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channel parameters is derived. In [6], for a two-user 

Gaussian interference channel, an outer bound is 

derived by considering that the side information is 

given to each receiver to decode both transmitters` 

messages and also a bound for the weak interference 

regime is obtained. The best known achievable rate 

region is due to Han-Kobayashi scheme [7] by 

combination the ideas of time sharing and rate 

splitting, where users are allowed to split their transmit 
power into two parts: the private part and the common 

part. In [8] by making significant progress towards the 

general capacity region, a new outer bound on the 

capacity region is obtained and it has been shown that 

for the Gaussian inputs the Han-Kobayashi scheme 

without time sharing comes within one bit of the 

derived outer bound.  

One of the low complexity methods to deal with the 

interference channel is to allow the communication 

links to treat each other’s interference as an addition to 

the noise floor. In [9], it has been shown that treating 

interference as noise (TIN) not only is optimal for the 
entire generalized degree of freedom region but also it 

reaches within constant gap of the entire capacity 

region.  

On the other hand, game theoretic approaches have 

been received significant attention for utility 

maximization and resource allocation in the wireless 

communication networks [10]. Most game-theoretic 

approaches in wireless communication networks are 

grouped into two categories: Non-cooperative games 

[11]-[13] and Cooperative games [14]-[15]. 

In the recent decade, game-theoretic approaches 
also have been used in the interference channel and 

interference management systems [16]-[22]. 

On the interference channel, the operating point is 

chosen to achieve efficiency and fairness in resource 

allocation [16]. The behavior of the users in the 

interference channel is generally rational and selfish, 

which means that they have incentive to obtain more 

achievable rates and they only try to maximize their 

own utility without considering the whole system 

utility. In these environments where users are selfish, 

there is no guarantee that the efficient and fair 
operating point is achieved [16]. Sometimes the 

efficient and fair operating point is obtained by users` 

cooperation in choosing power transmission, codebook 

and rate allocation. But in practice users may not have 

motivation to cooperate with each other. Some 

techniques have been used to control the selfish and 

non-cooperative behavior of the users [16]. Also it has 

been shown in [16] that unfair situations on the 

spectrum sharing for multiple interfering systems may 

occur because of the asymmetry and selfishness 

behavior of the users. By proposing self-enforcing 

spectrum sharing rules efficient and fair situations have 
been obtained.  

In [17], the notion of Nash equilibrium region has 

been exactly characterized in a non-cooperative one-

shot game on the two-user linear deterministic 

interference channel where the utility of each user has 

been defined as its achievable rate. Nash bargaining 

solution (NBS) is used in [18] as a tool to get fair 

information rates and to obtain a specific point on the 

rate region of the interference channel which is better 

than other points in the context of bargaining theory.  

Also, pricing schemes have drawn more attention in 

resource allocation and power control. For mentioning 

a few, in [19] a distributed pricing scheme has been 

used for the MIMO interference channel that reflects 

compensation paid by the other users for their 

interferences.  

The paper [20] has studied a bargaining approach 
on the 2-user Gaussian interference channel, which is 

also the motivation of this paper. Authors in [20] have 

proposed a two-phase mechanism for the selfish users 

to incentive them to coordinate their transmission 

strategies. The phase 1 includes choosing a simple 

Han-Kobayashi type scheme with Gaussian codebooks 

and fixed power split and the phase 2 includes 

bargaining over the achievable rate region to obtain a 

fair operating point. 

In [21], in the 2-user weak GIC, a utility for users 

has been defined by using pricing scheme to control 

non-cooperative behavior of them. They have defined 
the utility of each user as its achievable rate minus the 

cost of each unit transmission power. There, the fair 

operating point has been defined as proportional fair 

point.    

 In this paper, which is an extended version of the 

paper [22], we consider the N-user weak GIC and use 

the power pricing scheme in each user’s utility to force 

them to agree in operating at a fair point. We use the 

Kalai-Smorodinsky bargaining solution (KSBS) [23]-

[24] instead of proportional fair solution and NBS [25]-

[26], because in considering the fairness point, KSBS 
is fairer than proportional fair solution and NBS [23]-

[24]. Therefore, in what follows two games are 

considered. In the first game, we show that users` 

utility functions are their achievable rates using TIN. 

The users want to maximize their utilities by choosing 

power transmission strategy on multi-user GIC non-

cooperatively and selfishly. Thus, the KSBS fair 

operating point is not achieved. Therefore, for 

punishing users and forcing them to choose their power 

transmission strategies to obtain the KSBS, we need to 

change the utility functions of the users.  A price-based 
utility function for each user is defined. For all ranges 

of given prices (the price of each unit of transmit 

power) we define the best response function for the 

transmission power. Then we substitute the obtained 

best response function in the utility function.  For the 

second game, we put the obtained utility function in the 

KSB problem and by solving the optimization problem 

for the given prices, the best transmit power for 

achieving KSBS is obtained theoretically. At last, the 

best prices of all users participating in the bargaining 

in order to reach the KSBS are obtained numerically 

through a proposed iterative algorithm. 
There are some significant differences and 

improvement in comparing our approach in this paper 

and the paper [20]. One of the differences is the 

bargaining operating point where the NBS has been 

used as system operating point in [20], while in this 

paper, we use KSBS for introducing our efficient and 

fair operating point which is fairer than NBS [23]-[24]. 

Also this study is among N users in the GIC while the 

game in [20] is among 2 users. Another difference is in 
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the users’ incentivizing techniques. As it is mentioned 

in [20], in information theoretic approaches, full 

cooperation is assumed among users for the rate 

selection. In the environments where there is no 

cooperation among the users, the NBS may not 

necessarily be the agreement reached in practice 

because a centralized management is required to 

ensure that all users agree to operate at the fair point 

that is the solution point of Nash bargaining scheme. In 
many communication channels, having such a manager 

is lacking. Thus, in [20], a non-cooperative bargaining 

approach as alternating-offer bargaining game 

(AOBG) has been proposed to take into account the 

cost of delay of each user in bargaining and control the 

users’ actions to reach the fair operating point. As 

mentioned above, we use price-based punishment 

techniques to force the users to choose their power 

transmission strategy in such a way that efficient and 

fair operating point is achieved. Also in the game 

formulation in [20], an extensive form game with 

perfect information has been investigated, while here a 
strategic form game is used. 

The significant difference between [21] and this 

paper`s scenario, in addition to the extension in the 

number of the users and the definition of fair operating 

point, is that in [21] the price of each unit of the 

transmission power has been obtained by a price 

function which the network manager derives it and 

announces the transmission power prices to the users. 

In the scenario of this paper, there is no manager and 

users obtain their transmission power prices in a 

distributed manner with an iterative algorithm which is 
more practical than centralized scenarios for 

implementing in the communication networks. 

The rest of the paper is organized as follows. In 

Section II, the system model and some preliminaries 

are described. In Section III, a non-cooperative power 

control game without pricing is considered and then by 

applying pricing schemes, the result of the new game 

is presented. In Section IV, KSBS on the N-user GIC 

is obtained and an iterative algorithm is proposed. In 

Section V numerical results are presented that confirm 

the analytical development. Finally, in Section VI, the 
paper is concluded. 

  Notation: All logarithms are to the base 2.  

II. SYSTEM MODEL AND PRELIMINARIES 

A. Channel Model 

The multi-user Gaussian interference channel with 

𝑁   transmitters and their corresponding receivers is 

depicted in Fig.1 and is formulated by the following, 

𝑌𝑗,𝑡 =∑ℎ𝑗𝑖𝑋𝑖,𝑡 + 𝑍𝑗,𝑡

𝑁

𝑖=1

       𝑗 ∈ {1, … ,𝑁}    (1) 

where 𝑋𝑖,𝑡  and 𝑌𝑗,𝑡 , 𝑡 = 1, … , 𝑛 represent the input and 

output at transmitter 𝑖 and receiver 𝑗 (𝑖, 𝑗 ∈ {1, … ,𝑁}) 
at time 𝑡 , respectively, and 𝑍𝑗,𝑡  is assumed to be the 

independent additive complex white Gaussian noise 

with zero mean and variance of 𝜎𝑛
2. ℎ𝑗𝑖 is the channel 

gain between receiver 𝑗 and transmitter 𝑖.  

 

 

 

Fig. 1.  Multi-User Gaussian interference channel. 

Each transmitter 𝑖, transmits its message 𝑊𝑖 to the 
related receiver. Receiver 𝑖 , (𝑖 = 1,… , 𝑁)  is only 
interested in the message sent by transmitter 𝑖.  

For a given block length  𝑛, user 𝑖 sends a message 
𝑊𝑖 ∈ {1,2,… , 2

𝑛𝑅𝑖}  by encoding it to a codeword 

𝑋𝑖
(𝑛)
= (𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑛). 

The codewords are real-valued and satisfy the block 
average power constraints given by, 

1

𝑛
∑|𝑋𝑖,𝑡|

2 ≤ 𝑃𝑖
𝑚𝑎𝑥

𝑛

𝑡=1

 , 𝑖 = 1, … , 𝑁.            (2) 

Receiver 𝑖  observes the channel output 𝑌𝑖
(𝑛)
=

(𝑌𝑖,1, … , 𝑌𝑖,𝑛) and uses a decoding function 𝑓𝑖 ∶  ℝ
𝑛 ⟶

{1,2,… , 2𝑛𝑅𝑖}  to get the estimate 𝑊̂𝑖 of the transmitted  

message 𝑊𝑖. The probability of error at each receiver is 
defined by the expression,  

𝑝𝑒,𝑖
𝑛 = P{𝑓𝑖(𝑌𝑖

(𝑛)) ≠ 𝑊𝑖}     𝑖 = 1,… ,𝑁.          (3) 

and 𝑝𝑒
𝑛 = max{𝑝𝑒,1

𝑛 , 𝑝𝑒,2
𝑛 , … , 𝑝𝑒,𝑁

𝑛 }.  

A rate tuple (𝑅1, … , 𝑅𝑁) is said to be achievable if 
there is a sequence of (2𝑛𝑅1 , … , 2𝑛𝑅𝑁 , 𝑛) codes with 
𝑝𝑒
𝑛 ⟶ 0  as 𝑛 → ∞ . The capacity region of the 

interference channel is the closure of the set of all 
achievable rate tuples. 

By TIN, the achievable rate for each transmitter-
receiver pair is: 

𝑅𝑖(𝑃𝑖; 𝐏−i) = log (1 +
𝑃𝑖|ℎ𝑖𝑖|

2

𝜎𝑛
2 + ∑ 𝑃𝑗|ℎ𝑖𝑗|

2

𝑗≠𝑖

),     (4) 

where 𝑖, 𝑗 ∈ {1,… ,𝑁}, 𝑖 ≠ 𝑗.  

Also in this network, it is assumed that the total 
available transmission power for users is limited. Thus, 
another restriction is defined here as 

∑𝑃𝑖
𝑚𝑎𝑥 = 𝑃𝑇𝑜𝑡𝑎𝑙

𝑁

𝑖=1

.                      (5) 

which means that the sum of maximum available power 
for all users is 𝑃𝑇𝑜𝑡𝑎𝑙 .  

B. Review of Nash Equilibrium in a Non-Cooperative 

Game  

A game 𝐺 = 〈𝒩 , (𝑃𝑖), (𝑈𝑖)〉 has three elements: a 
set of users (transmitters and their corresponding 
receivers) 𝒩 = {1,… ,𝑁} as players, the strategy space 
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𝒫𝑖 = [0, 𝑃𝑖
𝑚𝑎𝑥] for each user 𝑖 which is the interval that 

contains the transmit power choices, and a utility 
function 𝑈𝑖 for each strategy profile 𝐏 = [𝑃1 , … , 𝑃𝑁]

𝑇.  
In a non-cooperative power control game 𝐺 =

 〈𝒩, (𝑃𝑖), (𝑈𝑖)〉, each user tends to maximize its utility 
by choosing appropriate power, so users compete for 
achieving more utility. Formally a non-cooperative 
power control game can be expressed by [11], [21] and 
[27], 

max
𝑃𝑖∈𝒫𝑖

𝑈𝑖(𝑃𝑖 , 𝐏−𝑖), for all 𝑖 ∈ {1,… ,𝑁}     (6) 

where 𝐏−𝑖 denotes the vector consisting of elements of 

𝐏 other than the 𝑖th element.  
Definition 1: As in [11], [21] and [27], a transmit 

power profile 𝐏∗ = [𝑃1
∗, 𝑃2

∗, … , 𝑃𝑁
∗]𝑇  is the Nash 

equilibrium point of the non-cooperative power control 

game 𝐺 = 〈𝒩, (𝑃𝑖), (𝑈𝑖)〉, if for all 𝑖 ∈ {1, … ,𝑁} and 

for all 𝑃𝑖 ∈ 𝒫𝑖, we have, 𝑈𝑖(𝑃𝑖
∗, 𝐏−𝑖

∗ ) ≥ 𝑈𝑖(𝑃𝑖 , 𝐏−𝑖
∗ ) .                     

The most favorable strategy which is being chosen 

by each rational self-optimizing user is the best 

response to the rivals power profile 𝐏−𝑖. So the best 

response can be defined as ℬ𝑖(𝐏−𝑖) =
argmax

𝑃𝑖∈𝒫𝑖
𝑈𝑖(𝑃𝑖 , 𝐏−𝑖), and Nash equilibrium (NE) is a 

fixed point of all best responses and in other words NE 

is an operating point that none of the players can 

improve its utility by unilaterally changing its strategy. 

C. Kalai-Smorodinsky Bargaining Solution (KSBS) 

A famous solution to the bargaining game which 

could be utilized to guarantee fairness is KSBS. In 

KSBS, the goal is maximizing 𝑟  where 𝑟 =
𝑈𝑖−𝑈𝑖

0

𝑈𝑖
∗−𝑈𝑖

0 , 

and 𝑈𝑖
∗ is the maximum possible utility for user 𝑖 and 

𝑈𝑖
0  is the disagreement point. The NBS is another 

fairness criterion [23]-[24]. However, KSBS 

emphasizes on the equal ideal point more than NBS 

and it is more reliable than NBS from the fairness 

criterion point of view [24]. NBS fairness is a 

generalized proportional fairness and this form can 
ensure fairness of resource allocation [26]. Also, 

cooperative game theories prove that there exists the 

unique and efficient NBS under the six axioms. The 

Nash bargaining problem is formulated as  

max
𝑃𝑖

∏(𝑈𝑖 −𝑈𝑖
0)

𝑁

𝑖=1

                   (7) 

where 𝑈𝑖   is the user 𝑖  utility and  𝑈𝑖
0  is the 

disagreement point. 

III. GAME FORMULATION 

A. Power Control Game Without Pricing 

By assuming 𝑈𝑖 = 𝑅𝑖  defined in (4), all users 

choose their maximum power for maximizing their 

utilities, so the power profile at the NE point  with the 

assumed utility is 𝐏∗ = [𝑃1
𝑚𝑎𝑥 , 𝑃2

𝑚𝑎𝑥 , … , 𝑃𝑁
𝑚𝑎𝑥]. 

As it has been mentioned in the weak GIC, users 

use TIN scenario to obtain their achievable rates. It is 

trivial that when users do not coordinate, each user uses 

TIN scenario [20]. Therefore, KSBS operating point is 

not necessarily obtained, because all of the users prefer 

using their maximum power in an uncoordinated case.  

 
Fig. 2. KSBS vs. NBS on the two-user GIC rate region [28].  

 
 

We cannot force users to adjust their powers in a 

way that the KSBS operating point would be 

established in the network.  

In Fig. 2, the bargaining points mentioned above 

are illustrated on the rate region of the two-user GIC in 

weak interference scenario, which is comparing KSBS 

and NBS and also has been illustrated in [28]. 

Note that also in [20], the NBS point on the rate 

region of the two-user Gaussian interference channel is 

depicted. There, this point is achieved by using optimal 

Han-Kobayashi power splitting. 

It is clear that the power profile 𝐏∗ = [𝑃1
𝑚𝑎𝑥 , 𝑃2

𝑚𝑎𝑥] 
for two-user and 𝐏∗ = [𝑃1

𝑚𝑎𝑥 , 𝑃2
𝑚𝑎𝑥 , … , 𝑃𝑁

𝑚𝑎𝑥] for N-

user (which users choose the maximum power to 

maximize their achievable rate) do not necessarily 

result in NBS or KSBS. Operating on these points in 

practice is not guaranteed. So we add a cost function to 

the achievable rate of each user to force them operate 

on bargaining points which are the fair operating 

points. As mentioned above KSBS emphasizes on 

fairness more than NBS so we concentrate on KSBS in 

this paper. 
By changing users` pay-off function in the next 

section and applying prices for transmitting messages, 

the power profile for achieving the maximum pay-off 

would be changed. 

B. The Proposed Price-Based Power Control Game 

As discussed in the previous section, from game-
theoretic point of view, rational users without any cost, 

use their maximum power, so the rate tuple with this 

power profile is not necessarily a fair operating point 

and by assuming users’ rate as their utilities, the results 

in the previous section are obtained which are not fair 

necessarily. When users should pay price for using 

power to transmit, then their selfishness behavior can 

be controllable. By defining a pay-off function like (8) 

in which the utility of each user is its achieved rate 

minus the price of the used power, we can investigate 

the behavior of users for choosing the transmit power. 

𝑈𝑖(𝑃𝑖 , 𝐏−𝑖) = 𝑅𝑖(𝑃𝑖 , 𝐏−𝑖) − 𝛽𝑖𝑃𝑖                  (8) 

In (8), 𝑈𝑖 ,𝑅𝑖  and 𝛽𝑖(𝑖 = 1,… ,𝑁) are respectively 

each user`s utility, rate and the price of per unit of the 

used power. 

It is shown that for the game 𝐺 = 〈𝒩 , (𝑃𝑖), (𝑈𝑖)〉 , 

where 𝑈𝑖(𝑃𝑖; 𝐏−𝑖) = 𝑅𝑖(𝑃𝑖; 𝐏−𝑖) − 𝛽𝑖𝑃𝑖 , a unique and 

Pareto-efficient NE exists for all 𝛽𝑖 ≥ 0 . Also it is 

shown that there is a unique tuple 𝛽1,…, 𝛽𝑁 that results 

in fairness and Pareto-efficiency at the same time. 

14 Volume 9- Number 4 – Autumn 2017 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
24

-0
5-

07
 ]

 

                               4 / 8

https://ijict.itrc.ac.ir/article-1-23-en.html


 

 

 

𝑏𝑖(𝑷−𝒊) =

{
 
 

 
 
𝑃𝑖
𝑚𝑎𝑥 ,                                                                             𝑖𝑓 0 ≤ 𝛽𝑖 ≤ 𝑅𝑖

′(𝑃𝑖
𝑚𝑎𝑥)       

min{ 𝑃𝑖
𝑚𝑎𝑥 ,

1

𝛽𝑖𝑙𝑛 (2)
−
𝜎𝑛
2 + ∑ 𝑃𝑗|ℎ𝑖𝑗|

2

𝑗≠𝑖

|ℎ𝑖𝑖|
2

}, 𝑖𝑓 𝑅𝑖
′(𝑃𝑖

𝑚𝑎𝑥) < 𝛽𝑖 ≤ 𝑅𝑖
′(0)

0,                                                                                   𝑖𝑓 𝑅𝑖
′(0) < 𝛽𝑖                         

              (9) 

 

Lemma1 : In the game with pricing, where utility of 
each user defined by (8), the best response of user 𝑖 to 
a given interference is (9), where 𝑖, 𝑗 ∈ {1, … ,N}, 𝑖 ≠ 𝑗. 

Proof: For obtaining 𝑏𝑖(𝐏−𝑖) , we should solve 

max
𝑃𝑖

𝑈𝑖(𝑃𝑖; 𝐏−𝑖). So the first and the second derivative  

of the proposed utility which is  𝑈𝑖(𝑃𝑖; 𝐏−𝑖) =
𝑅𝑖(𝑃𝑖; 𝐏−𝑖) − 𝛽𝑖𝑃𝑖 with respect to 𝑃𝑖 are used. 

𝜕𝑈𝑖
𝜕𝑃𝑖

=
|ℎ𝑖𝑖|

2

(ln2)(𝜎𝑛
2 + ∑ 𝑃𝑗|ℎ𝑖𝑗|

2
𝑗≠𝑖 +𝑃𝑖|ℎ𝑖𝑖|

2)
− 𝛽𝑖          (10) 

∂2𝑈𝑖

∂𝑃𝑖
2 =

−|ℎ𝑖𝑖|
4

(ln2)(𝜎𝑛
2 +∑ 𝑃𝑗|ℎ𝑖𝑗|

2
𝑗≠𝑖 +𝑃𝑖|ℎ𝑖𝑖|

2)
2               (11)

Note that 
∂2𝑈𝑖

∂𝑃𝑖
2  is always negative. We know that 

𝑅𝑖
′(𝑃𝑖), i.e., 

𝜕𝑅𝑖

𝜕𝑃𝑖
 that is 

|ℎ𝑖𝑖|
2

(ln2)(𝜎𝑛
2+∑ 𝑃𝑗|ℎ𝑖𝑗|

2
𝑗≠𝑖 +𝑃𝑖|ℎ𝑖𝑖|

2)
  is a 

strictly decreasing function of 𝑃𝑖  and  𝑅𝑖
′(𝑃𝑖

𝑚𝑎𝑥) <
𝑅𝑖
′(𝑃𝑖) ≤ 𝑅𝑖

′(0) . Thus, for 0 ≤ 𝛽𝑖 ≤ 𝑅𝑖
′(𝑃𝑖

𝑚𝑎𝑥) , we 

have 
𝜕𝑈𝑖

𝜕𝑃𝑖
> 0, so 𝑈𝑖 is an increasing function of 𝑃𝑖. In 

this case, similar to the mentioned game in section III, 

the best response for each user is to transmit at its 

maximum power, i.e., for 0 ≤ 𝛽𝑖 ≤ 𝑅𝑖
′(𝑃𝑖

𝑚𝑎𝑥) 
𝑏𝑖(𝐏−𝑖) = 𝑃𝑖

𝑚𝑎𝑥  that 𝑖 ∈ {1, … , 𝑁} . For 𝑅𝑖
′(𝑃𝑖

𝑚𝑎𝑥) <

𝛽𝑖 ≤ 𝑅𝑖
′(0)  , the equation 

𝜕𝑈𝑖

𝜕𝑃𝑖
= 0 , or equivalently 

𝑅𝑖
′(𝑃𝑖) = 𝛽𝑖 , has the unique solution 𝑃𝑖 = 

1

𝛽𝑖ln (2)
−

𝜎𝑛
2+∑ 𝑃𝑗|ℎ𝑖𝑗|

2
𝑗≠𝑖

|ℎ𝑖𝑖|
2  for 𝑖, 𝑗 ∈ {1, … , 𝑁}  and  𝑖 ≠ 𝑗 . As 

𝑅𝑖
′′(𝑃𝑖) < 0 for all 𝑃𝑖, and hence 

∂2𝑈𝑖

∂𝑃𝑖
2 < 0, the roots of 

(8) maximize 𝑈𝑖 for a given interference ∑ 𝑃𝑗|ℎ𝑖𝑗|
2

𝑗≠𝑖 .  

In this case, it is obvious that transmitter  𝑖 cannot 

transmit more than 𝑃𝑖
𝑚𝑎𝑥for a fixed interference so if 

the obtained 𝑃𝑖 be more than 𝑃𝑖
𝑚𝑎𝑥, the best response 

to 𝐏−𝑖  is the maximum value of transmit power. 

Therefore, in this case we have 

𝑏𝑖(𝐏−𝑖) = min{𝑃𝑖
𝑚𝑎𝑥 ,

1

𝛽𝑖ln (2)
−

𝜎𝑛
2+∑ 𝑃𝑗|ℎ𝑖𝑗|

2
𝑗≠𝑖

|ℎ𝑖𝑖|
2 }. 

For 𝑅𝑖
′(0) < 𝛽𝑖 , we have 

𝜕𝑈𝑖

𝜕𝑃𝑖
< 0 , thus 𝑈𝑖  is a 

decreasing function of 𝑃𝑖 , and the best response for 

transmitter 𝑖  is no transmission, i.e., for 𝑅𝑖
′(0) < 𝛽𝑖 , 

𝑏𝑖(𝐏−𝑖) = 0 for 𝑖 ∈ {1,… , 𝑁}.                                   ∎                                                                     

 By substituting (9) in (8), we can obtain 𝑈𝑖
∗ in (12), 

which is the maximum utility for user 𝑖. 

IV. KSBS ON GIC 

A. Power Allocation Setting  

In this section we are going to find the best power 

allocation for all users in Gaussian interference 

channel based on KSBS.  First we assume that the 

prices (for a unit of power) for all users, i.e., 𝛽𝑖  (𝑖 =
1, … ,𝑁) are given (At the end of this section, the way 
of obtaining prices will be discussed) and they are not 

changed at each level of the game. Now, KSBS is 

obtained by solving, 

max 
𝑃𝑖

𝑟                                 (13) 

s.t. 𝑟 =
𝑈𝑖−𝑈𝑖

0

𝑈𝑖
∗−𝑈𝑖

0 

where 𝑈𝑖  is mentioned in (8). 𝑈𝑖
0 is the disagreement 

point where user 𝑖 uses its maximum power, i.e., 𝑈𝑖
0 =

𝑅𝑖(𝑃𝑖
𝑚𝑎𝑥 , 𝐏−𝑖) − 𝛽𝑖𝑃𝑖

𝑚𝑎𝑥  and 𝑈𝑖
∗  is the maximum 

utility which is derived in (12). Similar to [25], this 
problem is equivalent to 

max
0≤𝐏≤𝐏𝐦𝐚𝐱

min
𝑖

𝑈𝑖 −𝑈𝑖
0

𝑈𝑖
∗ −𝑈𝑖

0                     (14) 

where 0 ≤ 𝐏 ≤ 𝐏𝐦𝐚𝐱 means 0 ≤ 𝑃𝑖 ≤ 𝑃𝑖
𝑚𝑎𝑥for all 𝑖 ∈

{1, … ,𝑁}. The problem in (14) is also mentioned as 

max-equal problem, i.e., 𝑚𝑎𝑥{𝑟|𝑟 =
𝑈𝑖−𝑈𝑖

0

𝑈𝑖
∗−𝑈𝑖

0}, subject to 

0 ≤ 𝑃𝑖 ≤ 𝑃𝑖
𝑚𝑎𝑥 for all 𝑖 ∈ {1,… , 𝑁}. 

It is obvious that if  𝑈𝑖
∗ = 𝑈𝑖

0, then 
𝑈𝑖−𝑈𝑖

0

𝑈𝑖
∗−𝑈𝑖

0 for user 𝑖 

goes to infinity. Therefore, we use an assumption here  
 

𝑈𝑖
∗(𝑏𝑖(𝑷−𝒊), 𝑷−𝒊)

=

{
 
 
 

 
 
 log (1+

𝑃𝑖
𝑚𝑎𝑥|ℎ𝑖𝑖|

2

𝜎𝑛2 +∑ 𝑃𝑗 |ℎ𝑖𝑗|
2

𝑗≠𝑖

)− 𝛽𝑖𝑃𝑖
𝑚𝑎𝑥 ,                                                                      𝑖𝑓 0 ≤ 𝛽𝑖 < 𝑅𝑖

′(𝑃𝑖
𝑚𝑎𝑥)       

log(1 +

|ℎ𝑖𝑖|
2

𝛽𝑖𝑙𝑛 (2)
− 𝜎𝑛

2 +∑ 𝑃𝑗|ℎ𝑖𝑗|
2

𝑗≠𝑖

𝜎𝑛
2 + ∑ 𝑃𝑗|ℎ𝑖𝑗|

2

𝑗≠𝑖

)−
1

ln(2)
− 𝛽𝑖

𝜎𝑛
2 +∑ 𝑃𝑗|ℎ𝑖𝑗|

2

𝑗≠𝑖

|ℎ𝑖𝑖|
2

, 𝑖𝑓 𝑅𝑖
′(𝑃𝑖

𝑚𝑎𝑥) ≤ 𝛽𝑖 < 𝑅𝑖
′(0)

0,                                                                                                                                               𝑖𝑓 𝑅𝑖
′(0) ≤ 𝛽𝑖                         

 

 

(12) 
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that the users whom it is beneficial for them to use their 

maximum power according to their prices, (i.e., 𝑈𝑖
∗ =

𝑈𝑖
0 happens for these users), are not allowed to take part 

in the bargaining. So, we can find 𝑀 users (𝑀 ≤ 𝑁) 
that participate in the bargaining and 𝑁 −𝑀 users quit 
the game because more benefit is never acquired. 

Without loss of generality, it is assumed that the 𝑀 
users can be sorted in the order 𝑅1

′ ≥ 𝑅2
′ ≥ ⋯ ≥ 𝑅𝑀

′ . It 
is investigated that with the given 𝛽𝑖 , users whose 
𝑅𝑖
′(𝑃𝑖

𝑚𝑎𝑥) is not more than 𝛽𝑖  would not participate in 
the game (i.e., the 𝑁 −𝑀 users mentioned above ). So 
to force 𝑀 users to take part in the game the range of 𝛽𝑖  
should be  𝑅𝑀−1

′ > 𝛽𝑖 ≥ 𝑅𝑀
′ . Therefore, we should find 

the power allocation of these 𝑀 users based on KSBS 
with the given prices 𝛽𝑖  for 1 ≤ 𝑖 ≤ 𝑀.  

The other 𝑁 −𝑀 users use their maximum power 
according to their price (𝛽𝑖) and do not attend in the 
bargaining problem. Actually, the dual of maximizing 
the sum rate is maximizing the minimum rate which is 
the fairness scheme [11].  

We next obtain the solution of 𝑃𝑖  for 1 ≤ 𝑖 ≤ 𝑀 , 
according to KSBS. Therefore we have, 

𝑈1 −𝑈1
0

𝑈1
∗ −𝑈1

0 =
𝑈2 −𝑈2

0

𝑈2
∗ −𝑈2

0 = ⋯ =
𝑈𝑀 −𝑈𝑀

0

𝑈𝑀
∗ −𝑈𝑀

0 = 𝑟   (15) 

By defining 𝑈𝑖
−1  as the inverse function of 

𝑈𝑖(𝑃𝑖 , 𝐏−𝑖) , we have 𝑃𝑖
∗ = 𝑈𝑖

−1(𝑟𝑈𝑖
∗ + (1 − 𝑟)𝑈𝑖

0) . 
Note that although there might be multiple solutions of 
𝑃𝑖
∗ , we choose the exclusive one which holds 

∑ 𝑈𝑖
−1(𝑟𝑈𝑖

∗ + (1− 𝑟)𝑈𝑖
0) = 𝑃𝑇𝑜𝑡𝑎𝑙

𝑀
𝑖=1 −∑ 𝑃𝑘

𝑚𝑎𝑥𝑁
𝑘=𝑀+1 . So 

it leads to the single solution 𝑟∗ due to monotonicity, 

and further yields 𝑃𝑖
∗. 

B. Price Setting with Distributed Iterative Resource 

Allocation Algorithm 

In this part, we introduce an iterative algorithm for 

setting the price of transmit power among users to 

reach the KSBS point. In this algorithm 𝑃𝑖
∗ (which is 

mentioned in the above subsection) and 𝛽𝑖
∗  are 

obtained from solving KSB. Moreover, a power 

allocation is Pareto-efficient, if it is not possible to 

increase the utility of any user without decreasing the 

utility of the other user, based on Pareto-efficiency 

definition in [11], [21] and [27]. Here, at the end of the 

game, there exists no power vector like 𝐏′, such that 

𝑈𝑖(𝐏
′) ≥ 𝑈𝒊(𝑷

∗) for all users 𝑖 ∈ {1, . . , 𝑀}. So, this 

achieved operating point is also Pareto-efficient. 

Distributed Resource Allocation Algorithm  

1: Each user 𝑖, chooses initial power from [0, 𝑃𝑖
𝑚𝑎𝑥] 

for transmitting its message  and also an initial 

price 𝛽𝑖 ≥ 0 is set for user 𝑖. 
2: In each iteration 𝑛, power is updated according to 

(9). 

3: The price of each unit of transmit power is 

updated in each iteration 𝑛 according to: 

𝛽𝑖(𝑛 + 1) = [𝛽𝑖(𝑛) + 𝜅(𝑃𝑖(𝑛) − 𝑃𝑖
∗)]+. 

where 𝜅 is the step size. 

4: The utility of each user is updated from (12). 

5:  Jump to step 2 until  
𝑈𝑖(𝑛)−𝑈𝑖

0(𝑛)

𝑈𝑖
∗(𝑛)−𝑈𝑖

0(𝑛)
−

𝑈𝑖(𝑛−1)−𝑈𝑖
0(𝑛−1)

𝑈𝑖
∗(𝑛−1)−𝑈𝑖

0(𝑛−1)
> 𝜀  for all users 

𝑖 ∈ {1, . . , 𝑀}, where 𝜀 is a small constant. 

 

V. NUMERICAL RESULTS 

Numerical results for the described scenario are 

depicted in Fig. 3, Fig. 4, Fig. 5 and Fig. 6. It is 

assumed that 6 users take part in the bargaining game. 

Coefficient 𝜅 (convergence step size) in the iterative 
algorithm is set to 0.01. The channel gains have been 

chosen randomly and all channel gains are positive and 

less than 1 (This is because of weak interference 

channel definition [5]). It is assumed that all channel 

gains are known to users and are fixed during the game. 

In Fig. 3, for each iteration the transmit power of users 

according to step 2 in the iterative algorithm is 

depicted. The maximum power for all users is equal to 

3.5 watts. In Fig. 4, the updating prices of transmit 

power unit are illustrated. In Fig. 5 rates of users and 

in Fig. 6 the utility of users in the bargaining scenario 
during the iterative algorithm are illustrated. One can 

see that utilities are become equal and fairness among 

users are established in about 60 iterations by using 

KSBS to find optimal transmit powers.  

VI. CONCLUSION 

In this work, first we have assumed that users in 

multi-user Gaussian interference channel do not have 

equal rates and the users with good channel gains 

interfere to other users, so the fairness is not satisfied. 

Then, a utility is introduced with pricing for competing 

users and also KSBS is considered as an efficient and 
fair operating point. It is shown that by applying the 

resulted prices and power allocation during the 

proposed iterative resource allocation algorithm for all 

users the fair points are obtained. The numerical results 

show that all users reach the KSBS fair operating point 

after about 50 to 60 iterations.  

 
Fig. 3. The illustration of updating transmit power by users and 

reaching the KSBS operating point. 

 
Fig. 4. The illustration of updating prices of transmit power unit. 
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Fig. 5. The illustration of updating rates by users and reaching the  
KSBS operating point. 

 
Fig. 6. The illustration of reaching the  KSBS operating point. 
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