I J I C International Journal of Information (r
& Communication Technology 1y

Volume 1- Number 2- May 2009 (pp.21-27)

ON THE CORRECTNESS OF A
TRANSLATION MAP BETWEEN
SPECIFICATIONS IN Z AND SETL?2
PROTOTYPE

Behnaz Changizi Seyyed Hassan Mirian Hossinabadi
Coordination Languages Group Computer Department
Center of Mathematics and Informatics Sharif University of technology
Amsterdam, The Netherlands Tehran, Iran
b.changizi(@cwi.nl hmirian(@sina.sharif.edu

Received: September 12, 2008- Accepted: May 3, 2009

Abstract— Formal specification as a precise description of software requirements plays an important role in the
software development processes. It can be used as a measurement for validating the artifacts of almost all stages in the
development process. Hence, making effort on validating the correctness of the formal specification against the
requirements in the very early stages of development is of a high value. Extracting prototype from formal
specification can be a kind of such a validation. In this article, we propose a translation set of rules for building
executable prototypes written in SetL2 language from formal specification in Z formal language. Then, we investigate
the correctness of the translation with help of some lemmas based on weakest precondition predicate transformer and
refinement relationship.

Keywords-Formal Specification, Prototyping, SetL2, Z, Weakest Precondition Predicate Transformer.

5280 Chwogi 3,15 0ugs & 39 055 Anugi wllyd 50 cage i I e Slpiel Ol sl B30 (shs) Ul @GP0 noyl -0l
Sl Wl 093 43,8) @ 1581 oy dnwgi Jolpe 40)5 LuyE sdiady SYgans (omiwlicl Cu)l lye 4 Wiy (o
Cirogs 5l digal g lyRil «(omiw)lisl iz alail Sl (g j (S Sl dade (SN gl Wl @ ladl Jo 0 50 (590 hmogi Hleisl Fada
wly Setl2 55lugely gl 5 2! S dges S w7 (gype 0L 53 0ad Gl $r90 hnogi daxp sl () Lo cdllis (pl 5O Sl)90

D9 (50 gy Y Ay 55 9 By gy o 5 s)13 i 1 (e (L andB) 03liial b daxr 5 ol (e yd caold])3 oS (o0

Required behavior of a software can be described by

L.~ INTRODUCTION formal specifications precisely and unambiguously.

Starting a software development by writing its ~ On the other hand, formal specifications are typically
formal specification has undeniable advantages [1]. complex products. They need to be verified to ensure

International Journal of Information & Communication Technology

IJICT Volume 1- Number 2- May 2009

they are sound, consistent and complete in regards to
the user requirements [2]. Such a validation is
necessary for formal development of software in the
real world [3].

This paper presents a transformation of formal
specification in Z [4] to programs written in SetL.2 [5].
It also shows the correctness of this formal translation.

II. CONTRIBUTIONS COMPARED WITH OTHER
APPROACHES

Conversion of formal specifications written in Z
and VDM [6] to programs in logical or functional
languages has been reported in some literature. Some
works translate model-based specifications to Prolog
programs. The good point in this approach is that
operations defined through relations can be directly
implemented. Unfortunately, there is no algorithmic
transformation of first order logic into Hom clauses
[1]. On the other hand, the model-based specification
structure usually has a similar form to a functional
program because it contains abstract types and
companion operations {1]. So, other researchers use
functional languages as the target of the translation
[11, [3], [7], [8], and [9]. None of these works present
a coherent set of translation rules. They just offer a
translation in an ad-hoc manner. Except [4] none of
them make any effort to investigate the correctness of
translation. Translation presented in [4] has a formal
basis and it investigates the correctness of translation.
It uses a functional language, for example Miranda, as
prototyping language. This functional language can be
substituted by a higher-level language like Setl.2 to
avoid unnecessary details in the obtained prototype
and to provide the code which is easy to modify.
Besides, the translation rules presented in [4] are still
far from a suitable form for being employed in an
automated translation process. A more suitable form
for translation rules is for example a grammar-like
structure that provides a formal basis which allows the
combination of rules in a precise manner. In this
paper, we use a very high level prototyping language
called SetL2 for developing target programs. SetL2 [6]
and its sibling languages, for example ProSet [8], are
very good choices for prototyping purpose. They have
been used for prototyping cases in several works [2]
and [8].

A. Prototyping

As we mentioned above, research has been done
on converting the formal specifications to functional
languages- they are well known for making prototypes
[7]. Trying to execute formal specifications results in
some limitations on the specification. Reference [9]
presents an algorithm to determine whether the
specification is executable or not. It also offers some
definitions for explicit predicates. Conversion of a
non-executable specification to the executable form is
not a trivial work. Here, we do not make effort on such
a conversion. Prototype is not a comprehensive or
final system. Furthermore, the goal of prototyping is to
make it possible for user and developer to discuss

Identify applicable sponsor/s here. If no sponsors, delete this
text box, (sponsors)

system functionality and its capabilities. The
prototype version of a system should be a miniature of
the complete system [8].

III. CONSTRUCTING PROTOTYPES

Before explaining the translation process, it is
necessary to provide some background information for
the reader. As mentioned, not all predicates in a
formal specification are directly executable. There
are some examples that illustrate the complexity of
extracting executable statements from a typical non-
explicit predicate. In fact, such work can be very
complicated. On the other hand, a study of the Z
specifications collected in Specifications Case Studies
edited by lan Hayes [18] shows that a majority (94%)
of the operation schemas are explicit or can be
converted to the explicit form by small changes [9].
Even in a non-explicit schema, there exists useful
information which is worth being captured. Due to the
fact that a prototype is not supposed to be a total
system, one can skip translation of the non-executable
parts. Here they will be converted to text descriptions.

A. Some definitions

It is easy to see that the different types of variables
of a typical schema can be categorized in four distinct
groups: Inp?, as input variables, Out!, as output
variables, St, as before state variables and St'as after
state variables.

Def 2.1.1. IStlnp. Suppose Variable is set of

variables in a Z specification schema, [StInp, is set of
input and before-state variables can be defined as:

IStInp =def {v : Variable | v € St UInp?} (1)

Def 2.1.2. FStOut. Suppose Variable is set of
variables in a Z specification paragraph. FStOut, set of
output and after-state variables can be defined

as:FStOut =def {v : Variable | v € St ' UOut !} (2)

Def 2.1.3. Condition predicate. Condition predicate
is a predicate whose variables are only in IStinp.

Def 2.1.4. Operation predicate. Operation predicate
is a predicate which has at least one variable of FStOut
form.

Def 2.1.5. Simple predicate. Let E1 and E2 be
expressions,

inrel be an infix relational operator like € and

prerel be a prefix relational operator like then a
predicate in one of the El inrel E2 or prerel El is a
simple predicate.

Def 2.1.6. Simple definition. Suppose v’ is an
afterstate variable and E is an expression with
variables of IStlnp type, then v’ = E is called a simple
definition. It is also said that v’ is defined by E. Var[E]
is the set of variables of E and E can be evaluated if all
of its members are defined. Then v’ is evaluated by v’
=EJ[9].

International Journal of Information & Communication Technology

B, Weakest precondition

According to [17], the operation of a specification
can be defined as below: If the initial state satisfies
the precondition then change only the variables listed
in frame so that the resulting final state satisfies the
postcondition.”The meaning of a command is known
if for any postcondition, preconditions which
guarantee termination in a final state satisfying the
postcondition is known.

For command prog and postcondition 4, suppose
wp(prog, A) be the weakest precondition sufficient to
be sure prog will terminate in a state holding A.
Therefore, wp is a predicate transformer, because it
transforms the postcondition 4 into the weakest
precondition wp(prog,4). B precondition will
guarantee termination of prog in a state holding 4 if B

= wp(prog, A).

For instance, the weakest precondition of the
assignment statement x.=E for postcondition A4 is that
if variable x in expression is replaced by E, 4 still will
be true [17].

wp(x := E) =der A[X \E] (3)

C. Refinement

Refinement £ is a relation between commands.
Def 2.3.1 Refinement: For any command prog/ and
prog2, progl is refined by prog2, progl £ prog2, if

for all postcondition 4, wp(progl, A) = wp(prog2, 4)
is hold [17].

D. SetlL2

The SETL2 programming language is a very high
level language based on the theory and notation of
finite sets. It is evolved from SETL, developed at New
York University by J. T. Schwartz. SETL2 adds to
SETL a syntax and name scoping closer to more
recent imperative languages, full block structure, and
procedures as first class objects. SETL provides two
basic aggregate data types: unordered sets, and
sequences (the latter also called tuples). The elements
of sets and tuples can be of any arbitrary type,
including sets and tuples themselves. Maps are
provided as sets of pairs (i.e., tuples of length 2) and
can have arbitrary domain and range types. Primitive
operations in SETL include set membership, union,
intersection, and power set construction, among
others. It also provides quantified boolean expressions
constructed using the universal and existential
quantifiers of first-order predicate logic.

SETL provides several iterators to produce a
variety of loops over aggregate data structures. To
have a quick look on the structure of SetL.2 programs,
here is a sample SetL2 line of code which prints all
prime numbers from 2 to N [20].

printnin 2.N— forallmin 2.n - 1 —nmod m>();

Volume 1- Number 2- May 2009 1JICT 4]

IV. TRANSLATION OF SPECIFICATIONS TO
PROTOTYPE

As mentioned, predicates of a typical specification
can be divided into two distinct groups of condition
and operation. Because of this fact that condition
predicates just include the input and before state
variables, they cannot change the value of any
variables and then not the program state as a result. In
contrast, operation predicates can change the state of
program. If a condition predicate is next to some
operation predicate, it will play the role of
precondition for them. However, the state of program
will be changed just when the preconditions are
satisfied.

Therefore, here such predicates will be translated
into if statements in the target prototype. [9] presents
some definitions and an algorithm for identifying that
whether a given predicate is definitive and explicit or
not. The following definition formalize our
transformation rules. Def 3.1 Map function. Let Zop be
the set of Z operators and Sop be the set of Setl.2

operators. We define Map : Zop +Sop as in Table 3.

Def 3.2 Report function. Let Sz be the set of
schema predicates in Z language, Ss be the set of
SetL2 statements and NonDef be a non-definitive
operation predicate. Report function converts NonDef
to a text comment in SetL2.

Report: _z-7 _s(4)
Report (NonDef) =def print (NonDef);

Def 3.3 Trans function: Let Vz be the set of Z
variables, Vs be the set of variables of SetL2
statements and NonDef be a non-definitive operation
predicate. Trans function converts Z variables to the
corresponding variables in Setl.2.

Trans : Vz-Vs(5)
Trans(v) =def V
Trans(v’) =def V
Trans(v?) =defV in
Trans(v!) =def v out

Def 3.4 [Ju transformer. Let _z be the set of
schema predicates in Z, _s be the set of SetlL2
statements, ¢ be a constant value of Z, C be the
equivalent constant in Setl.2, v be a variable in Z, V' be
the equivalent Setl2 variable, inrel be an infix
relational operator and prere/ be a prefix relational
operator. [Ju, a transformer which translates a
translatable Z predicate to the equivalent statement in
SetL2, is defined in 6. (A translatable predicate is an
explicit and definitive predicate. It means that there is
enough information on how to calculate results of that
predicate). [9] presents a precise definition for such
predicates and also an algorithm for determining it and
calculating its results. Notice that in our translation,
predicates detected as non-translatable will be
converted to the text comment.

international Journal of Information & Communication Technology,\/\/\@

IJICT volume 1- Number 2- May 2009

[JF: 22— Zs(6)

[siinrels2]u =def [s1]_Map(inrel)[s2]'
[prerels]u =def Map(prerel)[s]'
[Clu=detC

[V]u =def Trans(v)

Def 3.5 [] v transformer. Let Zz be the set of

schema predicates in Z, Zs be the set of SetlL2
statements, Gen be a predicate, Con be a condition
predicate, IStInp = st be a definitive operation
predicate and NonDef be a non-definitive operation

predicate. []r : £z -»Zs, a transformer which translates

a schema specification to Setl.2 prototype, is defined
as:

[r: Z2-Zs(7)

[Con Gen]+=gefif [Con] r then [Gen]r end;
[IStinp = st Gen] r =def [Istinp] 7 := [st] ; [Gen]
[NonDef Gen]r =aef Report (NonDef)[Gen] r
[Con] r=defif {Con] then pass; end,;

[I1StInp = st]7=defIStInp := [st]+

[NonDef] =¢et Report (NonDef)

[A[B\C]] +=ser [A] 1 [[B]] 1 \[C]1]

[wp(P,A)] r=defwp ([P]T, [A]7)

In optimization phase, generated if statements can
be converted into if .. then ... else ... if needed. pass;
statement does nothing in SetL2.

A. Weakest precondition of Z and SetL2 statement

In order to investigate the correctness of the
proposed translation mapping, we are in need for a
formal basis. Weakest precondition, as mentioned in
Section 2.2 can be used for defining a formal semantic
of programs. Actually, it is widely used in the program
transformation filed. Table 1 shows the weakest
precondition for some Z statements. In Table 2 the
weakest precondition corresponding to some SetL2
programs are found.

P

¥ o=t

T
[]

wp(S) = ——p

wp(P)

Fig 1. Refinement correlation & weakest
precondition

V. PROOFS

It is clear thatMap function maps the Z operators to
equivalent operator in SetL2. It is easy to show that
this map is semantically correct. It can be done by
reasoning on the characteristics of each pair of this
map. Lemma 1 investigates the correctness of map

function for # operator. Here, to distinguish between

two cardinality operators in Z and SetL2, we use # for
Z and # for SetL2 cardinality operator.

Lemma 1. #and # are semantically equivalent.

Proof: We use induction to show the equality.
Assume that:

AL ai(8)
#@ = 0 #{} = 0 [definition]

As the base of induction, we consider empty
set.

#{A1,..,An}=n, #{a1,..,an} = n [induction assumption)

Then we accept the correctness of above equations
as assumption. And

#HAL . AnARe} = B{AL AL =0+
#ai, ..,an,an} = #{ai1, .., an}+1 = n +1

Now we have proven the equality. Now using
refinement co-relation, we show the correlation
between the formal semantics of Z and SetL2 which
has been defined by weakest precondition. Our main
references for this section are [17] and [19]. Before
starting proofs, we need to make some assumptions to
build our proofs on top on them.

Assumption 1 [Alr=a
a (of SetL2 domain) is the concrete form of A (of
Z domain).

Assumption 2 x = [IStinp]r

x (of Setl.2 domain) is the concrete form of IStInp
(of Z domain), while IStInp is an input or before state
variable.

Assumption 3 e = [E]r
e (of SetL2 domain) is the concrete form of E (of Z
domain), while E is an expression.

Assumption 4 p = [P]r

p (of SetL.2 domain) is the concrete form of P (of Z
domain), while P is an expression.
Assumption 5 g = [Q]+

q (of SetL2 domain) is the concrete form of Q (of
Z domain), while Q is an expression.

Assumption 6 cond = [Cond]s

cond (of SetL2 domain) is the concrete form of
Cond (of Z domain), while Cond is a condition
predicate expression.

Assumption 7 oper = [Oper Jr

@/\/\/\International Journal of Information & Communication Technology

oper (of SetL2 domain) is the concrete form of
Oper (of Z domain), while Oper is an operation
predicate expression.

Assumption 8 s = [S]r

s (of SetL2 domain) is the concrete form of S (of Z
domain), while S is a set.

Assumption 9 p(x) = [P(X)]r
p(x) (of SetL2 domain) is the concrete form of
P(X) (of Z domain), while P(X) is a predicate on X.

Lemma 2. Generated statements using [/1 are
semantically correct. If S is a chain of schema
predicates, then /S7r will be hold.

Proof. Using weakest pre-conditions defined in Table
1 and Table 2 and refinement relationship, we do
induction on the Z expressions. First we show the
correctness of refinement relation for basic structures.
And we show that IStinp=EEXx:=a.

The approach for proving this lemma is shown in
[4]. So it means to show that S specification is refined
by P program, it is enough to show that the wp(S) =>

wp(P). On the other hand, P actually is [S]T(the
transformation of S using T function). Therefore, we

need to show that wp(S) => wp([S]r). First, We have

show the correctness of this correlation for single
statements. Now we want to consider the combination
of statements. We will start with the combination of
two statements. Then using induction, we investigate
k+1 statements elements.

First we apply the weakest precondition

transformer on both of IStinp = E and x := a.

wp(IStinp = E,A) = A[IStInp\E] [Table 1]
wp(x := e,a) = a[x \e] [Table 2]

Now we apply T operator on the resuit.
[A[IStInp\E]] v = [A]+[[IStInp] +\[E] 1] =def
[Assumptions 1,2,3]
wp(IStinp = E,A) = wp(x := a)

alx \e]

And finally: IStinp=EEx:=a

We use same reasoning on PQ and pq.
wp(PQ,A) = wp(P,wp(Q,A)) [Table 1}
wp(pq,a) = wp(p,wp(q,a)) [Table 2]
[wp(P,wp(Q,A)]r = wp([P]r, [wp(Q,A)]r) =
wp(p,wp([Ql). [Al)
[wp(P.wp(Q,A))}r= wp(p,wp(q.,a))]
PQEpq

[Assumptions 1,4,5]

Now same with Cond Oper and if statement.

wp(Cond Oper ,A) = Cond A (Cond >wp(Oper ,A))
[Tablel]

wp(if cond then oper end,a) = cond and

(cond impl wp(oper ,a))

[Table 2]

Volume 1- Number 2- May 2009 IJICT

wp(Cond Oper ,A) = [Al[[IStinp]N\[E]] =def
alx\e]j [Assumptions 1,6,7]
wp(IStinp = E,A) = wp(if cond then oper end,a)

Cond Oper E if cond then oper end
And with forall quantifier.
wp(vYX : S| P(X),A) = VX : S | wp(P(X),A) [Tablel]

wp(forall x in s | p(x),a) = forall x in s | wp(p(x),a)
[Table2]

[vX : S | wp(P(X),A)]r = forall x in s | wp(p(x).a)
[Assumptions1,2,8,9]

wp(¥X : S | P(X),A) = wp(forall x in s | p(x),a)

VX : S| P(X)E forall x ins | p(x)

For existential quantifier.

wp(IX: S| P(X),A) = 3X: S | wp(P(X),A) [Table 1]
wp(exists x in s | p(x),a) = exists x in s | wp(p(x),a)
[Table 2]

[3X : S | wp(P(X),A)]r = exists x in s | wp(p(x),a)
[Assumptions 1,2,8,9]

wp(3 X : S | P(X),A) = wp(exists x in s | p(x),a)
IX:S|PX)Ccexistsxins | p(x)

For unique existential quantifier.

wp(31X : S| PX),A) = 31 X : S | wp(P(X).A)
wp(justexistsone x in s | p(x),a) = justexistsone x in s |
wp(p(x),a) [Table 2]

[F1X : S| wp(P(X),A)]r = justexistsone x € s | wp(p(x

[Table 1]

),a) [Assumptions
1,2,8,9]

wp(31X : S | P(X),A) = wp(justexistsone x in s | p(x),a)
31X : 8| P(X) E justexistsone x in s | p(x)

For non existential quantifier.

wp(A X : S| PX),A)=2 X :S | wp(P(X),A)
wp(notexists x in s | p(x),a) = notexists x in s | wp(p(x
),a) [Table2]
[3 X : S| wp(P(X),A)}r = notexistsone x in s | wp(p(X

[Table 1]

),a) [Assumptions 1,2,8,9]
wp(® X : S| P(X),A) = wp(notexists x in s | p(x),a)
A X:S|P(X)C notexists x in s | p(x)

For induction, we assume that refinement
relationship is true for a combination of & predicates of
Z which are from different types. Then, here we show
that by adding another predicates, relationships still
hold. Tn the other words, we are going to prove this
relation:

2122..ZnE Si82...Sn = Z1Z2... ZnZn+1 E S182...SnSn+1

The k+Ith predicate can have any on possible
forms. So it is necessary to consider all of the possible
case. However, here we just show some of these
different forms to show the flavor of proofs. The proof
for the other forms will not be much different.

International Journal of information & Communicatien Technology'\/\/\@

IJICT volume 1- Number 2- May 2009

Case 1- Zn+1is in IStinp = E form:
Proof:

wp(Z1Z2...Zn I1Stinp = E,A) = wp(Z1Z2...Zn,wp(IStinp =
E,A)) [By definition])
Wp(Z122...Zn,A)>Wp(S1S2...Sn, [A]r) [Assumptions]
wp(IStinp = E,A)= wp([IStinp]r := [E]s, [Al)

[Shown earlier]

Z2122...ZnlStinp = E £ 818:2...Sa[IStInp]r := [E}r

Case 2- Zn+11s in Cond form:
Proof:

wp(Z1Z2...Zn,A) = wp(S182...Sn,A) [Assumptions]
wp(Cond Z1Z2...Zn,A)=>wp(if [Cond] then S182...Snend,
[A]") [Shown earlier]

Cond Z122...Z~ = if [Cond]rthen $1S2...Snend

Case 3- Zn+1isin V X : S | P(X) form:

Proof:

wp(Z122...2nV X : S| P(X),A) = wp(Z1Z2...Zn,wp(¥X : S
| P(X),A)) [By definition]

WP(Z1Z2...Zn,A)=> wp(S152...Sn, [A]r) [Assumptions]
wp(¥X : § | P(X),A)= wp(forall [X]rin [S]r| [P(X)]r, [A]r
) [Shown earlier]

Z1Z>..ZnV X : S | P(X) £ SiS2...8n forall [X]r in [S}r |
[PXOIr

Deduction about other forms of quantifiers is also
similar.

VI. EXAMPLE

Now in an example, we show how [Jr transformer
can be applied on Z specifications. We just want to
show the manner, so we use a simple case. 5 shows a
simple schema in Z.We just go through this simple
example to show the flavor of translation.
Nonetheless, translation rule can be applied on much
more complicated cases. Update schema specifies an
update operation on st. After the operation, the pair of

s?, v? should be added to sz. Here,We apply []t

function on the top of statement.Then we will go
further and substitute each part by its translation result
step by step.

— Update
st st sym -+ val
s? 1 sym

v?: val

st = stUs? - ?

Fig. 2: Update Operation Schema

[st-=stus? |- v?]i>
[st]r:= [st US? |-v?]r; =

st := [st JUIr[s? |- Vv?]r; =
st := st with [s? [-> v?]r; =

st := st with [$?]r[]~>]1[v?]; =
st := st with [sin,vin];

So the result of translation will also imply that
after its execution, st will be the union of st and the

pair of [sin,vin].

VII. CONCLUSION

This article describes a systematic way for
prototyping Z specifications. A systematic method for
prototyping helps to have fast and easy to modify
prototype programs which is the main concermn in
prototyping. For investigating the correctness of the
translation, we need to provide source and target of
translation with a formal semantic. A formal semantic
has been defined using weakest precondition which is
a widely used theory in the program refinement field.
In the other hand, refinement correlation has been used
to make a correlation between these formal semantics
of source and target. As future work, we are going to
apply the translation rules on a case study and gather
some statistical data over the correctness of translation
in practice.

Table 1: Predicate transformers of Setl.2 used for
prototyping

wp(IStinp = E,A) =def A[IStinp\E]

wp(Oper1Oper2,A) =def wp(Oper1,wp(Oper2,A))

wp(Cond Oper ,A) =def Cond A Cond >wp(Oper ,A)

wp(Vx : S | P(x),A) =def ¥x : S | wp(P(x),A)

wp(3x : 8| P(x),A) =def 3x : S | wp(P(x),A)

wp(31 x: S| P(x),A) =def 31 x: S | wp(P(x),A)

wp(Ax : S | P(x),A) =def A

@/\Nmtemational Journal of information & Communication Technology

Volume 1- Number 2- May 2009 IJICT Iz

Table 2; Predicate transformers of SetL2 used for [13] T. Miller, Paul Strooper, “A Case Study in Specification and
prototyping Imp!emer.\talion Testing”, 1ith Asia-Pacific Software
Engineering Conference, pp 130-139, IEEE Computer

kio A) =def A Society, 2004.
Wp(skip,A) =de [14]) P. T. Breuer, J. P Bowen., “Towards correct executable
semantics for Z”, Z User Workshop, Cambridge, Workshops
wp(x := E A) =def A[x \E] in Computing, pp. 185 — 209, Springer-Verlag, 1994.

[15] C Browne, Computer Languages,

http://cbbrowne.com/info/functional.html|
wp(PQ,A) =def wp(P,wp(Q.A)) [16] M. Utting, P. Malik, Community Z Tools (CZT) project,

| http:/lczt.sourceforge.net

wp(if G then P end,A) =def G and G impl wp(P A) [17) M. Carroll, “Programming from Specifications”, Second

Edition, Prentice Hall, 1994.

) ; 1 [18] 1.J Hayes., “Specification Case Studies”, Second edition,
wp(forall xin S | P(x),A) =def forall x in S | wp(P(x),A) London: Prentice-Hall, 1992.

[19] M. Benedikt, G. Bruns, J. Gibson, R. Kuss, “Automated

. . . . update management for XML integrity constraints”,
wp(exists xin S | P(x).A) =def exists x in S | wp(P(x),A) \\F’)orkshop on %rogramming Language fo% X)IIWL (PLAN-X),

— 2002
[20] http://en.wikipedia.org/wiki/SETL2

wp(justexistsone x in S | P(x),A) =def justexistsone x
in S | wp(P(x),A)

Behnaz Changizi received the B.Sc.
degree in Software Engineering from
Amir Kabir University of Technology
(Tehran Polytechnic), Tehran, Iran in
2003, and the M.Sc. degree also in
Software Engineering from Sharif

wp(notexistsxinS | P(x),A) =def A

REFERENCES University of Technology, Tehran, Iran in

[1] J. M. Spivey, “The Z Notation: A Reference Manual”, Third 2097- S'he started her Ph.D. program in 2008 inj Leiden
Edition, US, Prentice Hall, 2001. University, The Netherlands. Her current research interests

[2] W. Hasselbring, “Prototyping Parallel Algorithms in a Set- include application of Formal Methods in software

Oriented Language”, Hamburg, Kovac, 1994. specification and software development, Verification,

[3] C. B. jones, “Systematic Software Development Using Modgl Transfqrmation ap(_i Domain Specific Language. Her
VDM?”, Prentice Hall International Series in Computer email address is b.changizi@cwi.nl.

Science, 1990.

[4] A. E. Abdallah, A. Barros ,J. B.Barros, J. P Bowen.,
“Deriving Correct Prototypes from Formal Z Specifications”,
Technical Report SBU-CISM-00-27, SCISM, South Bank
University, London, UK, 2000.

[5] T. Tilley, “Formal Concept Analysis Applications to
Requirements Engineering and Design”, Ph.D. Thesis, the
University of @ueensland, Australia, 2003.

Seyed-Hassan Mirian-
Hosseinabadi received the B.Sc.
degree in Software Engineering from
Shahid Beheshti University, Tehran,
Iran in 1984, and the M.Sc. degree
also in Software Engineering from
[6] W. K. Synder, “The SetL2 Programming Language”, Sharif University of Technology,
Technical Report 490, Courant Institute, New York Tehran, Tran in 1987. He started his
University, New York, 1990. Ph.D. program in 1993 and received the Ph.D. degree in
[7] P. Borba ,S. Meira, "A System for Translating Executable Computer Science (Formal Methods) from the University of
VDM Specifications into Lazy ML”, Software - Practice and Essex, Colchester, UK in 1996. He joined Sharif University
BELL S AL 2N SR R L of Technology in 1996, and is currently an Assistant
[8] E.E.Doberkat, W. Frank, U. Gutenbeil, W., U. Lammers, C. Professor in
Fapl, SProSet A" Lanzugas! fon Rroleppinegujih Setsf, 3rd the Department of Computer Engineering. His current
IntemationalWorkshop on Rapid System Prototyping, IEEE research interests include application of Formal Methods in

Computer Society Press, Research Triangle Park, NC, pp X . .
235-248., 1992. software specification and software development in

[9] X. Jia, “An Approach to Animating Z Specifications”, 19th pal‘tlcular- with the hel-p of the Type Th?ory and
Annual IEEE International Computer Sofiware and Constructive ~ Mathematics, software .metrlcs and
Applications Conference (COMPSAC’95), Dallas, Texas, measurement, reconfigurable software architecture, formal
USA, pp. 108- 113, 1995. specification and verification of software architecture, and

[10] P. Malik, M. Utting, “CZT: A Framework for Z Tools”, 4th Relational and XML databases. His email address is
International Conference of B and Z Users (ZB’05), Springer hmirian@sharif.edu.

Berlin / Heidelberg, Vol. 3455/2005, pp. 65-84, 2005

[11] G. O’Neil, “Automatic Translation of VDM Specifications
into Standard ML Programs”, the Computer Journal, Vol. 35,

No 6, 1992.

[12] B. Paulo, R. Silvio, “From VDM Specifications to Functional

Prototypes”, Journal of Systems and Software, Vol. 21, No 3,
pp. 267-278, 1993.

International Journal of information & Communication Technology

