International Journal of Information
& Communication Technology

(1

ITRC

Volume 2- Number 2- July 2010 (pp.43-49)

Scaling Up Performance of Web Services by
Pre-Serialization Response Analysis

Parinaz Saadat
Computer engineering department
Iran University of Science and Technology
Tehran, Iran
saadat@comp.iust.ir

Behrouz Minaei-Bidgoli
Computer engineering department
Iran University of Science and Technology
Tehran, Iran

b_minaei@jiust.ac.ir

Received: February 06, 2010- Accepted: July 26, 2010

Abstract—Web services are the inseparable part of many scientific applications. Consider communication between two
partial differential equation (PDE) solvers on different domains, such applications work by exchanging large arrays
containing floating point data with high accuracy. The reliance of web services on SOAP leads to performance
degradation in similar scenarios as the serialization of outgoing messages containing large arrays of doubles is a primary

SOAP performance bottleneck.

Various aspects of this problem are examined from the point of views including alternative formats, XML coding
compression, differential serialization, differential de-serialization, etc. This paper proposes an approach which combines
the idea behind differential serialization and differential de-serialization with a completely different implementation.

Keywords- web services; serialization; performance; SOAP

[. INTRODUCTION

Web services have evolved to allow global
communication between web applications. The
software industry is settling upon SOAP as a
common wire format and HTTP as the connection
protocol. A client and a Web service communicate
using SOAP messages, which encapsulate the in and
out parameters as XML. Fortunately, for Web service
clients, the proxy class handles the work of mapping
parameters to XML elements and then sends the
SOAP message over the network [5].

The task of de-serializing the request into objects
and serializing response from a common language
runtime (CLR) object goes back into a SOAP
message hinders SOAP performance.

To illustrate the opportunity for performance
enhancement, consider a widely-used web services
such as stocks exchange web services, e-banking, and
so forth. Such a web service will expect to receive
many concurrent requests and the responses to the

clients could contain large arrays of floating-point
data. The responses to this large amount of concurrent
requests share common parts. As a matter of fact
serializing only the different portion of responses is
the simplest way to avoid any extra work which can
be done by a serializer.

In a nutshell, our technique exploits the
similarities between responses in order to improve
web service response time. It is worthwhile to say that
although our approach is to analyze the similarities
between responses, we took one step further and
utilize the duplicate requests between current calls.
This assumption has led to defining an extra phase for
analyzing the incoming requests as well.

II. RELATED WORK

The approach in [1] describes the design and
implementation of differential serialization, a SOAP
optimization technique that can help bypass the
serialization step for messages similar to those

International Journal of Information & Communication Technology

https://ijict.itrc.ac.ir/article-1-263-en.html

IJICT volume 2- Number 2- July 2010

previously sent by a SOAP client or returned by SOAP
based web service. The authors of [2] have introduced
the design and implementation of differential
serialization’s analogue on the server side which is
called differential de-serialization (DDS). The idea is
to avoid fully de-serializing each message in an
incoming stream of messages. Differential de-
serialization gets its name because the server-side
parser de-serializes the differences between an
incoming message and a previous one.

III. THE PROPOSED APPROACH

Our previous work [1] has addressed this problem on
the request, by avoiding de-serializing all messages.
As the first component which is responsible for
handling requests in a client-server model is the
web server, it would be the best candidate for
handling any pre-processing. As a result we have
proposed a middleware which is capable of running
on top of any web server. Our middleware looks for
exact same messages in any concurrent requests
arriving into the web server. In order to be able to
discriminate between redundant and non-redundant
requests we maintained a trie of incoming parameter
sequences. Although the approach showed significant
performance enhancement, this improvement largely
depends on the probability of receiving requests with
completely the same parameters for a service.

Fig 1 illustrates the idea behind both previous and
present study.

Client Server

SR

1.Begin
Regjuest

2 Before
Serialize

Post-De-Serialization
Request Analysis
(Previous Study)

3. After
Serialize

4.Being in
After

Serialize
Sliite 7.Call Method

e

Pre-Serialization
Response
Analysis

(Present Study)

o /

R.Before Serialize

9. After Senialize

Fig 1. The paradigm of the approach

There is a rather intricate lifecycle to the SOAP
message, involving multiple stages of message
processing. In this paper the research is focused on the
“Before Serialization” stage which occurs immediately
after the web method returns and before the return
values are serialized and sent back to the client.

As mentioned earlier in this paper, the idea is to
take a more general issue into account and take aim
at analyzing responses and avoiding performing
the expensive stage of serializing large objects
after each response is ready.

In order to do so, a means of intercepting SOAP
messages in the SOAP message pipeline is needed.
The ASP.NET SOAP extension framework represents
this feature. Through the SOAP extension architecture
one has access to the message as it is de-serialized
into objects, and as it is serialized from a CLR object
back into a SOAP message. This means that the
SOAP message can be reached before and after
Serialization/De-serialization process.

IV. IMPLEMENTATION

The process of performance improvement is
twofold. The first stage is avoiding processing exact
same requests per Current Collection. The second
one is avoiding the redundant serialization stage of
SOAP responses which share same message portions.
As a result we continue this study in two separate
sections. The first section describes the methods
dealing with requests and the second section focuses
on response issues. In order to maintain web service
statelessness, we concentrated on “Current Requests”
on the web server. So we had to define the term
“Current” in this context. In the implementation the
term current request is used for incoming messages
during a predefined period of time.

Section A discusses the possibility of
performance improvement based on requests reaching
the web service and discusses the algorithms used for
comparing SOAP messages. Section B then
describes an optimization based on the responses.

A. Request Post-Deserialization Processing

For post de-serialization request analysis, current
requests for incoming messages during a predefined
period of time are collected in a dataset which is then
passed to the next step, each 2 seconds for further
analysis. Next parameters ar¢ retrieved from each
SOAP request and a parameter sequence is gencrated
for each request. If the sequence of parameters is
duplicated, there is no need to do all the job of request
processing and serialization of response for every
single request.

Request comparison, analysis and processing
consist of five main steps, each running in a different
thread for maximum performance enhancement.
These steps are described in detail in [1] but to fully
understand the idea of this phase a pseudo code is also
prepared which is shown in Fig 2.

International Journal of Information & Communication Technology

https://ijict.itrc.ac.ir/article-1-263-en.html

1. R:Queue of all Current Requests
2. H:New An Empty HashTable
3. RQ:Init New Queue of Redundant Requests
4. DQ: Init New Queue of distinct Requests
5. For each Requestin R
{
5.1. P:ExtractCallParameters(R)
5.2. |IfpisalreadyinH
5.2.1. Mark Ri as Redundant
5.2.2. Enqueue Ri To RQ
5.3. Else
5.3.1.
5.3.2.
}
6. Send DQ to Web Server for further Processing
7. Reset timer

H =AddToHashTable(H,P)
Enqueue Ri To DQ

Fig 2. Pseudo code for pre-processing request

B. Response Pre-Serialization Processing

As responses include larger objects to be serialized
and sent on wire, the opportunity for performance
enhancement by utilizing the proposed technique
mostly relies on this phase.

For the reasons mentioned in [1] including
maintaining statelessness of web services, the study
focuses on Current Responses on the web server. So
the term “Current” in this context has to be defined.
In the implementation the term Current Response is
used for messages that are ready to be serialized and
are sent over the wire during a predefined period of
time. For the purpose of the implementation this
predefined period of time was set to 2 milliseconds
but can be modified in different situations. A timer is
activated and responses are collected and passed to
the next step each 2 milliseconds for further analysis
where all responses are portioned into chunks of the
same size. Each response is chunked each N byte
where N is set to 32, 64, 128, 256, 512, 1024, 2048,
and 4096.

By now, every message is chunked. The next
phase is to compare the corresponding chunks and
find identical portions so that all but one of identical
portions can bypass the serialization step. Fig 3
illustrates response chunking. As it is shown in the
figure responses | to 6 are chunked into chunks a to f,

There are many issues concerning chunk size. The
larger the chunk size, the more space requirement. On
the contrary, smaller chunks will cause more context
switch and the process of comparison will become a
bottleneck leading to performance degradation.
Different scenarios were simulated to identify the
best chunk size.

A thread is initiated for each corresponding chunk in
all responses and is responsible for finding common
portions in the assigned chunks.

Volume 2- Number 2- July 2010 IJICT IRt

= =

p k) L]

Fig 3. Response chunking

The algorithm used for defining common parts is
one of the most challenging issues of this
implementation. As it is shown in Fig 4, all
corresponding chunks will be assigned to each thread
for example chunk a of all 6 responses is assigned to
T1, chunk b of all 6 responses to T2 and so on .

v
*

Fig 4. Thread Assignment

The most straightforward algorithm is to simply
compare each of n chunks with other n-1 chunk in the
collection. In many applications, it is necessary to
determine the string similarity. Edit distance approach
is a classic method to determine the Field Similarity
[8.9]. A well known dynamic programming algorithm
is used to calculate edit distance with the time
complexity of O(nm). The Hamming distance also
can be used.

A faster algorithm had to be chosen otherwise the
comparison phase would be a bottleneck itself. The
opportunity for performance enhancement depends
largely on the finding as much similarities as possible
in each chunk. Fine-grained chunk comparison helps
the technique perform even better. A trie, or prefix
tree, is an ordered tree data structure that is used to
store an associative array where the keys are usually
strings. All the descendants of a node have a common
prefix of the string associated with that node. Through
this way by maintaining all chunks in a trie, finding
common prefix of any key can be simply determined.

Therefore, each thread maintains its corresponding
chunk in a trie. For the example as shown in Fig 4, T1
maintains a trie for chunk “a” for all responses. A key
factor for choosing the trie is that for detecting
duplicate sequence of length m, this prefix tree takes
worst case O(m) time. Besides, tries are requiring less
space when they contain a large number of short
strings, because the keys are not stored explicitly and
nodes are shared between keys with common initial
subsequences. The granularity of chunks guarantees
that this feature can be utilized. Another advantage of
using tries over similar data structures is that looking
up keys is faster. Looking up a key of length m takes
in the worst case, O(m) time.

International Journal of Information & Communication Technology

https://ijict.itrc.ac.ir/article-1-263-en.html

IJICT volume 2- Number 2- July 2010

The pseudo code for accomplishing this step is
shown in Fig 5 and 6.

1. R : Queue of all Current Responses
2. L:iLenght of the longest Response in R in bytes
3. N:32(32,64,128,256,512,1024 are tested also)
4. If Lmod N =0then T:LDIVN //by QC we mean
the count of Queues needed
.Else T:.LDIV N +1
. Chunk all responses in R into QC chunks (each
chunk is N bytes)
.Fori=0to T-1do{
7.1. Initialize a new thread T[i] ;
7.2. Assign chunk[i] of all messages in R to T[i]
7.3. Trie[i] : New Empty Trie for thread[i] ;
7.4. RC: Queue of Redundant Chunks
7.5. DC: Queue of distinct Chunks
7.5.1. For each chunkin T[i] {
7.5.2. Trie[i] =AddToTrie(Trie[i], chunk)
7.5.3. If chunk [i] is already in Trie[i]
Mark chunk [i] as
Redundant and Enqueue
Ri To RQ
7.5.4. Else
Enqueue Ri To DQ
8. Send DQto Web Server for further Processing
9. Assign chunk[i] of all messages in R to T[i]
10. Maintain chunk(i] in the Trieli]
11. If chunk[i] is partially redundant set a flag
indicating the ending point of redundancy}
12. Allocate chunkli]
13. T: New Empty Trie
14. RQ: Queue of Redundant Requests
15. DQ: Queue of distinct Requests
16. For each Requestin R {
17. P:ExtractCallParameters(R})
18. T=AddToTrie(T,P)
19. IfpisalreadyinT
20. Mark Ri as Redundant and Enqueue Ri To RQ
21. Else
22. and Enqueue RiTo DQ
23. Send DQ to Web Server for further Processing

Fig 5. Pseudo code for post-processing of response

A Binary Search Tree (BST) performs O(log(n))
comparisons of keys, where » is the number of
elements in the tree, because the lookups depend on
the depth of the tree, which is logarithmic in the
number of keys when the tree is balanced. Hence, in
the worst case, a BST takes O(mlog(n)) time.
Moreover, in the worst case log(n) approaches m.
Also, the simple operations tries use during lookup,
such as array indexing using a character, are fast on
real machines [7].

So far common portions of all corresponding chunks
in each thread are identified. It is time to start regular
serialization of all responses and send the SOAP
message on the wire. To do so, the common portions
are serialized once and used for the chunks when it is
needed.

if (string. IsNullOrEmpty(value))return;

if (Child. Count < 1){

Child. Add(new PatriciaTrieNode(this, value});
return;}

bool find = false;

foreach (PatriciaTrieNode node in Child){

if (node. Value. Equals(value))return;

else if (node. Value[0].Equals(value[0]))
{if(node.Type== PatriciaTrieNodeType.End){
string oldValue = node. Value;

node. _value = ol dValue. Substring(0, 1);
node. Child. Add(new PatriciaTrieNode(node,
oldValue.Remove(0, 1}));}

node. AddString(value. Remove(0, 1));

find = true;break;}}

if (!find)

Child. Add(new PatriciaTrieNode(this, value));}
private void RebuildTree(TreeNode tnode)
{PatriciaTrieNode pnode = tnode. Tag as
PatriciaTrieNode;

pnode. Child. Sort();

foreach (PatriciaTrieNode pn in pnode. Child)
{TreeNode tn = new TreeNode(pn. Value);
tn. Tag = pn;

tnode. Nodes. Add{tn);

RebuildTree(tn); }}

Fig 6. Pseudo code for adding chunks to the Trie

V. EXPERIMENTAL SETUP AND ANALISYS

In this section performance studies to prove that
this is a promising approach for improving the
overall service call time are discussed in detail. Three
subsystems helped us simulate any situation
regarding the study:

- Load Simulator

Generates SOAP request and simulates X
Concurrent web service method call per
second.

The Request/Response Analyzer

Responsible for post-de-serialization analysis
of requests and pre-serialization analysis of
responses.

A Monitoring tool

For monitoring the web server’s Performance
Counters such as Byte Received/Sec, Byte
Send/Sec, Total Bytes/Sec, and Connection
Attempts/Sec.

All performance tests have been implemented on
a single Pentium 4 3.00 GHz machine with 3.24
GB of RAM, and a 100GB SATA Drive.

Multiple situations have been tested so that the
results can be compared. To draw a better
conclusion, we have implemented each test 10 times,
dropped the highest and lowest results, the average of
remaining values has been recorded as the overall
response time, the factor indicating the performance
enhancement or degradation.

International Journal of Information & Communication Technology

https://ijict.itrc.ac.ir/article-1-263-en.html

The method was the same for all situations, a
request to a web service was simulated, and every
step was monitored till the response was ready. In
each iteration of the test, the load simulator retrieved
call parameters from a table containing over 12000
parameter sequence of integer, double and string.

The monitoring tool then showed the results of each.

The request post-de-serialization analyzer,
running on top of IIS 7.0, read a sequence of
“incoming” SOAP messages passes them to the
comparison algorithm module where call parameters
of SOAP message were retrieved. Only distinct
requests could go for further processing by the web
server. The effectiveness of this phase on
performance largely depends on the amount of exact
same requests in each set of concurrent simulations.

The response pre-serialization analyzer then
receives the responses for the set of distinct requests.
Responses are chunked and assigned to threads.

Table 1 shows the effect of trie depth for different
chunk sizes on the serialization times.

Another point is that the depth of trie, parameter
sequence length, has also a dramatic effect on
performance enhancement.

TABLE 1. THE EFFECT OF TRIE DEPTH FOR DIFFERENT CHUNK
SIZES ON SERIALIZATION TIME (MILLISECOND)

Trie Depth

Chunk Size |
(hvte)

32 . 71.5

35

64

128

Table 2 lists the overall response time of several
simulated scenarios. In this table M indicates message
size of response including different array sizes. Each
time the responses are chunked into N bytes where N
is {32, 128, 256, 512, 1024}. In table 2, negative
values shows the situations when the proposed
solution caused performance degradation.

Volume 2- Number 2- July 2010 IJICT IEGX4

TABLE 2. RESPONSE TIME IN MILLISECOND. M INDICATES THE
MESSAGE SIZE.

N: Chunk Size (Byte) |
128] 256] 512] 1024

6.8 64| 6.4 -75
2.1]20.7|27.2| 20.4
1 |21.5]30.3] 28.2]
0.7 33.5] 33.5
43| 29| 35
-39 -19] 20
-40 -18
-40 17
-59 -47
.57
-58
58
-70
-68
69
-69

VI. CONCLUDING REMARKS

This paper has proposed a new middleware for
scaling up the web services performance. Web
services are largely applied in many scientific
applications. There are many web-based data
exchange applications that their messages are very
similar. For example communication between two
partial differential equation solvers on different
domains of web, work by exchanging large arrays
containing floating point data with high accuracy.
Such applications have been applied through
scientific simulations and mathematical exchanging
operations.

The reliance of web services on SOAP leads to
performance degradation in similar scenarios as the
serialization of outgoing messages containing large
arrays of floating points is a primary SOAP
performance bottleneck. The task of de-serializing the
request into objects, and serializing response from a
common language runtime object back into a SOAP
message hinders SOAP performance.

Our proposed middleware runs on the top of web
server to take advantage of similar SOAP requests on
a web server for a particular web service. Using our
approach a large portion of responses can bypass the
serialization phase if the message is totally the same.

The plan is to add two supplementary steps to the
steps that a SOAP message passes through, during its
normal life cycle. These steps include post de-
serialization request analysis and pre-serialization

International Journal of Information & Communication Technology

https://ijict.itrc.ac.ir/article-1-263-en.html

IJICT volume 2- Number 2- July 2010

response analysis. The former takes advantage of
similar SOAP requests on a web server for a
particular web service. The latter utilizes the
similarities between outgoing messages so that a large
portion of responses can bypass the serialization
phase before being sent over the wire.

For post de-serialization request analysis, current
requests for incoming messages during a predefined
period of time are collected into a dataset which is
then passed to the next step, (every two miliseconds)
for further analysis. Next, parameters are retrieved
from each SOAP request and a parameter sequence is
generated for each request. If the sequence of
parameters is duplicated, there is no need to do all the
job of request processing and serialization of response
for every single request.

Pre-serialization analysis of responses makes a
more affective contribution to the overall performance
gain. Before serialization of responses, each N bytes
of all responses are chunked where N is {32, 64, 128,
256, 512, 1024} and a thread is responsible for
handling the corresponding chunk in all responses.
Then a trie is maintained for the chunks in order to
find the common portions in each set of
corresponding chunks.

We take aim at analyzing requests and responses so
that performing the expensive stage of serializing
large objects can be avoided with the help of a
middleware running on top of web server. For
identifying redundant calls a tric of incoming
parameters is maintained for every set of current
requests. This way request processing and
serialization of the response of same requests will be
done only once. In a nutshell, to serialize only the
different responses is the simplest way to avoid extra
work done by a serializer.

Various aspects of this problem are examined from
the points of view of alternative formats, XML coding
compression, differential serialization, differential de-
serialization, and so forth. We have presented an
approach which combines the idea behind differential
serialization and differential de-serialization with a
completely different implementation.

We leveraged our process management through
choosing a trie data structure which is maintained for
the sequence collection. Every parameter sequence is
to be inserted in the trie. A key factor for choosing
trie for detecting duplicate sequence of length m takes
worst case O(m) time, in other words trie structure
guarantees that no duplicate parameter sequence is
maintained.

After this phase the distinct requests, plus one out of
n identical request are deserialized and processed.
When the response of that request is ready it is sent to
all other identical requests as well.

Our experiments show that our middleware is a
promising technique for improving the overall service
call time.

It might be worthwhile to notify that although our
approach is to utilize the exact repeating portion
parameters, a further optimization can be considered.
We can enable the middleware so that it can be

configured to apply changes made to the result set of
response to the serialized responses being maintained
in a trie to generate valid results. But this can also lead
to a larger percentage of time consumption for the
comparison and analysis phase. However, this point
will be verified in our future work.

ACKNOWLEDGMENT

We are thankful to Mr. Pedram Zadno Azizi that
really helped us in coding and editing the paper. We
are also thankful to Mr. Abbas Najafiyan from
Computer Research Center of Islamic Sciences, Noor
Co., the Noor digital library section, Qom, Iran that
helped us in choosing the scope of the experiment for
different types of web-based applications. We are also
appreciating Dr. Peyvast’s help in correcting and
editing the paper.

REFERENCES

B. Minaei, P. Saadat. “SOAP Serialization Performance
Enhancement: Design and Implementation of a
Middleware”. International Journal of Computer Science
and Information Security, Vol.6, No. 1, 2009, PP 105-110

N. Abu-Ghazaleh, M J. Lewis. “Differential
Deserialization for Optimized SOAP Performance”. 2005
ACM/IEEE conference on Supercomputing, pp. 21-31,
Seattle WA, November 2005

N. Abu-Ghazaleh, M. Govindaraju, and M. J. Lewis
“Optimizing Performance of Web Services with Chunk-
Overlaying and Pipelined-Send. Proceedings of the
International Conference on Internet Computing (ICIC) ”,
pages 482-485, June 2004.

N Abu-Ghazaleh, M. L. Lewis, and M.
Govindaraju“Performance of Dynamic Resizing of
Message Fields for Differential Serialization of SOAP”
Messages. Proceedings of the International Symposium
on Web Services and Applications, pages 783789, June
2004.

N. Abu-Ghazaleh, M. J. Lewis, and M. Govindaraju.
“Differential ~ Serialization for Optimized SOAP
Performance”. Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-13), pages 55-64, June 2004, Honolulu, Hawaii.

[6] Miranda, Claudio: “Tools and Tips to Diagnose
Performance Issues,”The International Conference on
JAV A Technology, Zurich, (2008)

[7]1 K. Chiu and W. Lu. “A Compiler-Based Approach to
Schema-Specific Parsing”. In First International
Workshop on High Performance XML Processing,2004.

[8] David Megginson et al. SAX 2.0.1: “The Simple API for
XML, http://www.saxproject.org

[9] K. Devaram and D. Andresen. “ SOAP Optimization via
Parameterized Client-Side Caching”. In Proceedings of
PDCS 2003, pages 785-790, November 3-5, 2003.

[10] E. Christensen et. al. Web Services Description Language
(WSDL) 1.1, March 2001, http://www.w3.org/TR/wsdl.

[11] I, Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid
Services for Distributed System Integration. Computer
35(6), 2002.

[12] M. R. Head, M. Govindaraju, A, Slominski, P. Liu,N.
Abu-Ghazaleh, R. van Engelen, K. Chiu, and M. J. Lewis.
“A Benchmark Suite for SOAP-based Communication in
Grid Web Services”. SC—05: Supercomputing *05, page
to appear, Seattle WA, November 2005.

[13] N. Juric,Matjaz and Rozman,Ivan and Brumen,Bustjan
and Hericko,Marjan: “Comparison of performance of
Web services, WS-Security,RMI and RMI-SSL ” The
journal of systems and software, 79, 689, 2006.

[14] Indiana University, Extreme Computing Lab. Grid Web
Services, http://www.extreme.indiana.edu/xgws/.

International Journal of Information & Communication Technology

https://ijict.itrc.ac.ir/article-1-263-en.html

Volume 2- Number 2- July 2010 1JICT et

[15] T. Suzumura, T. Takase, and M. Tatsubori Optimizing
Web Services Performance by Differential
Deserialization”. IEEE/ACM International Conference on
Web Services, pages 185-192, Orlando, FL, July 12-15,
2005.

Parinaz Saadat is a postgraduate
student from the Department of
Computer Engineering, Iran University
of Science and Technology (IUST).
Thesis title is: “A Middleware for
Improving Performance of Web
services by Differential Serialization”
under supervision of Dr. Behrouz
Minaei-Bidgoli. She is currently
working as the software analyst and system designer of E-
payment systems for Sadad Informatics Corp, the IT
department of Bank Melli, Tehran, Iran.

Behrouz Minaei-Bidgoli obtained his

Ph.D. degree from Computer Science &

Engineering Department of Michigan

State University, USA, in the field of

Data Mining. Now, he is assistant

professor in the Department of

Computer Engineering, Iran University

b of Science & Technology (IUST). He is

in advisory board of a Data and Text

Mining research group in Computer Research Center of

Islamic Sciences, NOOR co. Tehran, Iran, developing large

scale NLP and Text Mining projects for Farsi and Arabic

languages. He is also managing director of Iran National
Foundation of Computer Games in Tehran.

International Journal of Information & Communication Technology

https://ijict.itrc.ac.ir/article-1-263-en.html
http://www.tcpdf.org

