Number 1 – Winter 2019 (36 -44) 39

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 4 / 9

https://ijict.itrc.ac.ir/article-1-435-en.html

 After the Sliding Process algorithm, Update Sequence

Tree Algorithm is called to insert the sequences into the

sequence tree that contains the sequences and the count of

each item (Figure 8).

Update_Sequence_Tree_Algorithm

Input: Set_of(sequences, count)

 1: For each Sequence

 2: currrntNode = Root

 3: For each itemset of the sequence

 4: If itemset is in currrntNode’s children

 5: update the count of the child

 6: currrntNode = child

 7: Else

 8: Generate new node with itemset properties

 9: currrntNode = new node

 10: End For

 11: End ForFigure 8: Update sequence tree pseudo code

 According to the definition of stream mining, sequential

patterns should be available whenever the user demands.

Thus, when that happens, the algorithm scans the Sequence

Tree in depth to output the sequential patterns.

 For example, if the stream was only the bold part of the

stream given in Table 2, and user demands the patterns with

minimum as T-norm and min_count=0, after processing the

current database of customer 1, the tree would be like Figure

9. By scanning the Sequence Tree in depth, the Sequential

Patterns shown in Table 5 would be generated; and after

Sliding Process on the current database of customer 2, the tree

would be updated to Figure 10.

Table 5: Sequential patterns
Count Sequence
0.75 < A-low, B-low >

0.75 < A-low, C-low >

0.75 < A-low(B-low, C-low) >

1.25 < C-low >

 In the proposed method, two sequence counting types can

be used:

• Customer-Transaction-based Sequence counting

• Transaction-based Sequence counting

The above example shows a customer-Transaction-based

sequence counting method, wherein the stream is divided into

customer’s databases and the sequence found in each

customer’s database would be updated in the sequence tree.

However, in the transaction-based sequence counting, the

whole stream would be assumed to be generated by one

customer, thus the stream wouldn’t be divided into customer

databases.

Also, the user can specify whether the algorithm mine

quantitative sequences or not. In the non-quantitative case,

the module Fuzzifying quantitative data of the proposed

method (Figure 2) is discarded, and the module Deriving

fuzzy customer-separated database is discarded in the case of

transaction-based sequence counting.

Figure 9: The sequence tree after sliding process on the current

database of customer 1

D. Solution Quality

 As mentioned in subsection IV-C, the proposed method in

Figure 10: The sequence tree after sliding process on the current database of customer 2

Volume 11- Number 1 – Winter 2019 (36 -44) 40

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 5 / 9

https://ijict.itrc.ac.ir/article-1-435-en.html

this paper uses a new time-based moving sliding window

and time gap which are defined as user constraints. These

enable the proposed method to mine the following patterns:

• Complex sequential patterns which cannot be mined by

batch-based algorithms,

• The exact set of constrained sequential patterns over a

data stream, which cannot be mined by existent

algorithms which work on binary representation of data.

 Also, the outputs of the proposed method, which mines

the exact set of constrained sequential patterns over a data

streams, and the Constrained PrefixSPAN on the same static

database, would be the same, in terms of equality constraints.

Table 6: non-quantitative data stream
Time-Stamp Transaction

1 A

4 D

5 B

11 A

14 B

14 A

15 C

15 C

 Here is a simple transaction-based and non-quantitative

example to show the differences between the proposed

method and batch-based algorithms. For the stream given in

Table 2, suppose the constraint parameters in Figure 1 be p=2,

q=5, and the crisp count, as mentioned in section IV-B, be

used. For batch_size=4 in batch-based algorithms, two

different batches will exist in Table 2 as shown in Table 6. As

said before, the relations between transactions in these two

batches are discarded in the batch-based algorithms, e.g. the

relation between the fourth and fifth transaction is discarded,

and the sequence <AB> won’t be mined for min_count=2.

 In this paper, the new time-based moving sliding window

and time gap are proposed. For the given example, these

constraints are shown in Figure 11, for different time-stamps

in the stream. Thus, the proposed method can mine the

sequence <AB> with a count equal to two in this stream,

while in batch-based algorithms, the count of the sequence

<AB> will be one.

Figure 11: Stream buffering in different time-stamps with

corresponding transactions (a) now = 5, (b) now = 15

 The main advantages of the proposed algorithm are:

• Mines the exact set of fuzzy sequential patterns over

quantitative or non-quantitative data stream,

• The ability to mine non-constrained or constrained

sequential patterns over data streams,

• The ability to mine both transaction-sensitive streams and

customer-transaction-sensitive data streams.

V. EXPERIMENTAL RESULTS

 In this section, the performance of the proposed method,

CFSSM, is investigated by some experimental studies. All

experiments were conducted on a 2.53GHz Intel Core 2 Duo

PC with 4GB main Memory, running Microsoft Windows 7

operating system. All algorithms were implemented in C#.

The results are shown for two data streams, T10I4D100K and

T40I10D100K, which are generated from the synthetic data

generator described by Agrawal et al in [19]. The parameters

of these datasets are T: the average size of transactions, I: the

average size of the maximal potentially frequent itemsets, and

D: the number of transactions (in 1000). To use these datasets

in this algorithm, a customer-ID, in range of 1-100 is

randomly assigned to each transaction (itemset), and also a

quantity value, in range of 1-10 is randomly assigned to each

item. It is well-worth mentioning that there is no numerical

sequential data stream available in standard datasets. Several

experiments were conducted for different characteristics of

transactions and types of data. The results are labeled as

follows: Q, nQ, CT and T which indicate to Quantitative data,

non-Quantitative data, Customer-Transaction-based

Sequence Counting, and Transaction-based sequence

counting, respectively. Figure 12 and Figure 13 show the

results on T10I4D100K and Figure 14 and Figure 15 show

the results on T40I10D100K. In the following figures, the

mining type “Q, CT” is the main routine of the CFSSM

algorithm, which is described by example in previous

sections.

 Figure 12 and Figure 14 show the results under different

gap sizes, where the sliding window size is 10, for different

mining parameters. As the gap grows the running time and

memory usage will increase because more transactions are

stored in the memory to scan. The running time and memory

usage are smaller in the case of mining non-Quantitative

sequential patterns rather than mining Quantitative ones,

because of less computational burden and also smaller data

structures created during the process. The memory usage is

smaller in the case of mining Customer-Transaction-based

sequential patterns rather than Transaction-based sequence

counting ones, because of more sliding processes in a bigger

customer database with more transactions.

 Figure 13 and Figure 15 show the results under different

sliding window sizes, where the gap size is 150, in the case

of Q, CT. The running time increases when the sliding

window size is growing up, as more transactions are stored in

memory, thus there will be more iterations in the Sliding

Process algorithm, in Figure 7. This means the more available

memory, the longer and the more complex sequential patterns

CFSSM can mine.

Volume 11- Number 1 – Winter 2019 (36 -44) 41

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 6 / 9

https://ijict.itrc.ac.ir/article-1-435-en.html

(a)

(b)

Figure 12: Results on T10I4D100K Dataset:
(a) runtime for different gap sizes for different mining parameters, where sliding window size = 10,

(b) memory usage for different gap sizes for different mining parameters, where sliding window size = 10

0

20

40

60

80

١٠ ٢٠ ٣٠ �٠ �٠ �٠ ٧٠ ٨٠ ٩٠ ١٠٠

S
e

co
n

d
s

Gap Size

Q, CT nQ, CT Q, T nQ, T

0

3

6

9

12

15

18

21

١٠ ٢٠ ٣٠ �٠ �٠ �٠ ٧٠ ٨٠ ٩٠ ١٠٠

M
B

Gap Size

Q, CT nQ, CT Q, T nQ, T

(a)

(b)

Figure 14: Results on T40I10D100K Dataset:

(a) runtime for different gap sizes for different mining parameters, where sliding window size = 10,
(b) memory usage for different gap sizes for different mining parameters, where sliding window size = 10

0

200

400

600

800

1000

1200

١٠ ٢٠ ٣٠ �٠ �٠ �٠ ٧٠ ٨٠ ٩٠ ١٠٠

S
e

co
n

d
s

Gap Size

Q, CT nQ, CT Q, T nQ, T

0

20

40

60

80

100

120

140

١٠ ٢٠ ٣٠ �٠ �٠ �٠ ٧٠ ٨٠ ٩٠ ١٠٠

M
B

Gap Size

Q, CT nQ, CT Q, T nQ, T

(a)

(b)

Figure 13: Results on T10I4D100K Dataset in case of Q, CT:
(a) runtime for different sliding window sizes, where gap size = 150,

(b) memory usage for different sliding window sizes, where gap size = 150

0

3

6

9

12

15

18

21

١٠ ٢٠ ٣٠ �٠ �٠ �٠ ٧٠ ٨٠ ٩٠ ١٠٠

S
e

co
n

d
s

Sliding Window Size

0

2

4

6

8

10

١٠ ٢٠ ٣٠ �٠ �٠ �٠ ٧٠ ٨٠ ٩٠ ١٠٠

M
B

Sliding Window Size

Volume 11- Number 1 – Winter 2019 (36 -44) 42

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 7 / 9

https://ijict.itrc.ac.ir/article-1-435-en.html

VI. CONCLUSION

 In this paper, a new method, CFSSM, including new time-

based moving sliding window and gap constraints, was

proposed to mine quantitative streams which can mine the

exact set of constrained fuzzy sequential patterns. It also can

mine non-Quantitative or Transaction-based sequential

patterns over a data stream. The proposed method uses the

fuzzy set concept to mine fuzzy sequential patterns from

numerical data stream. Experimental studies showed that the

running time and the memory usage of the proposed

algorithm in the case of quantitative and customer-

transaction-based sequence counting are nearly proportional

to the size of the fuzzy sliding window and gap constraints.

ACKNOWLEDGEMENT

 This research was partially supported by Research

Institute for Information and Communication Technology of

Iran.

REFERENCES

1. R. Agrawal, R. Srikant, “Mining Sequential Patterns,” Data

Engineering, Proceedings of the Eleventh International Conference

on, pp. 3-14. March 1995.

2. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U.

Dayal, M. C. Hsu, “Mining Sequential Patterns by Pattern-Growth:

The PrefixSpan Approach,” IEEE Transactions on Knowledge and

Data Engineering, Vol. 16, pp. 1424-1440, May 2004.

3. R. Agrawal, R. Srikant, “Mining sequential patterns: generalizations

and performance improvements” in 5th International Conference on

Extending Database Technology, Springer, March 1996, pp. 3-17.

4. L. F. Mendes, B. Ding, J. Han, “Stream Sequential Pattern Mining

with Precise Error Bounds,” Data Mining, ICDM '08, Eighth IEEE

International Conference on, pp. 941-946, 2008.

5. C. I. Ezeife, M. Mostafa, “A PLWAP-Based Algorithm for Mining

Frequent Sequential Stream Patterns,” Technology and Intelligent

Computing (ITIC), Vol. 2, pp. 89-116, 2007.

6. Q. Huang, W. Ouyang, “Sequential Patterns Mining Scaling with Data

Stream Based on LSP-tree” Sixth International Conference on Fuzzy

Systems and Knowledge Discovery, Vol. 5, August 2009, pp. 614-

618.

7. T. P. Hong, C. S. Kuo, S. C. Chi, “Mining fuzzy sequential patterns

from quantitative data”, in Systems, Man, and Cybernetics. IEEE

SMC '99 Conference Proceedings, IEEE International Conference on,

Vol. 3, 1999, pp. 962-966.

8. T. P. Hong, K. Y. Lin, S. L. Wang, “Mining Fuzzy Sequential Patterns

from Multiple-Item Transactions” IFSA World Congress and 20th

NAFIPS International Conference, Vol. 3, 2001, pp. 1317-1321.

9. J. Cheng, Y. Ke, W. Ng, “A Survey on Algorithms for Mining

Frequent Itemsets over Data Streams”, Springer Knowledge and

Information Systems, Vol. 16, pp. 1-27, 2008.

10. J. Han, M. Kamber, Data Mining: Concepts and Tecniques, 2nd

edition, Morgan Cufmann - Diane Cerra, 2006.

11. C. C. Aggrawal, Data Stream: Models and Algorithms, Purdue

University, West Lafayette, Springer, 2007.

12. A. Bifet, Adaptive Stream Mining: Pattern Learning And Mining

From Evolving Data Streams, Amsterdam, Netherlands: IOS Press

BV, 2010.

13. J. Pei, J. Han, W. Wang, “Mining sequential patterns with constraints

in large databases” ACM 11th International Conference on

Information and Knowledge Management, 2002, pp. 18-25.

14. S. Bringay, A. Laurent, B. Orsetti, P. Salle, M. Teisseire, “Handling

Fuzzy Gaps in Sequential Patterns: Application to Health” Fuzzy

Systems, FUZZ-IEEE. IEEE International Conference on, 2009, pp.

1338-1345.

15. C. I. Chang, H.E. Chueh, N. P. Lin, “Sequential Patterns Mining with

Fuzzy Time-Intervals” IEEE Sixth International Conference on Fuzzy

Systems and Knowledge Discovery, Vol. 3, 2009, pp. 165-169.

16. C. Xu, Y. Chen, R. Bie, “Sequential Pattern Mining in Data Streams

Using the Weighted Sliding Window Model”, 15th International

Conference on Parallel and Distributed System, 2009, pp. 886-890.

17. F. Zabihi, M. M. Pedram, M. Ramezan, A. Memariani, “Fuzzy

Sequential Pattern Mining with Sliding Window Constraint” 2nd

International Conference on Education Technology and Computer

(ICETC), Vol. 5, 2010, pp. 396-400.

18. C. Fiot, A. Laurent, M. Teisseire, “From Crispness to Fuzziness:

Three Algorithms for Soft Sequential Pattern Mining,” IEEE

Transactions on Fuzzy Systems, Vol. 15, pp. 1263-1277, December

2007.

19. R. Agrawal, R. Srikant, “Fast algorithms for mining association

rules,” 20th Intl. Conf. on Very Large Databases (VLDB’94), pp. 487-

499. 1994.

(a)

(b)

Figure 15: Results on T40I10D100K Dataset in case of Q, CT:

(a) runtime for different sliding window sizes, where gap size = 150,
(b) memory usage for different sliding window sizes, where gap size = 150

0

50

100

150

200

250

١٠ ٢٠ ٣٠ �٠ �٠ �٠ ٧٠ ٨٠ ٩٠ ١٠٠

S
e

co
n

d
s

Sliding Window Size

0

5

10

15

20

25

30

١٠ ٢٠ ٣٠ �٠ �٠ �٠ ٧٠ ٨٠ ٩٠ ١٠٠

M
B

Sliding Winsow Size

Volume 11- Number 1 – Winter 2019 (36 -44) 43

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

 8 / 9

https://ijict.itrc.ac.ir/article-1-435-en.html

AUTHORS’ INFORMATION

Omid Shakeri received his Master Degree

in Artificial Intelligence from Kharazmi

University, Tehran, Iran in 2011. Since then

he has been working as a web full stack

developer at “IFITPRO” company, Tehran,

Iran.

Manoochehr Kelarestaghi received his

Ph.D. degree in System Control Engineering

at Université de technologie de Compiègne

(UTC), Compiègne, France in 1999, M.S. and

B.S. degrees in Electronics Engineering from

Tehran University and Sharif University,

Tehran, Iran, in 1992 and 1988, respectively.

He is currently an Assistant Professor in Electrical and

Computer Engineering Department, Kharazmi University,

Tehran, Iran. His current research interests are NLP, Pattern

Recognition, Signal Processing and Optimization.

Farshad Eshghi has done a Post-Doc and

received his Ph.D. in Electrical Engineering-

Telecommunications from University of

British Columbia, Vancouver, BC, Canada,

and Concordia University, Montreal, QC,

Canada in 2004 and 2006 respectively. From

2008 to 2011, he has served as a lecturer in

the Dept. of Computer Science, Faculty of Mathematics and

Computer Sciences, Amir kabir University of Technology.

Since 2011, he has been with the Dept. of Electrical and

Computer Engineering, Faculty of Engineering, Kharazmi

University, Tehran, Iran as an Assistant Professor. His main

research interests include different topics in Ad Hoc WLANs,

WSNs, and Intelligent Management Systems with

applications in BMS, Transportation, and Health.

Ahmad Ganjtabesh is a graduate student

studying towards his Master degree in

Computer Science at Kharazmi University,

Tehran, Iran. His research interests include

Recommender Systems, Machine Learning,

and Fuzzy Modeling.

Volume 11- Number 1 – Winter 2019 (36 -44) 44

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
4-

10
]

Powered by TCPDF (www.tcpdf.org)

 9 / 9

https://ijict.itrc.ac.ir/article-1-435-en.html
http://www.tcpdf.org

