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Abstract—A novel pre-training method is proposed to improve deep-neural-networks (DNN) and long-short-term-

memory (LSTM) performance, and reduce the local minimum problem for speech enhancement. We propose 

initializing the last layer weights of DNN and LSTM by Non-Negative-Matrix-Factorization (NMF) basis transposed 

values instead of random weights. Due to its ability to extract speech features even in presence of non-stationary noises, 

NMF is faster and more successful than previous pre-training methods for network convergence. Using NMF basis 

matrix in the first layer along with another pre-training method is also proposed. To achieve better results, we further 

propose training individual models for each noise type based on a noise classification strategy. The evaluation of the 

proposed method on TIMIT data shows that it outperforms the baselines significantly in terms of perceptual-evaluation-

of-speech-quality (PESQ) and other objective measures. Our method outperforms the baselines in terms of PESQ up to 

0.17, with an improvement percentage of 3.4%.  
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I. INTRODUCTION 

Speech signal enhancement is a widely used 

practical block in many applications such as speech 

recognition (ASR), and mobile speech communication 

[1]. The main purpose of speech enhancement is to 

remove static or non-static noise from the noisy signal. 

Speech enhancement techniques may be categorized 

into three divisions of statistical methods, machine 

learning-based procedures (and more specifically deep 
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learning ones), and association of statistical and sparse 

models with machine learning as the brand-new 

approach [2, 3, 4, 5]. Spectral subtraction methods are 

among the classic ones in the category of statistical 

procedures. There is a possibility of music noise in 

spectral subtraction methods [1]. Statistical methods 

are implemented based on specific statistical 

assumptions [4]. Wiener filter [6], minimum mean 

square error (MMSE) [7, 8], and Non-Negative Matrix 

Factorization (NMF) are some of the statistical 
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techniques used in this field [9]. Deep learning is one 

of the methods that has recently been considered for 

noise removal [10]. Due to the high performance of 

neural networks in eliminating various noises, this 

method has been one of the successful methods in 

improving speech signal [11]. 

In [12], SNR-based progressive learning method 

was proposed for DNN. This method achieved good 

results in speech quality while the number of required 

parameters for network training was also decreased. In 

[13], to find a comprehensive model against different 

types of noise, noise classification has been used in 

neural network training. In [14], LSTM was used as a 

mask for speech noise suppression. This structure can 

extract temporal information about speech and noise. 

A combination of LSTM and CNN layers was used for 

speech enhancement in [15]. With this structure, 

contextual information on speech signals was 

extracted. In [16], a method for speech enhancement 

was proposed with simple recurrent units (SRU). In 

this method, an SRU network with some layers was 

used to estimate clean speech signal. 

In [17], NMF basis matrix was estimated using a 

ratio mask in the DNN structure. Clean speech was 

then estimated using NMF and the basis matrix. In a 

different approach, two autoencoders were employed 

to extract clean speech and noise NMF parameters in 

[5]. After that, the outputs of the encoder parts were 

used as input features in a DNN structure to estimate 

clean speech signals. In summary, DNNs have been 

suggested in many ways to improve speech signal 

[18],[19],[20]. Despite the good performance of neural 

networks in many areas, including speech 

improvement, local minimum is the main problem in 

the learning stage. Increasing the number of network 

layers leads to the increase of nonlinearity in feature 

extraction. However, the probability of facing a local 

minimum issue will increase as the number of layers 

and network parameters increases. Using pre-training 

methods is one of the useful techniques to overcome 

the local minimum problem [21]. One pre-training 

method is the use of restricted Boltzman machines 

(RBM) [22]. In this method, the weights of the DNN 

layers are trained using RBM and the resultant values 

are used as the initial weights of the DNN. Supervised 

and unsupervised pre-trainings for deep belief 

networks (DBN) have been evaluated in [23]. In this 

approach, bidirectional pre-training was proposed to 

calculate the initial values of DNN weights for image 

classification. The results show an improvement in the 

accuracy and speed of learning in the proposed 

method. In [24], greedy layer-wised pretraining and 

fine tuning was used. In this method, autoencoder (AE) 

networks and deep denoising autoencoder (DDAE) 

have been used for pre-training and fine tuning in 

speech enhancement, respectively. Also, noisy and 

clean speech signals have been used as input and 

output of AEs. Hence, we refer to this method as a 

supervised pre-training (SUP) structure. 

NMF is one of the useful linear methods in 

improving the speech noisy signal and extracting the 

relationships between speech signal and noise in an 

appropriate way [9]. Therefore, instead of finding the 

initial values of the network weights using traditional 

pre-training, NMF can be used as a useful method in 

extracting speech signal information. In this paper, we 

propose a novel method based on NMF for both DNN 

and LSTM pre-training in speech enhancement to 

overcome such training problems of deep networks as 

the local minima. The proposal of employing the NMF 

basis matrices as the initial weights in deep networks 

in this paper is due to the fact that NMF is known to be 

an appropriate sparse model for extracting speech 

features [25]. In fact, NMF is trained by clean speech 

signals to decompose clean speech into two matrices of 

basis and coefficients [9]. Thus, the basis matrix works 

as an appropriate data-driven filter capable of finding 

proper speech features in the coefficients matrix. In our 

proposed method, we obtain the initial weights of the 

last layer of the network using the transpose values of 

NMF basis matrix. Because NMF is trained by clean 

speech, it is able to adjust the weights appropriately 

while mapping the features of the last layer to the target 

output (enhanced speech). We also propose the use of 

basis matrix of the suggested NMF pretraining in both 

the first and last layers of the network. Insertion of the 

proposed NMF pre-training approach in the supervised 

AE pre-training structure has also been introduced. The 

results show that this method is superior to previous 

AE supervised pre-training. In order to improve the 

speech enhancement network quality in noisy 

environments, we use a noise classification method 

with individual networks used for each noise type. Fig. 

1 shows a simple block diagram of the proposed 

approach. We find the basis matrix of the NMF 

algorithm from clean speech signal X, and use the basis 

matrix for the pre-train block in Fig. 1. A DNN is 

trained with input noisy speech signal Y for noise 

classification. According to Fig. 1, we acquire the 

enhanced signal either from path 1 or 2. In path 1, we 

use individual models for matched noises (those seen 

in the training phase). For the mismatched noise types 

that have not been seen in the training step, we suggest 

using a general model trained with all noises to 

improve the generalization of our approach in different 

noisy environments. Please note that the noise 

classification parts in Fig. 1 are optional. The basic 

proposed block of our system which is the NMF pre-

training approach is painted in green to signify its 

importance. Also, we have used the system structure of 

Fig. 1 only for the proposed model and this structure 

has not been used in other reference methods. Other 

reference methods use a general model that is trained 

with all noises without any NMF pre-training which is 

the main novelty of the current paper. 

To the best of authors’ knowledge, no pretraining 

has been used for LSTM structures for speech 

enhancement so far. However, according to the results 

obtained in our proposed approach, it is beneficial for 

LSTM networks as well. 

Therefore, the main contributions of this paper are as 

follows: 
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• Proposing a novel method based on NMF for 

both DNN and LSTM pre-training in speech 

enhancement: we propose NMF pre-training 

in three approaches of initializing the weights 

of the last layer, both the first and last layer of 

the network based on NMF basis matrix. We 

also suggest inserting the proposed NMF pre-

training approach in the supervised AE pre-

training structure. Specifically, since NMF is 

trained by clean speech, it could adjust the 

weights appropriately while mapping the 

features of the last layer to the target output 

(enhanced speech). 

• Suggesting a noise classification method with 

individual networks used for each noise type: 

we use individual models pre-trained by the 

proposed NMF approach for matched noises 

that have been seen in the training phase. For 

the mismatched noise types that have not been 

seen in the training step, we suggest using a 

general model which has also been pre-

trained by NMF and tuned with all noises to 

improve the generalization of our approach in 

different noisy environments. 

This paper is organized as follows. Section II 

explains the NMF structure. Section III defines the AE 

pre-training. In section IV, the proposed approach is 

presented. The experimental setting is mentioned in 

Section V. Discussion and Conclusion are presented in 

Sections VI and VII, respectively. 

 

II. NMF DESCRIPTION 

     The NMF algorithm linearly decomposes X as a 

non-negative matrix into W and H matrices. W is called 

the basis matrix, while H refers to coefficients. In (1), 

0

M NX R 

 is an input matrix, 
0

M KW R 

 and 

0

K NH R 

 are the two non-negative factors. Dot in 

(1) means the product of W and H. M, N, and K 

determine the sizes of the matrices. The relationship 

between these parameters is shown in (2) [18]: 

.X W H                                                           (1) 

min( , )K M N                                                    (2)  

N is equal to the number of frames in X. W and H 

matrices are updated frequently, until the objective 

function ( | )D X WH  is minimized and the best 

approximation is obtained from the input matrix. Since 

the NMF basis and coefficients matrices are found by 

a training strategy on the input matrix, it is among data-

driven statistical approaches. The distance between X 

and W.H could be minimized with Frobenius, itakura-

saito, or kullback-leibler method [18].    

 

III. AE PRE-TRAINING 

     In pre-training with AE networks (Fig. 2), the deep 

network is first decomposed into a number of networks 

with single hidden layers. If we denote the input and 

output of the network as Y and X, respectively, first a 

single-layer network is learned  

 

Figure 1.  The simple block diagram of the proposed approach 

based on NMF pre-training using the noise classification strategy. X 

and Y refer to clean and noisy speech, respectively. Path 1 is for 

matched noises, while we suggest path 2 for mismatched ones. 

“modeli” refers to the individual models trained with noise type i for 

matched noises. The general model is trained with all noises to 

improve the results in mismatched conditions. The noise 

classification parts are optional and the basic blocks of our system 

are painted in green to signify their importance. 

 

With input Y and target X. In the next step, the 

hidden layer of the trained network is considered as the 

input of the next network, and so on, until all single-

layer networks are trained. Using the weight matrices 

calculated by the AE networks as shown in Fig. 2, the 

initial values of the DNN weights will be obtained [24]. 

In the fine-tuning phase, the DNN will be trained using 

the calculated weight matrices, and the values of the 

network weights in the DNN will be adjusted [24]. 

IV. PROPOSED PRE-TRAINING 

     NMF is useful in decomposing clean speech signal 

into two matrices of basis W, and coefficients H. In 

fact, W works as a data-driven filter which helps find 

proper speech features such as formants and harmonics 

reflected in H [25]. Therefore, the output of a one-layer 

neural network could represent these suitable features 

when the input is clean speech, and W has a sparse 

distribution that improves the generality of the network 

for different speech signals and noises. Hence, the 

proposed structure includes the use of NMF in DNN 

and LSTM pre-training. Also, in [26], it is shown that 

with fix random weight values in all layers, except the 

last layer which is computed analytically, we can 

achieve acceptable results with lower computing 

complexity. This research shows the importance of 

utilizing analytical values in the last layer and random 

values for other layers. Therefore, we propose a 

pretraining method for the last layer of the network. 

For further evaluation, we examine the proposed 

initialization for the first layer as well. 
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Initially, we extract the basis matrix of the NMF 

from the clean speech signal X as the target of the 

DNN, using (1). In the next step, we use the transpose 

of basis matrix as the initial weights of the last layer of 

the DNN. The dimensions of the basis matrix in NMF 

are set equal to the number of nodes in the last layer 

times the number of nodes in the hidden layer before it 

in this case when X is the target layer instead of the 

input as in (1). Thus, we should transpose its values to 

be used as the initial weights in the network. The 

proposed method is illustrated in Fig. 3. Once again, Y 

and X are equivalent to noisy and clean speech signals, 

respectively, and nW  denotes the basis matrix 

calculated by NMF in the nth layer. We call this 

method as PNMF1. 

It is also possible to use the proposed NMF weight 

initialization in the supervised pre-training scenario 

(SUP) [24]. We use noisy and clean speech signals as 

input and output target values in pre-training. Fig. 4 

depicts the use of the proposed NMF pretraining in 

supervised pre-training structure (PNMF1_SUP). The 

proposed method in Fig. 4 is similar to the supervised 

pre-training method, except that instead of the initial 

weights of the last layer of the neural network, the 

NMF basis matrix is used. In this structure, the initial 

layers of the neural network are displayed in light blue, 

and a dark blue layer represents the layers at greater 

depths. As seen, all the weights of the network, except 

the weights of the last layer, have been calculated by 

supervised pre-training method. In other words, we 

initialize the weights of the last layer by the NMF 

algorithm. After calculating the initial values of the 

network weights, the weights of all network layers are 

readjusted to reach an acceptable value of the network 

error using fine-tuning method. 

We also propose using the NMF basis matrix (W) 

as the initial values of the first network layer for 

improving the pretraining method. Here, according to 

(1), we assume having clean speech X as the input, and 

W represents the weight matrix mapping X into 

coefficients H. In this structure, we also suggest using 

the transpose of the NMF basis matrix as the initial 

weights of the last layer of the DNN network. We call 

this method as PNMF2.  A diagram of the PNMF2 

approach is shown in Fig. 5. 

  

Figure 2.  The pre-training method with AE networks [24] 

 

Figure 3.  The proposed pre-training method (PNMF1) using NMF 

in the DNN structure. Wn is initialized with transpose of NMF basis 

matrix (W). 

 
 

Figure 4.  Inserting the proposed NMF pre-training approach in the 

supervised pre-training structure (PNMF1_SUP). 

 

Figure 5.  The proposed PNMF2 pre-training method using NMF in 

the DNN structure. Wn is initialized with transpose of the NMF basis 

matrix (WT) and W1 is initialized with W matrix. 

In addition, similar to our proposed DNN 

pretraining method for PNMF1, we suggest using the 

transpose of basis matrix in the NMF method as the 

initial weights for the last layer of the LSTM network 

which we suggest tobe a linear layer. Due to the 

linearity of the last layer, we expect that LSTM be 

trained more efficiently with the proposed strategy. 
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In Fig. 6, Wf, Wi, Wo, and Wc are the weights of the 

forgetting gate, input gate, output gate, and new 

candidate one, respectively, in the LSTM network [14]. 

σ is the sigmoid activation function and tanh is the 

hyperbolic activation function. In this proposed pre-

training method called PNMF2, we use the NMF 

algorithm basis matrix to initialize the Wi, Wf, Wc, and 

Wo matrices in training the LSTM network. According 

to the obtained experimental results shown later, this 

proposed pre-training approach works better than 

using random values as expected. One layer of the 

LSTM method is shown in Fig. 6. According to Fig. 6, 

W matrix of the NMF algorithm is used as initial 

weights for Wi, Wf, Wc, Wo. Also, WT matrix is used as 

initial weights of the last layer. 

We also propose employing the SUP pre-training 

method, similar to what used for the case of DNNs, in 

the LSTM network and evaluate the earned results of 

speech enhancement with our proposed approach. 

In the proposed speech enhancement structure, we 

use different networks for different matched noise 

types. Thus, we initially use a noise classification 

procedure based on a DNN to determine the nearest 

noise type in each noisy mixture. The clean signal will 

be extracted with the specified network according to 

Fig. 1. The use of a DNN contributes to the accuracy 

of classification. If the noise classification accuracy is 

higher than a specified threshold, we mark it as a 

matched noise and thus, use one of the networks 

trained with a matched noise, namely either of model1, 

model2, model3, and model4 in Fig. 1. If noise 

classification accuracy is lower than the threshold, it is 

categorized as a mismatched noise type. Hence, we use 

a general network trained with all matched noises 

(general model in Fig. 1). This suggested strategy not 

only leads to better results for the matched noise types, 

but also improves the generalization of the network in 

mismatched conditions. 

 

V. EXPERIMENTS AND EVALUATIONS 

A. Experimental Setting 

     The data set used in this paper is the TIMIT corpus 

[27]. It contains 6300 sentences, of which 1334 

sentences are considered as test data. Also, the total 

number of speakers is equal to 630 from which 168 

speakers are used in the test set [27]. In this paper, we 

randomly select 700 sentences from TIMIT to train any 

individual network related to each noise type. The 

number of test sentences is equal to 120 for each type 

of noise. The data used for the test have been selected 

from the TIMIT test dataset and have no overlap with 

the training data. Also, we use the IEEE sentence 

database for our mismatched speech signals [28]. 

To evaluate the proposed system, Babble, Factory1 

and F-16 noises from NATO RSG-10 dataset [29] and 

Car noise from AURORA-2 database [30] have been 

used to train the DNN and LSTM. Also, we use the 

Restaurant noise from AURORA-2 database, Pink 

noise from NATO RSG-10 dataset [28], and Piano 

noise from [31] for the mismatched noises. We 

generate noisy signals by adding clean speech signals 

with noise signals according to ITU-T P.56 standard 

[32] in SNRs of -5, 0, 5, 10, 15, and 20 dB. 

The approach in [16] is one of the new methods we 

compare our results with. In [16], the signals are 

resampled to 8 kHz. Similarly, as we would like to use 

the proposed method for the telephony band and for 

fair comparison with [16], we have down-sampled the 

signals to 8 kHz. The features extracted from the 

speech signals are the magnitude of fast Fourier 

transform (FFT) with a frame length of 32 ms with 16 

ms frame shift. Thus, the length of the feature vector 

used is equal to 129 (the first half of FFT). 

 

Figure 6.  The proposed pre-training method (PNMF2) using NMF 

in the LSTM structure. Wf, Wc,Wi, Wo are initialized with the NMF 

basis matrix (W), while Wn (the last layer’s weights not shown in 

the figure) is initialized with WT. 

The enhancement is carried out in the time-

frequency domain after the application of the short 

time Fourier transform (STFT). The inputs and 

outputs, for both DNN and LSTM, are noisy and clean 

speech features, respectively. We combine the noisy 

phase of the input signal with the enhanced features at 

the network output to reconstruct the enhanced speech 

signal. 

Since the context of the speech signal is very 

important in speech enhancement, we suggest using 

both DNN and LSTM networks with context. 

Therefore, the DNN and LSTM models have 5 frames 

in the input and output of the networks with 550 nodes 

in hidden layers. The context features for the input and 

output of the network consist of the central, two past, 

and two future frames, so that the input and output 

sizes of the network are equal to 129*5 nodes. Also, 

the central frames of the network output are considered 

as the enhanced frames. The DNN trained for speech 

enhancement is a network with three hidden layers. 

The activation functions used in this network are 

Leaky-ReLU in all layers, except in the last layer 

which has a linear function. ReLU activation function 

has better results than sigmoidal and hyperbolic 

activation functions without using any unsupervised 

pre-training [33] and Leaky-ReLU maintains all 

feature information in a certain range in addition to 

having nonlinear properties and low computational 

57 

Volume 15- Number 3 – 2023 (53 -65) 
 

57 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
24

-0
4-

29
 ]

 

                             5 / 13

https://ijict.itrc.ac.ir/article-1-555-en.html


 

time of ReLU [34]. The LSTM model for speech 

enhancement has two hidden layers. These values have 

been found experimentally. In hidden layers, the 

LSTM layers are used, and the last layer is the linear 

layer. We use Adam for algorithm optimization. The 

batch size used in the DNN and LSTM is set to 1024. 

The negative slope in leaky-relu layers is 0.01. In 

DNN, the learning rate is set to 1e-4. In LSTM, the 

learning rate is set to 1e-3. Also, the period of learning 

rate decay is set to 30 for epochs greater than 5 and the 

multiplicative factor of learning rate decay is set to 0.5. 

For fair comparison between methods, other 

initializations are the same for all networks and 

methods, and the initialization procedure is set as the 

default one in the Pytorch package. 

We use the NMF models with rank of 550 (equal to 

the number of hidden layer nodes), and iteration of 100 

for convergence. The initial values for NMF algorithm 

are randomly set. We use coordinate descent solver 

(cd) for this algorithm and the distance between X and 

W.H is minimized with Frobenius method. The noise 

classifier network is a 5-layer DNN. The first three 

layers have the Leaky-Relu activation function, the 

fourth layer has the linear function, and the last layer is 

Softmax. The hidden layers of this network have 800 

neurons. The data set for training the noise classifier 

network is the first 10 frames of each noisy utterance 

assuming silence at the beginning. The specified 

threshold in the classification method to categorize the 

noise type as either matched or mismatched one is set 

to 95 percent experimentally. 

TABLE I.  THE PARAMETER SETTINGS FOR THE PROPOSED 

APPROACH 

Parameter Value 

 

In Table 1, all parameter settings for the proposed 

methods are shown. All these parameters were based 

on the best PESQ scores in the training time as well as 

previous related papers. 

     All methods are trained using an NVIDIA GeForce 

GTX 1080 GPU system. The training times of DNN, 

LSTM, PNMF1 for DNN, and PNMF1 for LSTM 

networks are equal to 5287, 6265, 5849, and 7129 

seconds, respectively, including the NMF training time 

for our proposed methods. The NMF training time for 

all proposed methods is 508 seconds 

B. Objective Speech Quality Measures of matched 

noises 

To evaluate the proposed methods, the widely used 

objective evaluations of PESQ [35], COVL [36], and 

fwsegSNR [37] have been used. The range of PESQ is 

from -0.5 to 4.5 and the range of COVL is from 1 to 5. 

COVL is a linear combination of the perceptual 

evaluation of speech quality, log-likelihood ratio 

(LLR), and weighted slope spectral (WSS) measures. 

In fwsegSNR, higher values refer to better results. 

In this paper, we have proposed and tested four new 

methods for pretraining neural networks. These four 

methods are summarized as follows. 

- PNMF1: The weights of the last layer of the 

network are initialized with the transpose of the 

NMF basis matrix. 

- PNMF2: The weights of the first and last layers of 

the network are initialized with the NMF basis 

matrix and its transpose, respectively. 

- PNMF1_SUP: The incorporation of the PNMF1 

method within the SUP framework. 

- PNMF2_SUP: The incorporation of the PNMF2 

method within the SUP framework. 

The results of the proposed methods are compared 

with those of the SRU [16], SUP [24], DNN [11], and 

LSTM [14] networks as the baseline methods. The 

difference between the proposed and baseline methods 

is in the approach taken to initialize the matrix weights 

in the networks described in the paper. Please note that 

some of the baselines such as DNN, LSTM, and SRU 

do not have any pre-training. Also, we have a noise 

classification block for the proposed methods. Table 2 

briefly describe these differences. 

The average results of PESQ and COVL over 120 

test signals for car and F-16 noises in different SNRs 

are shown in Table 3 for DNN. Table 4 illustrates the 

average results over noisy signals contaminated with 

all four noises of Babble, Factory1, F-16 and Car 

noises for DNN in various SNRs. Table 5 shows the 

average results of PESQ and COVL over 120 test 

signals for Car and F-16 noises for LSTM in different 

SNRs. We have also shown the average results over 

noisy signals contaminated with all four noises of 

Babble, Factory1, F-16 and Car noises for LSTM in 

different SNRs in Table 6. We have achieved similar 

improvements for Babble and Factory1 noises for both 

DNN and LSTM networks too, but the results have not 

been reported in this paper to save space. To solidify 

the obtained results, the experiments of the proposed 

methods are repeated for five different initialization 

values of the weights. 

For further comparison of the models, we have 

used the frequency-weighted segmental SNR 

parameter value

frame length 32ms

frame shift 16ms

sampling frequency 8 kHz

network input and output size 129*5 = 645

hidden layers sizes 550

algorithm optimaization adam

batch size 1024

negative slope in 

leaky-relu layers 0.01

learning rate for DNN 1.00E-04

learning rate for LSTM 1.00E-03

learning rate decay for epochs 

greater than 5 in LSTM 30

multiplicative factor of 

learning rate decay In LSTM 0.5

NMF matrice size 550*645

NMF iteration 100

 solver for the NMF coordinate descent (cd)

NMF minimization method Frobenius 
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(fwsegSNR) as the evaluation method. The average 

results of fwsegSNR over Babble, Factory1, F-16 and 

Car noises for LSTM in various SNRs are shown in 

Table 7.   

The network learning curve for Babble noise for 

some baselines and the best proposed method is shown 

in Fig. 7. In Fig. 7, the amount of network error during 

the learning process is plotted in terms of the number 

of epochs. DNN and SUP methods are used as 

baselines. PNMF1 has the best results and is the best-

proposed method.  

For more evaluation, we compare the best proposed 

method with SRU model [16] as the most recent 

baseline. The SRU network was trained with Babble, 

F-16, Factory1, and Car noises (Fig. 8).  

In Fig. 9, the spectrograms of the noisy, clean, 

PNMF1 output, and SUP output are shown. Fig. 10 

depicts the NMF basis values, a matrix with random 

weight, the last layer matrix weight of the trained 

LSTM model, and the last layer matrix weight of the 

trained PNMF1 model for LSTM.  

For evaluating the effect of noise classification in 

the proposed method, in Fig. 11, the PESQ results of 

the best-proposed method (PNMF1) while using the 

suggested noise classification strategy, and without 

noise classification, as well as the SRU model are 

shown. The experiments emphasize that a similar trend 

is followed for PESQ results in Fig. 11 with that of the 

fwsegSNR, and the proposed method has the best 

results with and without noise classification. We 

showed the results of fwsegSNR in Table 7. 

C. Objective Speech Quality Measures of 

mismatched noise and mismatched database 

In Table 8, the results of Restaurant noise as a 

mismatched noise in LSTM are shown. As seen, the 

PNMF1 method has the best result of all methods.  

In Table 9, the average results of Pink and Piano 

noises as two periodic and mismatched noise signals in 

LSTM are shown. The results illustrate the best 

performance for the proposed methods. Fig. 12 

illustrates the average PESQ results of the mismatched 

speech signal (IEEE sentence database) over F-16 

noise for SRU, LSTM, and PNMF1 methods. 

Table 10 illustrates the average results over noisy 

signals contaminated with all 7 matched and 

mismatched noises (Babble, Factory1, F-16, Car, 

Restaurant, Pink, Piano) for LSTM in various SNRs.  

To evaluate the statistical improvement of the 

results caused by the proposed method, we use the 

Friedman test with the Holm’s post hoc test [38],[39]. 

To find the significance of the results, the modified 

statistical value (Ff) of the Friedman test with (J-1) and 

(I-1)*(J-1) degrees of freedom and the critical F value 

(F) are calculated. J is defined as the number of 

methods, and I is defined as the number of conditions. 

In this experiment, J is equal to 7 and I is equal to 48 

(6 different SNRs for 7 noise types and one 

mismatched speech condition). The null hypothesis is 

rejected if the Ff value is larger than the F value, and 

we can compare the results with the Holm’s post hoc 

test. In this test, if the p-value is smaller than the Holm 

values, the null hypothesis is rejected, and that model 

has significant results. In this test, the Ff value is equal 

to 55.59 and the F value is equal to 2.130. Thus, the Ff 

value is larger than the F value and we use the Holm’s 

post hoc test to find the significant methods. The 

results of Holm’s post hoc test are illustrated in Table 

11. As seen, the proposed methods have larger Holm's 

values than p-values. Thus, our proposed methods pass 

the significance test. 

 

Figure 7.  The amount of network error in the learning process for 

some baselines and the best proposed method. 

 

TABLE II.  DIFFERENT BASELINE AND PROPOSED METHODS. 

method type explanation 
DNN [11] Reference method A deep-neural-network is used for speech enhancement. No pre-training is 

used. 

LSTM [14] Reference method A long-short-term-memory network is used for speech enhancement. No pre-

training is used. 

SUP [24] Reference method Greedy layer-wised pretraining and fine tuning was used. This method has a 

supervised pre-training (SUP) structure. 

SRU [16] Reference method A method for speech enhancement with simple recurrent units (SRU). No 

pre-training is used. 

PNMF1 Proposed method The weights of the last layer of the network are initialized with the transpose 

of the NMF basis matrix. 

PNMF2 Proposed method The weights of the first and last layers of the network are initialized with the 

NMF basis matrix and its transpose, respectively. 

PNMF1_SUP Proposed method The incorporation of the PNMF1 method within the SUP framework. 

PNMF2_SUP Proposed method The incorporation of the PNMF2 method within the SUP framework. 
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TABLE III.  AVERAGE RESULTS OF SPEECH QUALITY MEASUREMENTS IN DNN FOR CAR AND F-16 NOISES IN DIFFERENT SNRS. 

 

TABLE IV.  AVERAGE RESULTS OF SPEECH QUALITY MEASUREMENTS IN DNN OVER CAR, F-16, FACTORY1 AND BABBLE NOISES IN 

DIFFERENT SNRS. 

 

TABLE V.  AVERAGE RESULTS OF SPEECH QUALITY MEASUREMENTS IN LSTM FOR CAR AND F-16 NOISES IN DIFFERENT SNRS. 

 
 

 

 

 

 

SNR -5 0 5 10 15 20 SNR -5 0 5 10 15 20

DNN [11] 1.93 2.28 2.57 2.78 2.96 3.15 DNN [11] 2.34 2.79 3.16 3.42 3.63 3.84

SUP [24] 1.95 2.34 2.64 2.82 2.98 3.14 SUP [24] 2.38 2.85 3.22 3.44 3.63 3.81

SRU [16] 1.89 2.25 2.59 2.81 3.00 3.16 SRU [16] 2.24 2.69 3.12 3.41 3.63 3.83

PNMF1 2.08 2.43 2.72 2.95 3.12 3.28 PNMF1 2.47 2.92 3.29 3.56 3.76 3.95

PNMF2 2.05 2.37 2.64 2.85 2.99 3.14 PNMF2 2.44 2.86 3.22 3.47 3.65 3.81

PNMF1_SUP 2.04 2.38 2.67 2.90 3.07 3.27 PNMF1_SUP 2.45 2.90 3.27 3.55 3.75 3.97

PNMF2_SUP 2.01 2.34 2.64 2.84 3.00 3.15 PNMF2_SUP 2.38 2.83 3.21 3.46 3.65 3.82

SNR -5 0 5 10 15 20 SNR -5 0 5 10 15 20

DNN [11] 1.88 2.29 2.55 2.78 2.98 3.14 DNN [11] 2.30 2.80 3.12 3.40 3.65 3.82

SUP [24] 1.83 2.33 2.60 2.82 2.98 3.13 SUP [24] 2.26 2.84 3.17 3.43 3.63 3.79

SRU [16] 1.93 2.28 2.55 2.79 3.00 3.16 SRU [16] 2.27 2.72 3.06 3.37 3.63 3.82

PNMF1 1.95 2.42 2.71 2.95 3.13 3.27 PNMF1 2.38 2.95 3.31 3.59 3.80 3.95

PNMF2 1.97 2.38 2.64 2.87 3.02 3.15 PNMF2 2.36 2.88 3.21 3.49 3.67 3.82

PNMF1_SUP 1.95 2.38 2.68 2.95 3.14 3.29 PNMF1_SUP 2.36 2.91 3.27 3.58 3.81 3.97

PNMF2_SUP 1.97 2.37 2.64 2.88 3.05 3.17 PNMF2_SUP 2.33 2.85 3.19 3.49 3.69 3.84

PESQ - F-16 noise COVL - F-16 noise

PESQ - Car noise COVL - Car noise

SNR -5 0 5 10 15 20 SNR -5 0 5 10 15 20

LSTM [14] 1.98 2.32 2.61 2.81 2.98 3.13 LSTM [14] 2.38 2.82 3.18 3.43 3.62 3.79

SUP 1.99 2.32 2.61 2.80 2.97 3.12 SUP 2.40 2.82 3.19 3.43 3.62 3.79

SRU [16] 1.89 2.25 2.59 2.81 3.00 3.16 SRU [16] 2.24 2.69 3.12 3.41 3.63 3.83

PNMF1 2.10 2.43 2.72 2.95 3.11 3.27 PNMF1 2.51 2.95 3.31 3.57 3.76 3.93

PNMF2 2.00 2.31 2.57 2.76 2.90 3.02 PNMF2 2.35 2.77 3.11 3.35 3.52 3.66

PNMF1_SUP 2.10 2.43 2.72 2.94 3.09 3.23 PNMF1_SUP 2.50 2.94 3.30 3.57 3.74 3.90

PNMF2_SUP 2.00 2.32 2.59 2.79 2.93 3.08 PNMF2_SUP 2.35 2.78 3.14 3.39 3.56 3.72

SNR -5 0 5 10 15 20 SNR -5 0 5 10 15 20

LSTM [14] 1.95 2.37 2.60 2.83 3.00 3.13 LSTM [14] 2.36 2.88 3.16 3.43 3.64 3.79

SUP 1.96 2.36 2.59 2.82 2.99 3.12 SUP 2.38 2.87 3.16 3.43 3.63 3.79

SRU [16] 1.93 2.28 2.55 2.79 3.00 3.16 SRU [16] 2.27 2.72 3.06 3.37 3.63 3.82

PNMF1 2.06 2.47 2.74 2.98 3.15 3.29 PNMF1 2.47 2.99 3.31 3.60 3.80 3.95

PNMF2 2.00 2.35 2.59 2.79 2.94 3.06 PNMF2 2.35 2.82 3.13 3.37 3.57 3.70

PNMF1_SUP 2.06 2.46 2.73 2.97 3.14 3.27 PNMF1_SUP 2.47 2.98 3.31 3.58 3.79 3.94

PNMF2_SUP 2.03 2.40 2.64 2.86 3.02 3.11 PNMF2_SUP 2.38 2.86 3.17 3.44 3.63 3.75

PESQ - Car noise COVL - Car noise

PESQ - F-16 noise COVL - F-16 noise
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TABLE VI.  AVERAGE RESULTS OF SPEECH QUALITY MEASUREMENTS IN LSTM OVER CAR, F-16, FACTORY1 AND BABBLE NOISES IN 

DIFFERENT SNRS. 

 
 

TABLE VII.  AVERAGE RESULTS OF FWSEGSNR 

MEASUREMENTS IN LSTM OVER CAR, F-16, FACTORY1 AND 

BABBLE NOISES IN DIFFERENT SNRS. 

 

 

Figure 8.  Average PESQ results over Babble, Factory1, F-16 and 

Car noises for the best proposed methods and SRU. 

  
Fig. 9. The spectrograms of clean, noisy, PNMF1, and SUP methods. 

 

Fig. 10. The matrix weights of NMF basis values, random weight, LSTM last layer, and PNMF1 last layer.  

SNR -5 0 5 10 15 20

LSTM [14] 6.3 8.1 9.7 11.2 12.5 13.5

SUP 6.3 8.1 9.7 11.2 12.6 13.5

SRU [16] 6.0 7.7 9.5 11.3 13.0 14.1

PNMF1 6.5 8.4 10.1 11.7 13.0 13.9

PNMF2 6.1 7.8 9.4 10.9 12.1 12.9

PNMF1_SUP 6.5 8.3 10.1 11.6 13.0 13.9

PNMF2_SUP 6.1 7.9 9.5 11.0 12.2 13.0

fwsegSNR
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Fig. 11. Average PESQ results over Babble, Factory1, F-16 and Car 

noises for SRU method and the proposed PNMF1 method with and 

without noise classification. 

TABLE VIII.  AVERAGE RESULTS OF SPEECH QUALITY 

MEASUREMENTS OVER RESTAURANT NOISE IN LSTM. 

 

TABLE IX.  AVERAGE RESULTS OF THE SPEECH QUALITY 

MEASUREMENTS OVER PINK AND PIANO NOISES IN LSTM. 

 

 
Fig. 12. Average PESQ results over F-16 noise for SRU, LSTM, 

and the proposed PNMF1 method for unseen speech signals (IEEE 

sentence dataset). 
 

TABLE X.  AVERAGE RESULTS OF SPEECH QUALITY 

MEASUREMENTS IN LSTM OVER ALL 7 MATCHED AND 

MISMATCHED NOISES IN DIFFERENT SNRS. 

 

TABLE XI.  THE FRIEDMAN TEST RESULTS WITH HOLM’S POST 

HOC TEST 

 
 

 

 

 

SNR -5 0 5 10 15 20

LSTM [14] 1.68 2.02 2.32 2.62 2.88 3.07

SUP 1.69 2.00 2.30 2.62 2.88 3.06

SRU [16] 1.68 1.99 2.29 2.60 2.87 3.06

PNMF1 1.70 2.03 2.36 2.70 2.97 3.15

PNMF2 1.64 2.03 2.32 2.63 2.90 3.08

PNMF1_SUP 1.69 2.04 2.36 2.69 2.95 3.14

PNMF2_SUP 1.73 2.02 2.32 2.62 2.87 3.04

SNR -5 0 5 10 15 20

LSTM [14] 1.90 2.36 2.80 3.18 3.49 3.71

SUP 1.92 2.35 2.78 3.18 3.49 3.71

SRU [16] 1.91 2.33 2.77 3.17 3.50 3.72

PNMF1 1.91 2.37 2.84 3.27 3.58 3.79

PNMF2 1.87 2.36 2.80 3.20 3.51 3.73

PNMF1_SUP 1.92 2.37 2.84 3.26 3.56 3.79

PNMF2_SUP 1.94 2.36 2.79 3.17 3.47 3.67

COVL - Restaurant noise

PESQ - Restaurant noise

SNR -5 0 5 10 15 20

LSTM [14] 1.79 2.18 2.47 2.72 2.93 3.09

SUP 1.79 2.17 2.48 2.72 2.93 3.09

SRU [16] 1.76 2.13 2.45 2.71 2.94 3.11

PNMF1 1.85 2.23 2.57 2.83 3.04 3.19

PNMF2 1.82 2.18 2.46 2.70 2.88 3.02

PNMF1_SUP 1.85 2.24 2.57 2.83 3.03 3.19

PNMF2_SUP 1.84 2.21 2.49 2.72 2.92 3.06

SNR -5 0 5 10 15 20

LSTM [14] 2.11 2.61 2.99 3.31 3.56 3.75

SUP 2.12 2.62 2.99 3.32 3.56 3.74

SRU [16] 2.02 2.52 2.93 3.28 3.56 3.77

PNMF1 2.16 2.69 3.09 3.42 3.67 3.84

PNMF2 2.08 2.58 2.96 3.26 3.49 3.65

PNMF1_SUP 2.15 2.68 3.09 3.42 3.67 3.84

PNMF2_SUP 2.12 2.66 2.98 3.28 3.52 3.69

PESQ 

COVL 

Volume 15- Number 3 – 2023 (53 -65) 
 

62 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
24

-0
4-

29
 ]

 

                            10 / 13

https://ijict.itrc.ac.ir/article-1-555-en.html


 

VI. DISCUSSION 

According to the results reported in the tables, it is 

observed that all proposed methods outperform the 

baselines. Specifically, PNMF1 method in which we 

propose using the transpose of NMF basis matrix in the 

last layer has generally the best performance in both 

PESQ, COVL, and fwsegSNR criteria of all other 

methods. As Tables 4, 6, and 7 show, the improvement 

of PNMF1 over other methods is significant especially 

in LSTM network. In the NMF method, the 

components of the clean speech signal are decomposed 

into two matrices of the basis and coefficients. By 

adjusting the weights of the last layer of the network to 

the transpose of the basis matrix of NMF, the last 

hidden layer of the network will estimate the values of 

speech features obtained from speech FFT magnitude. 

In fact, this is the main advantage of using NMF for 

decomposing clean speech signal into two matrices of 

W and H. W works as an appropriate data-driven filter 

which is able to find proper speech features when 

applied on clean speech signal X. Estimation of speech 

features leads to the extraction of useful information 

from clean signals, and thus better noise reduction of 

the noisy speech. Hence, in the fine-tuning phase for 

the DNN and LSTM networks, the local minimum 

problem is also reduced. As the NMF algorithm 

extracts the basis matrix from clean features and is 

independent from noisy features, the proposed method 

has a higher generalization over different noises 

according to the results of Tables 8, 9, 10, and also has 

a higher generalization for different utterances 

according to the results of mismatched database of Fig. 

12. Thus, the proposed method is not dependent on a 

specific dataset. The results obtained in Table 10 also 

proves the claim that our proposed methods especially 

PNMF1 outperform other baselines and have a higher 

generalization over different noises for speech 

enhancement. Due to the linear nature of NMF method, 

proposing to use it for initializing the weights of the 

last layer, which is a linear layer, is more effective in 

improving the performance of the DNN and LSTM. 

Moreover, we have found the NMF basis matrix from 

clean speech signal, and not noisy one. Therefore, it 

works more efficiently when the input NMF matrix is 

very close to clean, i.e. the enhanced speech at the 

output layer. Hence, PNMF1 method leads to the best 

results in both DNN and LSTM networks according to 

all tables. This is due to the fact that it can map the 

features of the last hidden layer to the target output 

more appropriately, and would also solve the local 

minima problem. For the same reason, PNMF2 has 

weaker results compared to PNMF1. Since the 

calculation of the NMF basis matrix is on the clean 

input signal, it leads to lower results when the real 

input of the networks is the noisy speech in the first 

layer for PNMF2 structure. Also, in [26], the 

importance of the last layer values is described. Using 

appropriate initializing for this layer, the network will 

be trained more efficiently and random initialization 

for other weights will lead to more generalization for 

the neural network. 

As illustrated in Fig. 8, the PNMF1 for the LSTM 

network outperforms the PNMF1 for DNN. This is in 

line with the time dependence capabilities of LSTM 

networks. Also, the SRU network (as the most recent 

baseline) has weaker results than our proposed 

methods. In addition, as indicated in Fig. 9 by the red 

ovals, PNMF1 as our best proposed method, better 

extracts the speech signal details in comparison with 

SUP (which also has a pre-training strategy) in the 

obtained speech spectrograms. We owe this 

performance to the NMF properties in extracting clean 

speech features. 

Fig. 7 shows the process of reducing network error 

by increasing the number of iterations. As seen, the 

PNMF1 method has less error during the learning 

process and converges more quickly. Less error and 

faster network convergence in the PNMF1 method 

could be attributed to the selection of appropriate initial 

weights and the reduction of the local minimum 

problem.  

Fig. 10 illustrates that the matrix weights of the 

NMF basis values, the last layer of LSTM, and the last 

layer of PNMF1 have the same structure. Also, the 

LSTM and PNMF1 matrix weights are mostly the 

same, but PNMF1 has more sparse structure than the 

LSTM model. This sparse structure of the PNMF1 

method will have more generalization over different 

noises and speech signals. Also, this sparse structure 

will remove the background noise signal more 

efficiently. It is clear that this matrix weight of the 

PNMF1 method has a structure like a filter bank, which 

helps with the denoising of the noisy speech signal. 

Moreover, the proposed noise classification 

strategy is useful in improving the results according to 

Fig. 11. The individual models trained for each noise 

type are more compatible with the properties of each 

specific noise and could lead to better results especially 

for matched noises. For mismatched noises, a general 

model trained with all models has been proposed to 

achieve better results. Not surprisingly, increasing the 

number of training noise types and using a much larger 

noise dataset could lead to higher results.  

We also evaluate the statistical significance of the 

proposed methods. The statistical Friedman test in 

Table 11 shows that the proposed PNMF1 method is 

significantly better than the baselines.  

VII. CONCLUSION 

In this paper, we proposed a novel method for 

improving the pre-training of DNNs and LSTMs in 

speech enhancement. Since NMF is known to be an 

appropriate sparse model for extracting speech 

features, we suggested using NMF basis matrices as 

the initial weights in deep networks to make use of the 

advantages of both NMF and deep learning methods. 

In addition, NMF pre-training could address the local-

minima problem of deep learning algorithms. In this 

paper, we proposed using the transpose of NMF basis 

matrix as the initial weights of the last layer of DNN 

and LSTM. The use of the proposed NMF pre-training 
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method in supervised pre-training, and the NMF basis 

matrix as the initial values of the first layer were also 

suggested. Practical observations indicated that pre-

training of the last layer with the NMF method leads to 

better network performance and better results. This 

happens due to the fact that the NMF model linearly 

maps clean speech features to two matrices with a data-

driven approach. Thus, it is able to extract appropriate 

clean speech features in different cases leading to an 

improved network output. Therefore, using this 

method to find the initial weights in the last layer of the 

network, which has the enhanced speech features as the 

output, was more compatible with the NMF structure, 

and could reconstruct clean speech features better. 

Moreover, we suggested a noise classification strategy 

in this paper by training individual models for each 

noise type. Using these specific models led to more 

improvement in the enhancement procedure due to 

their compatibility with noise. Furthermore, to extend 

the generalization of the suggested approach to unseen 

noises, we introduced a general model trained with all 

noises in mismatched conditions. The experiments 

showed that the proposed method could improve the 

PESQ and COVL of the enhanced speech signal 

significantly compared to previous baselines. 
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