International Journal of Information
& Communication Technology

(1

ITRC

1JIC

Volume 3- Number 2- March 2011 (67-71)

Technical Note

Masquerade Detection Using GUI Events in
Windows Systems

Parisa Kaghazgaran
Dept. of Computer Engineering & IT
Amirkabir University of Tehren (AUT)
Tehran, Iran
Parisa.kaghazgaran(@gmail.com

Babak Sadeghyan
Dept. of Computer Engineering & IT
Amirkabir University of Tehren (AUT)
Tehran, Iran
basadegh(@aut.ac.ir

Received: December 28, 2010 - Accepted: February 14, 2010

Abstract— Masquerade attack in computer systems refers to the illegitimate user activities while pretending to be
legitimate user. Detection of such attacks is done by discovering significant changes in user’s behavior based on his
profile. Profile is built by data produced from mouse, keyboard and other devices. In this paper we propose a
practical approach for collecting GUI data and deriving useful parameters included both mouse and keyboard events
from Windows OS. We model user identification and masquerade detection as a binary classification problem.
Profiling and user classification is accomplished by use of Support Vector Machine (SVM) algorithm. Feature vectors
are fed to SVM. The output is behavioral pattern which builds the profile. System is trained by normal behavior and
detects deviations from profile. According to the results of implementation the proposed approach ensure detection

rate up to 94% with few false alarm.

Keywords- Masquerade detection; Intrusion detection; Anomaly; Profile; Detection rate; GUI; Behavior.

I. INTRODUCTION

Masquerading is the process where a person
spoofs someone else’s identity and utilizes privileges
he is not entitled to [1]. Masquerading or
impersonation is one of most dangerous attacks; not
only because of hard detection but also attacker
undermines sensitive information [2]. Masquerader
gets access to legitimate user account either due to that
the victim left his terminal open or his password was
disclosed somehow. Masquerade attacks can be
carried out by either organization’s insider or outsider.
Outsider attacks can be detected by signature-based
IDSs but masquerading is lethal when an insider
penetrates systems. In next section different kind of
masquerade attacks are introduced. We would propose
a new approach to detect second type of insider
attacks.

Insider attacks can be detected only when current
system behavior deviates from normal profile
considerably. So at first we should build user’s profile.

The IDS should learn normal behavior. Our IDS
collects data from user sessions and extracts features
to construct profile.

There have been several attempts to take the
problem of masquerade detection. A progressive
research area is discovering new methods to decrease
false alarms generated by IDS. This aim will be
accessible with providing comprehensive data sets.

2005 PITAC report shows that apart from virus
and worm attacks, the insider threats are rapidly rising,
roughly at the rate of 20% [4].

In GUI' based systems most of user activities are
derivative from mouse and keyboard events. As
command line data are not able to capture GUI data;
future attempts need to combine various types of data
to detect effectively.

! Graphical User interface

nternational Journal of Information & Communication Technology

https://ijict.itrc.ac.ir/article-1-218-en.html

[Downloaded from ijict.itrc.ac.ir on 2024-05-08]

IJICT Volume 3- Number 2- March 2011

Our goal is to increase masquerade detection rate
in GUI based systems. Similar work for Linux has
already been done in [2]. Although academic
environments aim to encourage using Linux but
people at industrial and commercial milieu, like
organizations, are willing to work with Windows
operating system; so we have chosen our target to be
Windows OS, and have implemented and evaluated
our proposed approach.

We collect data from both mouse and keyboard
events. To our knowledge, no profiling technique is
available in literature for capturing both mouse and
keyboard events in windows systems.

The presented IDS in this paper include following
characteristics:

1. It is Host-based IDS and source of data is
operating system audit data.

2. It uses Anomaly technique for detection.
Masquerader activities are mostly seemed
authorized to the system, and might not have a
known signature; so the misuse detection is
not suggested for it.

It utilizes machine learning algorithm (SVM)
for learning and classification.

Its Architecture obeys centralized structure
because IDS components are stood in one
system.

Analysis Time is online, means Audit data
immediately after being collected are
analyzed. In other words analysis is done
during connection.

6. The implementation is software based.

A. Paper organization

This paper is organized as follows: In section III,
we review masquerade detection concept and the
related works. In section IV, our approach will be
explained. Section V describes results. Finally in
section VI we outline conclusions, future works; and
open problems.

B. Our Contribution

We can summarize paper contribution in proposing
a new approach to detect masquerading.

1I. MASQUERADE DETECTION CONCEPT AND
RELATED WORKS

Generally there are two types of masquerade
attacks against an organization. Masquerading can be
performed by insiders or outsiders. Outsiders are
outside the organization and can access to victim’s
machine remotely through network and steal
information or cause damage to the system [1]. On the
other hand there are two types of insider attacks. First;
a legitimate user misuses his privileges for malicious
or unauthorized purposes [3] and gets access to
resources which is not authorized to access them.
Second; an insider impersonates another user inside
the organization. The former one can be controlled by
access control mechanisms. In latter one; most of
masquerader actions are technically legal to the
system; so it is more difficult to identify such
violations; Also attacker has enough knowledge about
system and victim behavior that he/she can avoid
detection for a long time.

Figure 1 shows masquerading attacks. Our
masquerade detection appraoch attempts to detect
second type of insider attacks which is highlighted in
the figure.

Masquerade
Attacks

|
l !

Insiders Outsiders

|
L 1

Masquerading

Misusing of

I another User
Privileges

Figure 1. Masueurade Attacks Taxonomy

Behavioral path concept is expressed according to
[1]. Behavioral paths are based on users’ activities on
the system and show the amount of effort to do a task.
The probabilistic paths for different users are drawn in
figure 2. Activities may contain mouse events,
keyboard typing speed, number of commands
executed, and time spent to do a function but are not
limited to these.

deviations due 1 inexperience
I e
2w beginner
3 ---- apert

Figure 2. Behavioral Path for Various Types of Users (Garg &
others 2006 [1])

As it can be seen from the figure, user’s behavior
depends on their skill levels. An expert one will be
more towards the perfect behavior?, because of his
experience and knowledge of using the system. A
novice user will have great violations from perfect
behavior due to lack of experience and knowledge
about system and applications. Numbers 1, 2 and 3
show deviations from perfect behavior due to users’
skill levels. Although expert path shows shortest time
with minimum step to complete the task, it will not
touch perfect behavior ideally. To do the same
process, various users will utilize system differently,
thus different behavioral path will be generated.

This fact is similar to finger print which is unique
for everyone; so behavioral profile based on GUI
events is unique for each user. There are some related
works on masquerade detection.

% The perfect behavior is defined as minimum effort level or
system activity involved in achieving a task [1].

nternational Journal of Information & Communication Technology

https://ijict.itrc.ac.ir/article-1-218-en.html

A. Masquerade Detection based on command line
data

There have been many techniques to handle
masquerade detection problem. In [3], [5], [6] UNIX
commands collected at command line are used for
masquerade detection. The assumption is: type,
number and sequence of commands to complete a task
are different for each user. The drawback of these
methods is that they are not able to capture user
interactions, so they fail in GUI based systems.

B. Masquerade Detection based on GUI data

In [7] manipulation of windows, icons and menus
are profiled rather than capturing all system events.
This method has several disadvantages: first, the
profiling seems to be manual instead of being an
automated process; second this method is applicable
for specific application because windows, menus and
icons are different among various applications; third,
the time, as an analysis factor, is not considered while
it is important factor for an intrusion analysis.

In [1] [8] [9] the process table and GUI events
details for windows OS are used to build profile. In [1]
user profile is built from only mouse movements and
events. Its drawback is that only few GUI events were
captured. In [9] the mouse data is used to profile users.
[1] uses SVM algorithm while [9] uses decision tree
algorithm.

In [2] data is collected from GUI activity in Linux.
Since most of Linux users do the tasks by entering
commands [11], only the GUI data is not sufficient; so
a mixed approach is suggested.

III. OUR APPROACH

We explain our approach into two phases:
Profiling Users and Masquerade Detection.

A. Profiling Users phase

This phase has two steps: data collection and
feature extraction. To collect raw data from user
interactions with system we need a tool to log the
events. So we have implemented an active system
logger using Microsoft .NET framework 3.5 and C#
language on windows XP systems. The logger gathers
data from mouse movements and events and keyboard
events.

1) Data Collection

We have used Hook mechanism to capture Data. A
hook is a mechanism by which a function can intercept
events (messages, mouse actions, keystrokes) before
they are received by an application. The function can
act on events and, in some cases, modify or discard
them. The system supports many different types of
hooks; each type provides access to a different aspect
of its message-handling mechanism. We utilized
Windows API Hook.

Volume 3- Number 2- March 2011

Since users should not notice the logging of their
activities, the logger runs as Windows service.
Windows service program runs automatically while
system is booting without interface and does
processing at system backgrounds.

To evaluate our framework, we collected data
from three different users through several sessions. [1]
and [2] collect data from 3 and 4 users respectively.
We eliminated some peripheral factors; for example
users work with same mouse and keyboard.

2) Feature Extraction
After collecting raw data, it is turn to extract useful
parameters to construct feature vectors. Each vector
involved several values. These values are parameters
described the user behavior. The Features can be
classified into two classes: mouse events and keyboard
events.

- The features we considered for mouse events are:

e Mouse clicks (lc, rc, mc): the average number
of left, right and middle clicks per user
Sess10n.
Distance (d): the average distance traveled by
mouse between two clicks.
Time (1): the average time between two clicks.
Mouse event angle (0): the angle of mouse
event relative to X-axis
Mouse speed (s): the average speed of
movement for entire session.
Mouse event location (x, y): coordinate of
mouse.

- Keyboard events features are:
e Key pressed (kp): the average number of
keystroke per session.
e Key shortcuts (ks): the average number of key
shortcuts per session.

Since mouse can move a few pixels in
millisecond, data gained from mouse movements are
huge. In [3] to overcome this problem data is logged
each 100 milliseconds. But this solution has some
other limitations, for example during 100 milliseconds
mouse moves 100 pixels then return 60 pixels near to
its initial location, so 100-60=40 pixels is considered
as distance traveled by mouse and speed is calculated
as 40/100= 0.4 pixel per millisecond, but this
assumption is not precise. To solve this problem our
solution is to store data according to location instead
of according to time. So coordinates of mouse
locations are logged which distances between points
are at least 20 pixels so mouse speed is toward actual
speed. Hence, we have avoided storing enormous
mouse movement data.

The profiling phase architecture and relation
between components are shown in figure 3.

nternational Journal of Information & Communication Technology

UICT

https://ijict.itrc.ac.ir/article-1-218-en.html

[Downloaded from ijict.itrc.ac.ir on 2024-05-08]

Figure 3. Profiling Pahse

B. Masquerade Detection phase

Detection phase has two steps: feature calculation

and using SVM for learning and classification.
1) Feature calculation

As session’s durations are not equal, it is not
reasonable to do our calculations based on features
acquired from entire session, so we have used sliding
window concept.

If the session’s starting time is t=0, and we
calculate the features for 50 seconds period, then the
first period would be [0, 50] and the second will be
[50,100] and so on. Hence the session is divided into
50 second periods. After finishing first step, we
advance the window for 5 seconds and assume the
second step starting time to be t=5, and calculate the
features for the following periods: [5,55] , [55,105]
and so on. After each step we advance window for 5
seconds. We calculated the values for 10 steps. After
10 steps the pattern repeats itself. According to
number of periods in each step we calculate average
and standard deviation of features. The advantage of
this technique is clear when we use SVM. In other
words, a SVM vector is built in each step. We obtain
10 vectors for one session, so the useful parameters
independent of the session duration construct 10
vectors. The total number of features are 10 (Ic, rc, mc,
d, t, 0, s, (x,y), kp, ks) and we calculate mean(m) and
standard deviation (sd) for all of them per step. This
gives a total of 20 unique features as: 10 * (m ,sd)=20.

It is necessary to mention that our session’s
durations are between 20 to 25 minutes. (users were
not willing to cooperate more than 25 minutes.)

2) Applying SVM

Classification is one of application of machine
learning. There are several methods for classification
in machine learning. We chose to use SVM due to
advantages listed in [1].

We used two class SVM [10] because data vectors
are labeled as positive (normal) or negative
(masquerader). We collected GUI based data sets for 3
users which are called A, B, C, through several
sessions. Each user’s sessions are divided into two
parts: training and testing sessions.(referred to table I)
. As mentioned earlier we obtain 20 features from each
session. To build the profile and test our approach,
first we assume user A is an authorized and users B &
C are masqueraders for A. The data vectors are fed to

SVM to train normal behavior to system. The output
of algorithm is the normal behavioral pattern (profile
for A). Then the test data vectors are fed to SVM and
are classified by SVM function according to the
profile. Detection Rate, False Positive (FP) and False
Negative (FN) are indicated in the next section.

In next step we assume user B is an authorized and
users A & C are masqueraders for B. In other
experiment we assumed user C is an authorized and
users A & B are masquerader for C.

The detection phase architecture and relation
between components are shown in figure 4.

=

oeiCier ey |

Figure 4. Detection Phase

IV. RESULTS

The captured data set was split for training and
testing as shown in table 1:

TABLE I. USERS’ SESSIONS

#Training Session #Testing&:ssiun
A 5 4

B 5 4
C 4 3

Table 2 shows results of paper approach when we
use only mouse events.

TABLE II. RESULTS ONLY WITH MOUSE EVENTS

Model Detection Rate FP
A~(B.C) 85%(94/110) 12
B-(A.C) 80%(88/110) 14
C-(A.B) 94%(104/110) 5

Table 3 shows results when we use both mouse
and keyboard events.

TABLE I, RESULTS WITH BOTH OF MOUSE AND
KEYBOARD EVENTS

Model Detection Rate FP
A-(B.C) 88%(97/110) 10
B-(A.C) 85%(94/110) 11
C-(A.B) 99%(108/110) 2

As the results show detection rate increased in
table 3 in comparison with table 2. In conclusion, user

International Journal of Information & Communication Technology

https://ijict.itrc.ac.ir/article-1-218-en.html

behavioral pattern is not limited to one type of GUI
data, so if we have more features we can achieve more
significant results. It is noteworthy that FP rate is more
than FN because we are using anomaly detection

technique; as we know FP in anomaly detection is
high.

Due to lack of a comprehensive data set for GUI
events; it is not reasonable to compare achieved results
with other related works, but the results of [1] are
given below:

TABLEIV. [1] RESULTS

Model
A-(B.C)
B-(A.C)
C-(A,B)

Detection Rate FP
92.31%(240/260) 20
96.15%(250/260) 10

As it can be seen the number of data vectors in [1]
is more than ours. (260 vectors is available in [1]
while we have 110 vectors), so naturally their data set
is more detailed. But detection rate in table 3 and table
4 are rather similar and in model (C-A, B) our
approach work better.

V. CONCLUSIONS

We have designed a new framework for capturing
GUI events in Windows. Then we evaluated our
framework. We have extracted useful parameters to
construct features vectors then used SVM to train the
system and test the users by both mouse data only and
combination of mouse and keyboard data.

Our results demonstrate that using more features is
better and detection rate will be higher than using only
features of mouse events.

Since we were able only to collect data from 3
users with limited sessions, as part of future works we
plan to test our system with more users and more
sessions so we hope that results become more
significant.

Also we tested our system with limited set of data.
This is due to the fact that there are no public GUI
based data sets available.

In conclusion one of the important open problems
in GUI based authentication is to collect a
comprehensive GUI data set and publish it.

VI. REFERENCES

[1] Garg, A. Rahalkar, R., Upadhyaya, S.. Kevin Kwait
“Profiling Users in GUI Based Systems for Masquerade
Detection.” In: Proceedings of 7th Annual IEEE Information
Assurance Workshop, United States Military Academy, West
Point, New York , pp.48-53, 2006.

Bhukya W, Kommuru S, Negi A. Masquerade detection based
upon GUI user profiling in linux systems, Advances in
Computer Science-ASIAN Computer and Network Security,
springer, pp.228-239, 2008.

Coull SE, Szymanski BK. Sequence alignment for
masquerade detection, Computational Statistics & Data
Analysis, Elsevier, Vol. 52, No. 8, pp. 4116-4131, 2008.
Benioff MR, Lazowska ED, Cyber Security: A Crisis of
Prioritization, President'S Information Technology Advisory
Committee Arlington VA.. 2005.

Kim HS, Cha SD. Empirical evaluation of SVM-based
masquerade detection using UNIX commands, Computers &
Security, Elsevier, Vol.24, No.2, pp. 160-168, 2005,

Bhukya, W.N., Kumar, S., Negi, A.:”A study of effectiveness
in masquerade detection” IEEE TEN CON 2006 14-17, pp. 1—
4 Digital Object Identifier , 2006.

Volume 3- Number 2- March 2011

Imsand, E.S., Hamilton Jr., J.A..”GUI Usage Analysis for
Masquerade Detection.” In: Proceedings of IEEE, Information
Assurance Workshop (IAW), United States Military
Academy, West Point, New York,pp.270-276, 2007.

Li, L., Manikopoulos.:”Windows NT One-class Masquerade
Detection.” In: Proceedings of IEEE,Information Assurance
Workshop (IAW), United States Military Academy, West
Point, New York,pp. 82-87, 2004,

Pusara, M., Brodley, C.:”User Re-authentication via mouse
movements”. In: Proceedings of the ACM Workshop on
visualization and data mining for computer security,
Washington D.C., USA, pp.1-8, 2004.

CHRISTOPHER J.C. BURGES Bell Laboratories, Lucent
Technologies, ” A Tutorial on Support Vector Machines for
Pattern Recognition”, Data mining and knowledge discovery,
Springer, Vol. 2, No. 2, pp. 121-167, 1998.

Leibovitch E. The business case for Linux. Software, IEEE,
2002.

Parisa Kaghazgaran is a M.Sc.
student in information security at the
Amirkabir University Technology.
She received her B.Sc. degree in 2009
from the same university. Since 2008,
she has been working in the area of
intrusion detection systems and
privacy preserving IDS's.

Babak Sadeghiyan is an associate
professor in the department of
computer engineering and
information technology at the
Amirkabir University of Technology
since 1993. He received his B.Sc.
degree in Electronics Engineering
from Isfahan University of Technology in 1985. He
received his M.Sc. degree in Electronics Engineering from
Amirkabir University of Technology in 1989. He received
his Ph.D. degree from University of New South Wales,
Australia in 1993. His research interests include cryptology,
cryptographic protocols and intrusion detection systems.

International Journal of Information & Communication Technology

IJICT A

https://ijict.itrc.ac.ir/article-1-218-en.html
http://www.tcpdf.org

