
LABTS: A Learning Automata-Based Task

Scheduling Algorithm in Cloud Computing

Neda Zekrizadeh

Department of Computer

Engineering,

Science and Research Branch

Islamic Azad University

Tehran, Iran

n.zekrizadeh@srbiau.ac.ir

Ahmad Khademzadeh*

 Iran Telecommunication

Research Center (ITRC)

Tehran, Iran

zadeh@itrc.ac.ir

Mehdi Hosseinzadeh

Health Management and Economics

Research Center,

Iran University of Medical Sciences,

Tehran, Iran

 hosseinzadeh.m@iums.ac.ir

Received: 17 August 2018 - Accepted: 14 February 2019

Abstract— Task scheduling is one of the main and important challenges in the cloud environment. The dynamic nature

and changing conditions of the cloud generally leads to problems for the task scheduling. Hence resource management

and scheduling are among the important cases to improve throughput of cloud computing. This paper presents an

online, a non-preemptive scheduling solution using two learning automata for the task scheduling problem on virtual

machines in the cloud environment that is called LABTS. This algorithm consists three phases: in the first one, the

priority of tasks sent by a learning automaton is predicted. In the second phase, the existing virtual machines are

classified according to the predictions in the previous phase. Finally, using another learning automaton, tasks are

assigned to the virtual machines in the third phase. The simulation results show that the proposed algorithm in the

cloud environment reduces the value of two parameters makespan and degree of imbalance.

Keywords- cloud computing, learning automata, task scheduling, priorities of tasks

I. INTRODUCTION

Cloud computing has evolved as a result of the
evolution and improvements in distributed computing,
grid computing and service oriented architecture, and
considered to be as the fifth utility after water,
electricity, telephone, and gas[1]. According to the
definition provided by the National Institute of
Standards and Technology (NIST), cloud computing is
a distributed, parallel, and Internet-based system. The
system is composed of a dynamic connection of a group
of servers and pursues some goals such as task
processing, centralized data storage and online access
to computer services and resources [2]. Cloud
computing provides resources at three levels:
Infrastructure as a Service (Iaas), Platform as a Service
(Paas), and Software as a Service (SaaS), and resources

* Corresponding Author

are allocated based on the demands and the pay-as-you-
use billing method is used to calculate the cost of
services [3].

Physical resources in the cloud provided by cloud
providers as services, are assigned to users through the
virtualization technique. These resources distributed
across different geographic locations are shared
between tasks sent to the cloud. Task scheduling is one
of the most important challenges in the cloud
computing environment and its main purpose is to
allocate the most appropriate resources to the tasks
requested by cloud users [4]. Task Scheduling refers to
the problem of mapping each task to a proper virtual
machine that is created using virtualization technology
on physical resources. The scheduling is an NP-hard
problem, and many researchers have paid attention to
this research area due to its importance and complexity

Volume 11- Number 2 – Spring 2019 (49 -61)

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

 1 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html

[5]. In order to meet demands, the cloud services and
resources must be provided based on the required level
of quality of service (QoS). QoS ensures a certain level
of performance and efficiency based on the user-
defined parameters, and provides some quality features
such as reliability and security. Additionally, Service
Level Agreement (SLA) is a cross-contract between
cloud users and providers [3, 6]. Since the nature of the
problems such as task-resource mapping; diverse QoS
requirements; on-demand resource provisioning;
performance fluctuation and failure handling; hybrid
resource scheduling; data storage and transmission
optimization is NP-hard then it is difficult to be handled
easily [7].

Scheduling methods are generally classified into
three classes: static, dynamic and hybrid. Static
methods devote tasks to resources based on simple
information system obtained from the environment
followed task allocations with no regards to the state of
the resources [8]. In contrast, dynamic scheduling uses
present information of system to schedule decisions at
runtime and then a ready task is devoted to a selected
VM. In various studies, it has shown that the static
scheduling is better than dynamic one from different
perspectives in most cases. Since the searches in the
static scheduling are performed globally in the solution
space and all features of tasks and virtual machines are
predefined, then the execution time of each task in each
virtual machine can be computed before any scheduling
which is not possible generally in real cloud systems.
The task execution time is determined by both virtual
machine and task information .By a dynamic
scheduling, the full details of the tasks are not required
which loses the advantages of global optimization in the
static scheduling. The hybrid scheduling enjoys the
benefits of both static and dynamic scheduling, where
tasks execution times are roughly estimated and tasks
are adaptively assigned to virtual machines at runtime
and re-scheduled, if needed [7-9].

In addition to the type of scheduling, various
objectives and constraints can be considered in the task
scheduling on resources which also affect the design of
the scheduling method. Some methods are for the
problems with only one objective, such as minimizing
makespan, while many scheduling techniques in the
cloud are multi-objective and consider several
objectives such as execution time, cost, energy, and
security in the task scheduling [10-12]. Therefore,
considering the dynamic nature of the scheduling
problem in the cloud and the existence of various
parameters, it is very difficult to provide an accurate,
optimal and predefined solution in real cloud
environments. Thus, it seems to be better to use some
methods to find near-optimal solutions. Therefore
heuristics and meta-heuristics methods can be useful
methods for solving a wide range of hybrid and multi-
objective optimization problems that fall into the static
scheduling class. Therefore population-based
algorithms such as the Genetic Algorithm (GA) [13,
14], Particle Swarm Optimization (PSO) algorithm [15,
16], Ant Colony Optimization (ACO) [17], Tabu
Search [18] and the Simulated Annealing (SA)
algorithm [19] are various methods being used to solve
task scheduling problems in the cloud.

It worth to note that, generally, the scheduling

algorithms in the cloud environment cannot be adapted

to the dynamic nature of resources and environment

conditions. These scheduling algorithms usually

choose a specific and predefined method to schedule a

single task and allocate tasks to the machines based on

the schedule. Thus, if the existing resources or

environmental conditions change over time, cloud

performance will significantly decrease. Hence, in this

paper, a dynamic learning automata (LA) based

algorithm is proposed to solve the task scheduling

problem in the cloud environment. In the proposed

approach, a learning automaton is used to predict the

priority of tasks sent to the cloud and another one is

used to assign tasks to virtual machines based on their

priorities. In this paper, the learning automata-based

task scheduling algorithm is called LABTS and tasks

are assigned to the virtual machines based on the

capacity and capability of each virtual machine as well

as the experiences and predictions obtained over time.

Therefore, the LABTS scheduling algorithm is

performed in three phases including the prediction of

input tasks’ priority, grouping of virtual machines, and

task scheduling on virtual machines in each cluster.

The proposed method is expected to reduce the

execution time of tasks and provide the load balancing

on virtual machines in the cloud. The major

contributions of this paper are as follows:

• A Fixed Action-set Learning Automaton is

used to estimate the probability of tasks entering

different priorities, which updates the probability

vector according to the input rate of tasks with

different priorities.Predicting the priority of input

tasks can improve system performance.

• The main purpose of this paper is to assign

tasks to the appropriate virtual machine based on

their priority.So that by changing the entry rate of

tasks with different priorities, virtual machines

with different processing powers are not idle.

Hence, virtual machine grouping is based on the

probability vector of learning automaton.

• A variable action-set learning automaton is

used to allocate tasks to virtual machines in each

cluster without performing any highly time-

consuming calculations, which makes reducing

migration and it is suitable for real-time systems.

• Since, the task scheduling decision is made

considering the arrival rate of tasks with different

priorities in the cloud system; the scheduling

algorithm is well suited for the dynamic cloud

environment.

The rest of this paper is organized as follows. In
Section II, related works for scheduling are expressed.
Cellular automata are discussed in Section III and
proposed algorithm is described in Section IV. We
express the simulation and the results of the proposed
method in Section V and finally we conclude the paper
in Section VI.

Volume 11- Number 2 – Spring 2019 50

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

 2 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html

II. RELATED WORK

Scheduling is the problem of mapping a set of tasks
to a set of distributed resources. Thus many researchers
have made significant efforts to provide effective
solutions to solve this problem. The problem of
scheduling in a simpler case is a hybrid optimization
problem that can be considered as the bin packing
problem, in which tasks are items needed to be
packaged and the virtual machines are bins with
different capacities [20]. Due to the complexity of the
scheduling problem, solving it by using complete
search methods may not be suitable because it will be
expensive in operation counts and thus time [21]. Thus,
by considering some parameters in allocating tasks to
virtual machines, different scheduling methods
including meta-heuristic algorithms and the swarm
intelligence algorithm have been introduced in the
literature. A new parallel bi-objective hybrid genetic
algorithm has been proposed in [13], reducing the
makespan as well as consumed energy. Two models:
island parallel model and the multi-start parallel model
are investigated in this paper. The dynamic voltage
scaling (DVS) is used to minimize the energy
consumption. Yu et al. use the Genetic Algorithm to
optimize cost and execution time by considering
deadline and budget[22]. Ramezani et al. use the multi-
objective PSO algorithm (MOPSO) to minimize
execution time, transfer time and the cost of the tasks in
scheduling.[23]. Netjinda et al. aimed to optimize the
cost of purchasing the IaaS in order to execute the
workflow in the specified deadline. In the proposed
system, the number of purchase distances, instance
types, purchasing options, and task scheduling are the
main constraints in the optimization process. In this
paper, particles swarm optimization augmented with a
variable neighborhood search technique have been used
to find the configurations of purchasing options with
optimal cost and budget to meet task requirements,
which shows excellent results in terms of overall cost
and fitness convergence compared to other algorithms
[24]. Parthasarathy et al. presented a scheduling
algorithm which is oppositional-GSO algorithm using
heuristic search methods in cloud computing
environment. In this paper, a population that contains a
group of members are generated with their respective
jobs and the fitness are calculated for each member.
Based on the fitness, different operations such as
producer operation, scrounger operation, ranger
operation and oppositional operation are applied to
generate the best schedule [25].

Task scheduling is often used in distributed systems
for optimizing one or more specific quality-of-service
parameters that are often throughput or makespan. In
some of the proposed methods, in addition to
scheduling, the features such as cost, security and load
balancing are taken into account. For example, the
multi-QoS load balancing resource allocation method
(MQLB-RAM) is proposed in [26]. In this algorithm,
the requirements of users and service providers are
combined to form multi-QoS indexes. In order to
provide load balancing, the algorithm compares the
weight of each index in peers to make full use of
resources and for saving cost. The resource allocation
in the algorithm (MQLB-RAM) consists of two main
parts. The first one is to assign virtual peers to physical

hosts, and the second part assigns tasks sent by the user
to virtual peers. In the first part, the virtual machines are
first created on physical resources at the lowest possible
cost using genetic algorithms, and then the improved
greedy algorithm is used to assign tasks to virtual
machines. Several authors have used the winner-bid
auction for resource allocation in clouds. In [27], a
winner-bid auction game is introduced to allocate
resources which is a lightweight mechanism and can be
used in real clouds. In this method, users’ bids are
determined based on the valuation-based bid function
and their expected values in the scheduling. This
method is an online auction and users can provide their
bids over scheduling period. Throughout the
scheduling, the auctioneer allocates virtual machines to
users with the most number of bids. The main purpose
of this scheduling method is to increase the profits of
providers and cloud users. In [28], a game model is
proposed to determine the winner using a Bayesian
method, in which each user approximates the other
competitors' actions in the next stage of auction. In this
paper, the ultimate goal is not only to maximize the
benefits of the service provider, but also to meet the
budget constraints and given deadlines of users as well
as maximizing the resource efficiency.

Some researchers use prioritization and ranking
methods to classify tasks or resources before scheduling
process. Honey bee behavior inspired load balancing
(HBB-LB) has been proposed in [29]. In this method,
the tasks and resources are considered honey bees and
food respectively. The algorithm balances the priorities
of the tasks on the machines in minimum waiting time.
Ergu et al. presented a model for allocating resources to
tasks in the cloud environment. In this paper, the tasks
are ranked based on existing resources and user
priorities using the pairwise comparative matrix
technique and the Analytic Hierarchy Process. In
addition, an induced bias matrix is used to identify
inconsistent elements in task ranking to increase the
consistency ratio [30]. Mishra et al. introduced an
adaptive task allocation algorithm (ATAA) for
heterogeneous cloud environment to minimize
makespan and reduce the energy consumption. In this
approach, tasks are classified into four sections: CPU-
bound task set, urgent CPU-bound task set, IO-bound
task set, and urgent IO-bound task set. CPU-bound
tasks and urgent CPU-bound tasks are assigned to CPU-
bound virtual machines by SCHEDULER1 and IO-
bound tasks and urgent IO-bound tasks are assigned to
IO-bound virtual machines by SCHEDULER2. Both
SCHEDULERs first assign urgent tasks to virtual
machines and, upon their completion, CPU-bound tasks
and IO-bound tasks are assigned to VMs [31]. In [32] a
dynamically hierarchical resource-allocation algorithm
(DHRA) is proposed for the cloud environment in
which nodes and tasks are dynamically divided at
different levels according to computing power and
storage factors using fuzzy pattern recognition. If a new
task enters the system, the task level is first calculated
based on the resource requirement and only the suitable
nodes are suggested which reduces the communication
traffic in allocating resources to tasks. A new static
scheduling algorithm is proposed [33], to minimize the
execution cost according to the deadline specified by
the user. This algorithm consists of two main phases: in
the first one, the workflow is clustered using a primary

Volume 11- Number 2 – Spring 2019 51

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

 3 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html

clustering algorithm and a sequence of related tasks is
considered for each cluster. In the second phase, the
best cluster combination among the available ones is
selected through a novel scoring approach and tasks in
each cluster are mapped to the processing resources
using step-by-step method. In [34], an ordinal
optimization method is proposed based on ordinal
optimization (OO) and evolutionary OO algorithms that
considers the volume of workloads, load balance, and
the volume of exchanged messages among virtual
clusters. This method involves three phases: Primary
scheduling phase, Similarity calculation phase, and
Scheduling Improvement phase. In the first phase, the
number of virtual clusters is determined according to
the number of initial workloads and virtual machines
are equally distributed among the existing clusters. In
the second phase, the newly entered jobs are compared
with the previous jobs and their similarity is calculated.
If the similarity is greater than the predefined threshold,
the scheduling continues like before; otherwise another
scheduling method must be used according to the new
information.

 Singh et al proposed QoS-based resource
provisioning and scheduling framework (QRPS) that
helps distributing and scheduling available resources.
There are two units resource provisioning unit and
resource scheduling unit in this algorithm. In the
resource provisioning unit, workloads are first analyzed
and identified based on QoS requirements. After
determining the workload patterns, workload clustering
is performed according to the specified patterns. At this
stage, workloads are re-clustered using the k-means-
based clustering algorithm and weights determined for
QoS parameters. In resource scheduling unit, the
resource scheduling is performed based on 4 policies
(Compromised cost-time-based (CCTB) scheduling
policy, time-based (TB) scheduling policy, cost-based
(CB) scheduling policy, and bargaining-based (BB)
scheduling policy). Then Decision tree-based
scheduling is used to select one of the four above-
mentioned policies according to the user needs [35].
Ding et al proposed a scheduling mechanism to provide
resources according to users’ demand. This method
involves three main steps: resource matching, resource
selection, and feedback integration. In the resource
matching step, all available resources are compared
with the user requirements, and the resources with
degree higher than a pre-defined threshold are placed in
the same set. In the resource selection phase, the
resources in the set are reviewed and the resource with
maximum efficiency is allocated to the user. In the
feedback integration step, the selected resource is used
as the relevance feedback information to update the user
requirements and priorities. Updating user
requirements makes it possible to allocate resources to
the near-real needs of user at later stages [36]. Akbari
[37] proposes a learning automata-based job scheduling
algorithm for Grids. In this method, two LA are
associated with each scheduler one of which is for
scheduling the user submissions and another one for
allocating the workload to the Grid computational
resources. Simulation results show that the algorithm
improves makespan, flowtime, and load balancing.

Sahoo et al. presented a Learning Automata based

Energy-Aware Scheduling (LAEAS) algorithm for

real-time task scheduling in the cloud system. In this

algorithm, the scheduler consists of a schedulability

analyzer and task allocator. Schedulability analyzer

uses a mathematical model based on LA to find the

optimal assignment[38]. In [39] the task scheduling

problem is considered as a bi-objective minimization

problem which includes minimization of energy

consumption and makespan. In this paper a novel

learning automata-based scheduling framework for

deadline sensitive tasks in the cloud is proposed. The

scheduler invokes LA model to generate the best

scheduling decision possible through the

reinforcement learning process. Misra et al.[40]

proposed an LA-based framework to improve the

performance of QoS-enabled cloud services

concerning response time and speed-up. The LA-based

QoS system not only improves the performance of the

virtual computing machines, but also ensures that all

the agreed conditions are fulfilled by the

provider.Ranjbari et al. proposed a LA-based

algorithm which improves resource utilization and

reduces energy consumption. The algorithm considers

changes in the user demanded resources to predict the

PM, which may suffer from overload. It improves

PMs` utilization, reduces the number of migrations,

and shuts down idle servers to reduce the energy

consumption of the data center[41]. In [42] authors

have utilized LA theory to develop a prediction model

for cloud resource usage. Venkataramana et al.[43]

suggested task assignment architecture based on

learning automata for a heterogeneous computing

system to achieve load balancing and minimum

execution time.

III. LEARNING AUTOMATA

Learning Automata (LA) [44] is an adaptive
decision making unit which is able to learn and improve
its performance by choosing the optimal action from a
limited set of actions. For a given action-set, there is
also a probability vector in LA. An action is firstly
selected according to the probability vector and then
apply it to the random environment as an input. The
environment evaluates the received action and responds
with a reinforcement signal. The probability vector is
updated according to the reaction from the
environment. The main purpose in LA is to select the
best action from the action-sets to minimize the average
penalty received from the environment. LA is
commonly used in complex, dynamic, and random
systems where the accurate and complete information
on the environment is not available [45]. Fig. 1 shows
the relationship between random environment and
learning automata.

Figure 1. Relationship between learning automata and its random

environment

Volume 11- Number 2 – Spring 2019 52

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

 4 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html

A random environment can be represented by a

triple E={α,β,c}, α={α1,α2,…,αr} is a finite set of

inputs (actions) and β={β1,β2,…,βm} represents the set
of random outputs. In other words, β is the set of values
that can be taken by the reinforcement signal, and c =
{c1, c2 …, cr} is the set of penalty probabilities (these
probabilities are calculated on the basis of the
environment reaction), where the element ci is related
to the action ai. The environment can be divided into
stationary and non-stationary based on the type of
penalty probabilities. In the stationary random
environment, the penalty probabilities are fixed, while
in a non-stationary environment these probabilities
change with time. According to the nature of the

reinforcement signal β, the random environment can be
classified into three models P-model, Q-model and S-
model. The P-model is referred to an environment in
which the reinforcement signal can only take two
binary values one and zero. The Q-model is an
environment in which a limited number of values in [0,
1] are taken by the reinforcement signal. In an S-model
environment, the reinforcement signal is a continuous
random variable in the interval [a, b]. LA is divided into
two main groups fixed structure LA and variable
structure LA. In the fixed structure LA, transition and
output functions are time-invariant, and the transition
probability from one state to another and the actions and
states selection probability are fixed. There are several
examples of the FSLA, such as the Automaton of
Tsetline, Krinsky, TsetlineG, and Krylov [46, 47]. The

variable structure LA is denoted by {α , β, p, T}, where

α={α1,α2,…,αr} is a finite set of actions,

β={β1,β2,…,βm} is a set of inputs, p = {p1, p2, ..., pr} is

the probability vector and p(k+1)=T[α(k),β(k),p(k)] is
a learning algorithm. The learning algorithm is a
recursive relationship correcting the action probability

vector according to the responses. Let αi(k)∈α be an
action selected by the learning automaton at the instant
k, and p(k) be the probability vector of the action-set at

the instant k. Thus, if αi receives a satisfactory response
from the environment, pi(k) increases and probabilities
of the others decrease, otherwise, pi(k) decreases and
the probabilities of the rest increase. In each case, the
changes are made so that the sum of pi(k) being kept
equal to one. At each instant k, if the selected action

αi(k) receives a reward from the random environment,
the action probability vector p(k) is updated as follows:

���� + 1� = 	����� +
�1 − �����										� = ��1 −
������																				∀� ≠ � 				�1�
and if the selected action is penalized, the

probability vector is updated by:

	���� + 1� = � �1 − �������																							� = �
		� �� − 1� + �1 − �������				∀� ≠ � �2�

where a and b are the reward and penalty parameters
respectively, the increase or decrease in the probability
of the actions is determined by the environment
response, and r is the number of actions in the action-
set. Therefore we may have three cases corresponding
to the values of a and b. If (a = b), the above relations
are called linear reward-penalty (LR-P) algorithm. If (a

>> b), the equations are called linear reward-∈penalty

(LR−∈P), and if b is zero (b = 0), they are called linear

reward-inaction (LR−I). If the selected action in the LR-I,
is penalized by the environment, the action probability
vector remains unchanged because of the zero value of
b.

A. Variable Action Set Learning Automata

A variable action-set learning automaton (VLA) is
an automaton in which the number of the available
actions change with the time. A VLA contains a finite

set of n actions as α={α1,α2,…,αn}. A={A1,A2,…,Am}

indicates the set of action subsets and A(k)⊆α shows a
subset of all the actions that can be selected by the
learning automaton at the instant k. The particular
action subsets are randomly selected by an external

agency according to the probability distribution of Ψ(k)

={Ψ1(k),Ψ2(k),…,Ψm(k)} which is defined over
possible subsets of the actions:

Ψ���� = ����[���� = ��|�� ∈ �		, 1 ≤ � ≤ 2! − 1]
	�#���� = ����	[$��� = $�|����, $� ∈ ����] is the

probability of choosing αi if the action subsets A(k) has

already been selected and αi belongs to A(k) (αi∈A(k)).
The value of the scaled probability �̂���� is calculated
by

�̂���� = �����&��� 											�3�
where &��� = ∑ �����)*∈+�,� is the sum of actions

probabilities in A(k) and ����� = ����[$��� = $�].
The method of choosing an action and updating the

probability of actions in a variable-action-set learning
automaton can be described as follows. First, we
assume that A(k) is the subset of the selected action at
the instant k. Before selecting an action from A(k), the
probability of all actions in the selected subset are
calculated by using Eq. (3). Then the automaton
chooses one of the actions in A(k) randomly according
to the scaled action probability vector �̂���� .
Depending on the received response from the
environment, the learning automaton updates its scaled
action probability vector. Of course, it should be noted
that only the probabilities of the actions in the selected
subset will be updated. Finally, the probability vector of
the actions of the selected subset is re-scaled by

 ���� + 1� = �̂��� + 1� ∗ &���		for	all		$�∈A�k�				�4�
See [48] for more details.

IV. PROPOSED ALGORITHM

In this section, a learning automata-based
algorithm, called LABTS, is proposed for the task
scheduling problem on virtual machines in the cloud
environment. In this approach, the scheduling is
supposed to be online, i.e. the tasks are scheduled
individually corresponding to the arrival time which is
thus a non-preemptive scheduling method i.e. the
processing of a task on a virtual machine is not stopped
until its execution be completed. To understand the
proposed algorithm better, we describe the parameters,
the mathematical model, and problem definition in the
sequel. TABLE I shows the most used notation and
parameters.

Volume 11- Number 2 – Spring 2019 53

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

 5 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html

TABLE I. NOTATIONS AND PARAMETERS

Notations Definitions Ui	 ith user Tpriority�Th,Tm,Tl�	 Priority of task (high, middle, low) ta	 Arrival time of each task to the cloud system VMj	 jth virtual machine r	 The number of available VMs �A!BCD 	 The number of processing elements in jth VM �AC�EFD 	 The number of MIPS for elements in jth VM GHIJD 	 The communication bandwidth in jth VM Lj�k�	 The queue length of jth VM at the instant k AsT	 Learning automaton to predict the priorities of the input task $FM	 Action-set of AsT PsT	 Action probability vector of automaton ast ClusterH	 Cluster of VMs for high priority tasks ClusterM Cluster of VMs for middle priority tasks ClusterL Cluster of VMs for low priority tasks S� The capacity of jth VM C	 The capacity of all VMs in cloud STUBFVWXY	 Specified capacity for existing VMs in clusterH STUBFVWXZ	 Specified capacity for existing VMs in clusterM STUBFVWX[Specified capacity for existing VMs in clusterL

AsV	 Learning automaton to assign the task to appropriate VM $F\	 Action-set of AsV]F\ Action probability vector of AsV

A′cH, A′cM , A′cL Subsets of $F\]′	���� Probability of the action αi in the subset A′ at the instant k

P′cH, P′cM , P′cL Action probability vectors for subsets A′cH, A′cM and A′cL

Laverage(k) Average queue length of VMs in the corresponding cluster at the instant k

The proposed algorithm uses the learning automata
to schedule tasks on virtual machines through Fixed
Action-set Learning Automaton and Variable Action-
set Learning Automaton. The first learning automaton
is used to predict the priority of input tasks and
determines the probability of the tasks as high, middle
and low. By knowing the probability of input tasks and
given priorities, the virtual machines are clustered into
three clusters, each of which are assigned to one of the
tasks’ priorities. Using the Variable Action-set
Learning Automaton, tasks are assigned to virtual
machines in each cluster. The virtual machines are re-
clustered according to the priority probability of tasks
and after entering a certain number of tasks. In this
model, the users (U1, U2, U3 … Un) send their tasks to
the cloud system for execution and it is always expected
VMs to be assigned as required. The priority of each
task, Tpriority can be categorized into three classes high
(Th), middle (Tm) and low (Tl) accordingly [29]. The
arrival time of each task to the cloud system is shown
by ta. VM= {VM1, VM2…, VMr} is a set of virtual
machines assigned to tasks that are sent to the cloud
system over time. Each virtual machine has several
features, namely, the number of processing elements,
the number of millions instructions per second (MIPS)
for these elements, and the communication bandwidth
in each virtual machine which are denoted by penum,
pemips and VMbw, respectively. Additionally, each
virtual machine has a waiting queue that assigned tasks
remained in queue until be executed by it. Thus, L(k) is

the length of the queue, the number of tasks, in each
virtual machine at the instant k. Therefore the LABST
algorithm can be divided into three main phases shown
in Fig. 2.

A. Phase 1: predicting the priority of input tasks

In a cloud system, the user's requested tasks arrive
at different times and are scheduled according to the
scheduling algorithm which is online. Thus, once any
task enters the system, the scheduling is executed by
assigning it to an appropriate virtual machine. Tasks
generally are with arrival times and different priorities.
In this algorithm, three priorities as high, middle and
low are considered for the tasks. The volume of input
tasks with different priorities can vary over time. That
is, in a special time interval, high-priority tasks are
more requested by users, and the tasks with a middle or
low priority will enter the system in the other intervals.
Therefore, a predictive and learning method can be
useful for predicting the priority of tasks. Thus a
learning automaton named AsT is used in this phase that
is able to predict the priorities of the input task. AsT is a
Fixed Action-set Learning Automaton with three
actions defined as 	$FM = {High,Middle, Low} . The

selection of a priority from the action-set αsT is
predicting the task priority entered into the cloud
system according to the action probability vector of
automaton AsT, shown as PsT={PsT

h ,PsT
m,PsT

l}.

Volume 11- Number 2 – Spring 2019 54

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

 6 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html

Figure 2. Schematic representation of the three phases

It is obvious that each priority is selected on the
basis of their probability. All priorities in the action-set
initially are with the same probability. Since AsT is a
fixed action-set with three values, then the probability

of selecting each action is equal to	cd		.
In this phase, when a new task enters the cloud

(represented by Tnew), the automaton AsT selects one
of the actions from the action-set randomly based on the
action probability vector. If the task priority entered
into the cloud is equal to the selected priority from the
action-set, then it indicates that the selected action is
correctly predicted and its probability increases by Eq.
(1). However, if the priority of the input task is not the
same the selected, then the probability of the action
selected from the action-set of automaton AsT is reduced
by Eq. (2). Therefore, this phase is executed upon the
arrival of each task and the priority prediction improves
over time. Because by giving reward to the correct
predictions and considering penalty for inaccurate
predictions, the action probability vector of the
automaton AsT is updated and these values are changed
corresponding to the environment responses. The
pseudo code of phase 1 (predicting the priority of input
tasks) is shown in TABLE II.

TABLE II. THE PSEUDO CODE OF PHASE 1 IN LABST

ALGORITHM

Phase 1: predicting the priority of input tasks

,TnewsTInput: P

sTOutput: P

 rnd=random(0,1) 1

 if (rnd<=]FMe) then 2

 Select_Action← High 3

 else if (]FMe < rnd<=]FMe +]FMC) then 4

 Select_Action← Middle 5

 else 6

 Select_Action← Low 7

 end if 8

 if (Select_Action ==Tnewpriority) 9

)1(with Eq. sTUpdate P 10

 else 11

(2) Eq.with sTUpdate P 12

 end if 13

B. Phase 2: virtual machines grouping

After predicting the priority of input tasks, the
grouping phase is started to group virtual machines
corresponding to the action probability vector obtained
from the previous step. In this phase, virtual machines
are classified into three clusters, the first of which is for
high priority tasks (clusterH), the second one for middle
priority tasks (clusterM) and the third cluster for low
priority tasks (clusterL). In the first phase, the action
probability vector of AsT is changed based on the
priority of the input tasks and the amount of rewards or
penalties. Additionally, the arrival of only one task does
not lead to significant changes in the action probability
vector. Therefore the grouping phase is not repeated at
the entry of each task and re-grouping is performed
when a certain number of tasks enter. For example, after
entering 10 tasks, the re-grouping is performed based
on the new value of the action probability vector PsT,
which can be determined by the cloud system. In this
phase, virtual machines are grouped based on the action
probability vector PsT. To perform grouping According
to the characteristics of each virtual machine, the
capacity of each machine [29] is first calculated by

S� = �A!BC� f �AC�EF� + GHIJ� 										�5�
Therefore, the capacity of all virtual machines in the

cloud can be defined as:

S =hS�X
�ic

																																											�6�

Volume 11- Number 2 – Spring 2019 55

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

 7 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html

After calculating the capacity of each virtual
machine and the capacity of all virtual machines by Eq.
(5) and Eq.(6) respectively, the capacity of each cluster
is calculated according to the action probability vector
PsT, which is defined as follows:

																		STUBFVWXY = S f]FMe

																	STUBFVWXZ = S f]FMC

STUBFVWX[= S f]FMU (7)

]FMe +]FMC +]FMU = 1 , then 		S = STUBFVWXY +STUBFVWXZ + STUBFVWX[. After calculating the capacity of
each cluster, virtual machines should be placed in the
clusters accordingly. The clusterH is used for assigning
high priority tasks with the highest priority. Thus the
first virtual machines fall into cluster clusterH
accordingly which is the same as	STUBFVWXY	. Thus the
virtual machines are arranged in descending order
according to their capacity. Virtual machines with the
highest capacity are placed in the clusterH with a total
capacitySTUBFVWXY	 . Then, these virtual machines are
removed from the list of existing virtual machines, and
those with the highest capacity and total capacity equal
to STUBFVWXZ	 are selected among the remaining virtual
machines to be placed in the clusterM. Finally, the
remaining machines in the list are placed in clusterL.
The aim in this phase, is to allocate machines with
higher capability and lower queue length to the high
priority tasks as well as reducing the waiting time for
tasks with a middle and low priority. The pseudo code
of phase 2 (virtual machines grouping) is shown in
TABLE III.

TABLE III. THE PSEUDO CODE OF PHASE 2 IN LABST

ALGORITHM

C. Phase 3: task scheduling on virtual machines in

each cluster

After grouping virtual machines in the clusterH,
clusterM, and clusterL, each task enters the cloud
system and is sent to its corresponding cluster according
to its priority. The learning automaton AsV is used to
assign the task to the appropriate virtual machine in
each cluster. This automaton has finite actions r, but the

number of actions may change at any time since the
virtual machines in each cluster form the action-set of
given automaton that is changed after grouping. Thus,
the learning automation AsV is a Variable Action-set
Learning Automaton.

First, all virtual machines in the VM list form the
action-set of AsV, which is denoted by $F\ ={$F\� |∀GH� ∈ GH}. In other words, each of the existing
actions in the action-set of the automaton AsV represents
one of the virtual machines in the VM list. The VM list
has r virtual machines with the same initial selection
probability. Thus, the action probability vector of AsV is

defined as]F\ = k]F\� l∀GH� ∈ GHm , where at the

beginning of the cloud operation, the probability of

each virtual machine is equal to
cX . After grouping

phase, virtual machines in each cluster form a subset
from the action-set of AsV. Therefore, the subsets of the

automaton AsV are A′cH, A′cM and A′cL, being the set of
virtual machines for clusterH, clusterM, and clusterL,

respectively, denoted by �′TY = {$TY� |∀GH� ∈nopqrA�s} , �′TZ = {$TZ� |∀GH� ∈ nopqrA�H} and �′T[= {$T[, l∀GH, ∈ nopqrA�t} . Each of A′cH, A′cM

and A′cL is a subset of $F\, with no elements in common
because they are placed in different clusters in grouping
phase, i.e. �′TY ∩ �′TZ ∩ �′T[= ∅. After determining

the three subsets A′cH, A′cM and A′cL, the action
probability vector in each subset is calculated by Eq.(3)
as follows:

]′	���� =]����∑]�)*w+′	�,� 															�8�
Where P′i (k) is the probability of the action αi in

the subset A′ at the instant k and Pi(k) is the action

probability (]���� = ����[$��� = $�]) and ∑]�)*w+′	�,� is the sum of the probabilities of all actions

in the subset A′.

P′cH, P′cM and P′cL are the updated action probability

vectors calculated by Eq. (8) for subsets A′cH, A′cM and

A′cL respectively which are defined as]′TY =k]′	TY� l∀$� ∈ �′TYm ,]′TZ = k]′	TZ� l∀$� ∈ �′TZm , and]′T[= {]′	T[, l∀$, ∈ �′T[} . When a new task enters

into each cluster according to its priority, all virtual
machines in the corresponding cluster are a candidate
to be assigned to the task. Thus, one of the actions in a
given subset (which represents a virtual machine in the
cluster) is selected based on the updated probability
vector. If the queue length of the selected virtual
machine is smaller or equal to the Laverage in the given
cluster at current instant, the probability of the selected
action and other actions in the subset is calculated by
Eq. (1), which means receiving a reward related to the
selected action and it assigned to the task, otherwise, the
action probability vector is updated using Eq. (2), which
means a penalty for the selected action and this phase
continues. Laverage(k) shows the average queue length of
VMs in the corresponding cluster at the instant k, which
is computed as:

tyzWXy{W��� = ∑ t����|+′	|	�ic|�′	| 					,			∀$�|�′										�9�

Phase 2: virtual machines grouping

Input: PsT

Output: VMs grouping

for j=1 to r do // each VM 1 						S� = �A!BC� f �AC�EF� + GHIJ� 2

 C=C+Cj 3

end for 4 STUBFVWXY = S f]FMe 5 STUBFVWXZ = S f]FMC 6 STUBFVWX[= S f]FMU 7

Sort VMs by descending Cj 8

 clusterH←VMd| ∑Cd≈STUBFVWXY 9

 Delete VMs that assigned to clusterH 10

 clusterM←VMd| ∑Cd≈ STUBFVWXZ //

remained VMs

11

 Delete VMs that assigned to clusterM 12

 clusterL←VMs remained 13

Volume 11- Number 2 – Spring 2019 56

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

 8 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html

where A′ is one of the three subsets A′cH, A′cM and

A′cL and A′ denotes the number of actions in the
given subset. Li(k) is the queue length of each virtual

machine in the action subset A′. After assigning the
predefined number of input tasks to virtual machines,
the grouping phase is required to be performed again
because of changes in the action probabilities in the
action probability vector of the automation AsT and
changes in the arrival rate of tasks with different
priorities. In this case, the action probability vectors
must be calculated using Eq. (4) and the action vector
of each action subset is updated once again after
performing the grouping and determining the action
subsets of each cluster. The pseudo code of phase 3 in
LABST algorithm is shown in TABLE IV.

TABLE IV. THE PSEUDO CODE OF PHASE 3 IN LABST

ALGORITHM

In the third phase of the proposed algorithm, the
new task is sent to clusterH, clusterM and clusterL
according to its priority High, Middle, and Low,
respectively. In the first line of the pseudo-code, the

value of the action vector of A′ is updated by Eq. (8)
which takes place only after the grouping phase upon
the determination of the action subsets. If there is no re-
grouping, then there is no need to perform the first line
because the subset of actions assigned to the cluster
remains unchanged.

V. EXPERIMENT RESULTS

There are several issues such as network flow,
virtual machine load balancing, scalability,
management, etc. in a cloud system, so that they have
been generally investigated in different extents.
Additionally, the cloud systems provide software and
hardware services on different scales by using resource
providers. Therefore it's not possible to use the real
cloud system to perform experiments by various criteria
in the cloud system. Thus, it is essential to have a good
simulator for testing and obtaining the results. One of
these simulators is the cloudsim designed by the
University of Melbourne, Australia in 2009 which is
based on Java [49]. Cloudsim is a generalized simulator

allowing to model, simulate and test on cloud
computing infrastructure and application services [50,
51]. There are four-layer architectures Simjava,
gridsim, cloudsim and usercode first two of which are
combined in a new architecture.

In this section, we analyze the efficiency of our
proposed algorithm through simulation results
performed by the cloudsim simulator in cloudsim-3.0.3
on a system with Intel corei5 processor, ram 6G and the
windows 8.1 enterprise. Due to the importance of
scalability, we consider the cloud system in three
different sizes with different number of virtual
machines. The small scale cloud system consists of 10
virtual machines, the medium scale cloud system
consists of 25 virtual machines and a large-scale one
has 50 VMs. In order to compare the LABTS algorithm
with other algorithms, the number of tasks sent to each
cloud systems by the user are 200, 600 and 1000.

 To validate the simulation, the instance types
provided by Amazon Ec2, such as t2 and M5, are used.
The simulation is performed on 10 data centers and the
number of hosts for data centers varies from 1 to 4.
These hosts are with different characteristics and the
number of virtual machines per host is 3 and the
number of PEs varies from 1 to 4. Virtual machines
have a different processing power in the cloud
environment, and MIPS (million instructions per
second) ranges through [500-2000]. Priority of tasks
are generated by a uniform distribution. The user’s task

arrival distribution is Poisson with λ=1 indicating that
the average number of tasks arrive to the cloud by user
at each second is 1. To perform the test, tasks with
different lengths are generated in the interval [10,000 -
25,000] by using a uniform distribution according
to[52] . Tasks are independent of each other and the
execution time of each task is not dependent on the
previous or the next task. The simulation details are
shown in TABLE V.

TABLE V. PARAMETERS SETTING IN CLOUDSIM[52]

To illustrate the effectiveness of the LABST
scheduling algorithm, the values of makespan and the
degree of imbalance obtained in simulation are
compared with the results of some algorithms such as
FCFS (First Come First Serve), Min-Min and HBB-LB
[29].

Phase 3: task scheduling on virtual machines in each

cluster

Input: Tnew , cluster

Output: assign VM to Tnew

Update P′ with Eq. (8)

 //only after grouping phase

1

Select an action(VM) based on probability

vector

2

if (VM(L(k))<=Laverage(k)) 3

Assign selected VM to Tnew and update length

of VM (L(k))

4

 Update P′ with Eq. (1) 5

else 6

 Update P′ with Eq. (2) 7

Go to 2 8

end if 9

Entity

Type
Parameters Value

task

(cloudlet)

Length [10000-25000]

number of tasks 200-600-1000

Arrival rate Poisson(λ=1)

Task memory 64-1024

Virtual

machine

(VM)

number of VMs 10-25-50

MIPS [500-2000]

VM memory 128-1024

Processing element 1-4

Bandwidth 500-1000

Cloudlet scheduler Space shared

Data

center

Number of

datacenter

10

Number of host 1-4

Volume 11- Number 2 – Spring 2019 57

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

 9 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html

A. Makespan

Makespan is one of the important qualitative
parameters in the cloud scheduling that shows the total
length of the schedule (when all tasks have finished
processing). In other words, makespan is the maximum
value among the completion time of all tasks sent to the
cloud. It is a basic parameter for evaluating scheduling
algorithms that can be calculated according to Eq. (10). H
�Aq�
~ = H
��∈VyF,F{��~�qℎ_r��A���}									�10�

Where the finish_time denotes the end time of task
i. Minimizing this parameter indicates that tasks are
executed in the shortest possible time with no long
waiting time.

In order to calculate makespan, some scheduling
algorithms, namely, FCFS, MIN-MIN, HBB-LB and
LABTS are simulated through three scales: small scale
with 10 VMs, medium scale with 25 VMs and large one
with 50 VMs, with 200, 600 and 1000 tasks. In
performing simulations, due to the use of random
numbers for some parameters, each experiment is
repeated 30 times and the final results are the average
of 30 simulation runs. Fig. 3 illustrates the results of
simulation for 200, 600, and 1000 tasks on small,
medium, and large scale cloud systems. In the small
scale, the number of virtual machines is low as
compared to the user’s tasks with a Poisson arrival rate

of λ=1. Thus its makespan is greater than other ones
obtained at medium and large scales while the proposed
algorithm has less makespan compared to the other
scheduling methods. Because the algorithm uses the
learning method to predict the type of tasks entering the
cloud and assigning virtual machines to the tasks. By
increasing the number of input tasks, the AsT learning
algorithm will update the action probability vector, and
thus more accurate predictions are made over time,

which also effects on the virtual machines grouping.
Also, by updating the action probability vector of AsV,
virtual machines with lower queue lengths are with
larger probabilities more likely to be assigned to the
tasks.

By comparing the methods FCFS, MIN-MIN,
HBB-LB and the proposed algorithm LABTS in three
scales small, medium, and large with 200, 600 and 1000
tasks shows that the makespan of the proposed method
is significantly lower than other methods. In the
LABTS method, it is expected that the makespan be
lower than other methods because in LABTS, virtual
machines are classified into clusters according to their
capacity and capability, and tasks are sent to these
clusters according to their priority type. On the other
hand, grouping is performed in terms of predictions
obtained by the learning automata. In the proposed
approach, the migration of tasks is not required since by
re-grouping and updating the probability vector of
Learning Automaton AsV, tasks are assigned to the right
virtual machines according to their priorities.

B. Degree of imbalance (DI)

Another important parameter in load balancing of
virtual machines is the degree of imbalance (DI) [53],
which is calculated in simulations to compare the
LABTS with FCFS, MIN-MIN, and HBB-LB methods.
DI, which shows the distribution of load balancing on
virtual machines, is calculated by [29] �� = �Cy� − �C�!�yz{ 																					�11�

where Tmax and Tmin are the maximum and
minimum values of Ti among all virtual machines
respectively and Tavg is the mean value of Ti in VMs.

Figure 3. Evaluating the makespan parameter resulting from the execution of 200, 600, and 1000 tasks in a cloud environment w ith small,

medium and large scales

0

2000

4000

200 Tasks 600 Tasks 1000 TasksM
a

k
e

sp
a

n
(s

)

small scale

FCFS MIN-MIN HBB-LB LABTS

0

1000

2000

200 Tasks 600 Tasks 1000 TasksM
a

k
e

sp
a

n
(s

)

medium scale

FCFS MIN-MIN HBB-LB LABTS

0

500

1000

1500

200 Tasks 600 Tasks 1000 TasksM
a

k
e

sp
a

n
(s

)

large scale

FCFS MIN-MIN HBB-LB LABTS

Volume 11- Number 2 – Spring 2019 58

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

 10 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html

Figure 4. Evaluating the DI parameter resulting from the execution of 200, 600, and 1000 tasks in a cloud environment with small, medium

and large scales

The value of Ti for each virtual machine is obtained
by dividing the total length of assigned load to the
machine by the machine's processing capacity, which
indicates the required time of the virtual machine to
perform its tasks. The value of DI parameter obtained
from simulations in three cloud scales with 200, 600
and 1000 tasks is shown in Fig. 4. Using the learning
automata, the proposed LABTS algorithm compared to
FCFS, MIN-MIN, and HBB-LB methods provides
more load balancing and is more efficient. Because
there is no task migration between virtual machines in
LABTS and the selection of appropriate virtual
machines to be assigned to tasks is performed just by
updating the action probability vector. Therefore, the
more the number of tasks, the greater the learning. This
increases the probability of accurate selection that helps
to have a balanced distribution of tasks on virtual
machines.

VI. CONCLUSION

In this paper, a learning automata-based task
scheduling algorithm (LABTS) is presented for cloud
environment. This algorithm not only performs the task
scheduling on virtual machines, but also takes into
account the priority of tasks in scheduling. Using
predictive methods generally requires large memory
location to store previous states along with taking more
time to search between saved states, while a learning
automaton predicts future states without storing
previous states and just needs the probability vector be
updated. In this paper, two learning automata are used
for task scheduling on virtual machines. In the first
phase, the first learning automaton is used to predict the
priority of the tasks sent to the cloud, which has a fixed

action-set and the action probability vector is updated
by receiving each task. In the second phase, the
proposed algorithm divides virtual machines into three
clusters in terms of the action probability vector. In the
third phase, another learning automaton is used to
assign each task to the appropriate virtual machine with
variable action-set. To illustrate the efficiency of the
LABTS algorithm, the simulations are performed in
three scales small, medium, and large in cloudsim
simulator. According to the numerical results obtained
from the simulations, the proposed LABTS algorithm
compared to FCFS, MIN-MIN, and HBB-LB
algorithms performs significantly better in terms of
makespan and DI.

REFERENCES

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility”, Future
Generation Computer Systems, vol. 25, no. 6, pp. 599-616,
2009.

[2] P. Mell, and T. Grance, “The NIST definition of cloud
computing”, Communications of the ACM, vol. 53, no. 6, pp.
50, 2010.

[3] S. Singh, and I. Chana, “QRSF: QoS-aware resource
scheduling framework in cloud computing”, The Journal of
Supercomputing, vol. 71, no. 1, pp. 241-292, 2015.

[4] L.F. Bittencourt, E.R. Madeira, and N.L. Da Fonseca,
“Scheduling in hybrid clouds”, IEEE Communications
Magazine, vol. 50, no. 9, 2012.

[5] J. Wu, X. Xu, P. Zhang, and C. Liu, “A novel multi-agent
reinforcement learning approach for job scheduling in Grid
computing”, Future Generation Computer Systems, vol. 27, no.
5, pp. 430-439, 2011.

[6] B.P. Rimal, A. Jukan, D. Katsaros, and Y. Goeleven,
“Architectural requirements for cloud computing systems: an

0

1

2

3

200 Tasks 600 Tasks 1000 Tasks

d
e

g
re

e
 o

f
im

b
a

la
n

ce
 (

D
I)

 small scale

FCFS MIN-MIN HBB-LB LABTS

0

0.5

1

1.5

2

2.5

200 Tasks 600 Tasks 1000 Tasks

d
e

g
re

e
 o

f
im

b
a

la
n

ce
 (

D
I)

 medium scale

FCFS MIN-MIN HBB-LB LABTS

0

1

2

3

200 Tasks 600 Tasks 1000 Tasks

d
e

g
re

e
 o

f
im

b
a

la
n

ce
 (

D
I)

 large scale

FCFS MIN-MIN HBB-LB LABTS

Volume 11- Number 2 – Spring 2019 59

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

 11 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html

enterprise cloud approach”, Journal of Grid Computing, vol. 9,
no. 1, pp. 3-26, 2011.

[7] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a
survey”, The Journal of Supercomputing, vol. 71, no. 9, pp.
3373-3418, 2015.

[8] J. Yu, and R. Buyya, “A taxonomy of scientific workflow
systems for grid computing”, ACM Sigmod Record, vol. 34,
no. 3, pp. 44-49, 2005.

[9] O. Sonmez, N. Yigitbasi, S. Abrishami, A. Iosup, and D.
Epema, “Performance analysis of dynamic workflow
scheduling in multicluster grids”, Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing, ACM, 2010, pp. 49-60.

[10] S. Smanchat, and K. Viriyapant, “Taxonomies of workflow
scheduling problem and techniques in the cloud”, Future
Generation Computer Systems, vol. 52, pp. 1-12, 2015.

[11] L.F. Bittencourt, and E.R.M. Madeira, “HCOC: a cost
optimization algorithm for workflow scheduling in hybrid
clouds”, Journal of Internet Services and Applications, vol. 2,
no. 3, pp. 207-227, 2011.

[12] H.M. Fard, R. Prodan, J.J.D. Barrionuevo, and T. Fahringer,
“A Multi-objective Approach for Workflow Scheduling in
Heterogeneous Environments”, 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012), 2012, pp. 300-309.

[13] M. Mezmaz, N. Melab, Y. Kessaci, Y.C. Lee, E.G. Talbi, A.Y.
Zomaya, and D. Tuyttens, “A parallel bi-objective hybrid
metaheuristic for energy-aware scheduling for cloud
computing systems”, Journal of Parallel and Distributed
Computing, vol. 71, no. 11, pp. 1497-1508, 2011.

[14] F. Tao, Y. Feng, L. Zhang, and T.W. Liao, “CLPS-GA: A case
library and Pareto solution-based hybrid genetic algorithm for
energy-aware cloud service scheduling”, Applied Soft
Computing, vol. 19, pp. 264-279, 2014.

[15] X. Zuo, G. Zhang, and W. Tan, “Self-adaptive learning PSO-
based deadline constrained task scheduling for hybrid IaaS
cloud”, IEEE Transactions on Automation Science and
Engineering, vol. 11, no. 2, pp. 564-573, 2014.

[16] Z. Wu, Z. Ni, L. Gu, and X. Liu, “A revised discrete particle
swarm optimization for cloud workflow scheduling”,
Computational Intelligence and Security (CIS), 2010
International Conference on, IEEE, 2010, pp. 184-188.

[17] M.A. Tawfeek, A. El-Sisi, A.E. Keshk, and F.A. Torkey,
“Cloud task scheduling based on ant colony optimization”,
2013 8th International Conference on Computer Engineering
& Systems (ICCES), 2013, pp. 64-69.

[18] P. Yi, H. Ding, and B. Ramamurthy, “A tabu search based
heuristic for optimized joint resource allocation and task
scheduling in grid/clouds”, Advanced Networks and
Telecommuncations Systems (ANTS), IEEE International
Conference on, IEEE, 2013, pp. 1-3.

[19] G.-n. Gan, T.-l. Huang, and S. Gao, “Genetic simulated
annealing algorithm for task scheduling based on cloud
computing environment”, Intelligent Computing and
Integrated Systems (ICISS), International Conference on,
IEEE, 2010, pp. 60-63.

[20] F. Palmieri, L. Buonanno, S. Venticinque, R. Aversa, and B.
Di Martino, “A distributed scheduling framework based on
selfish autonomous agents for federated cloud environments”,
Future Generation Computer Systems, vol. 29, no. 6, pp. 1461-
1472, 2013.

[21] J. Yu, R. Buyya, and K. Ramamohanarao, Workflow
Scheduling Algorithms for Grid Computing, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[22] J. Yu, and R. Buyya, “Scheduling scientific workflow
applications with deadline and budget constraints using genetic
algorithms”, Scientific Programming, vol. 14, no. 3-4, pp. 217-
230, Dec. 2006.

[23] F. Ramezani, J. Lu, and F. Hussain, “Task scheduling
optimization in cloud computing applying multi-objective
particle swarm optimization”, International Conference on
Service-oriented computing, Springer, 2013, pp. 237-251.

[24] N. Netjinda, B. Sirinaovakul, and T. Achalakul, “Cost optimal
scheduling in IaaS for dependent workload with particle swarm

optimization”, The Journal of Supercomputing, vol. 68, no. 3,
pp. 1579-1603, 2014.

[25] S. Parthasarathy, and C.J. Venkateswaran, “Scheduling jobs
using oppositional-GSO algorithm in cloud computing
environment”, Wireless Networks, vol. 23, no. 8, pp. 2335-
2345, 2017.

[26] L. Liu, H. Mei, and B. Xie, “Towards a multi-QoS human-
centric cloud computing load balance resource allocation
method”, The Journal of Supercomputing, vol. 72, no. 7, pp.
2488-2501, 2016.

[27] A. Salehan, H. Deldari, and S. Abrishami, “An online
valuation-based sealed winner-bid auction game for resource
allocation and pricing in clouds”, The Journal of
Supercomputing, vol. 73, no. 11, pp. 4868-4905, 2017.

[28] A. Nezarat, and G. Dastghaibyfard, “A game theoretical model
for profit maximization resource allocation in cloud
environment with budget and deadline constraints”, The
Journal of Supercomputing, vol. 72, no. 12, pp. 4737-4770,
2016.

[29] D.B. L.D, and P. Venkata Krishna, “Honey bee behavior
inspired load balancing of tasks in cloud computing
environments”, Applied Soft Computing, vol. 13, no. 5, pp.
2292-2303, 2013.

[30] D. Ergu, G. Kou, Y. Peng, Y. Shi, and Y. Shi, “The analytic
hierarchy process: task scheduling and resource allocation in
cloud computing environment”, The Journal of
Supercomputing, vol. 64, no. 3, pp. 835-848, 2013.

[31] S.K. Mishra, D. Puthal, B. Sahoo, S.K. Jena, and M.S. Obaidat,
“An adaptive task allocation technique for green cloud
computing”, The Journal of Supercomputing, DOI, pp. 1-16,
2018.

[32] Z. Wang, and X. Su, “Dynamically hierarchical resource-
allocation algorithm in cloud computing environment”, The
Journal of Supercomputing, vol. 71, no. 7, pp. 2748-2766,
2015.

[33] A. Deldari, M. Naghibzadeh, and S. Abrishami, “CCA: a
deadline-constrained workflow scheduling algorithm for
multicore resources on the cloud”, The journal of
Supercomputing, vol. 73, no. 2, pp. 756-781, 2017.

[34] A. Hanani, A.M. Rahmani, and A. Sahafi, “A multi-parameter
scheduling method of dynamic workloads for big data
calculation in cloud computing”, The Journal of
Supercomputing, vol. 73, no. 11, pp. 4796-4822, 2017.

[35] S. Singh, and I. Chana, “Resource provisioning and scheduling
in clouds: QoS perspective”, The Journal of Supercomputing,
vol. 72, no. 3, pp. 926-960, 2016.

[36] D. Ding, X. Fan, and S. Luo, “User-oriented cloud resource
scheduling with feedback integration”, The Journal of
Supercomputing, vol. 72, no. 8, pp. 3114-3135, 2016.

[37] J.A. Torkestani, “A new approach to the job scheduling
problem in computational grids”, Cluster Computing, vol. 15,
no. 3, pp. 201-210, 2012.

[38] S. Sahoo, B. Sahoo, and A.K. Turuk, “An Energy-Efficient
Scheduling Framework for Cloud Using Learning Automata”,
2018 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT),
IEEE, 2018, pp. 1-5.

[39] S. Sahoo, B. Sahoo, and A.K. Turuk, “A Learning Automata-
based Scheduling for Deadline Sensitive Task in The Cloud”,
IEEE Transactions on Services Computing, DOI, 2019.

[40] S. Misra, P.V. Krishna, K. Kalaiselvan, V. Saritha, and M.S.
Obaidat, “Learning automata-based QoS framework for cloud
IaaS”, IEEE Transactions on Network and Service
Management, vol. 11, no. 1, pp. 15-24, 2014.

[41] M. Ranjbari, and J.A. Torkestani, “A learning automata-based
algorithm for energy and SLA efficient consolidation of virtual
machines in cloud data centers”, Journal of Parallel and
Distributed Computing, vol. 113, pp. 55-62, 2018.

[42] A.A. Rahmanian, M. Ghobaei-Arani, and S. Tofighy, “A
learning automata-based ensemble resource usage prediction
algorithm for cloud computing environment”, Future
Generation Computer Systems, vol. 79, pp. 54-71, 2018.

[43] R.D. Venkataramana, and N. Ranganathan, “A learning
automata based framework for task assignment in
heterogeneous computing systems”, Proceedings of the 1999

Volume 11- Number 2 – Spring 2019 60

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

 12 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html

ACM symposium on Applied computing, Citeseer, pp. 541-
547.

[44] K.S. Narendra, and M.A. Thathachar, Learning automata: an
introduction, Courier Corporation2012.

[45] W. Jiang, C.-L. Zhao, S.-H. Li, and L. Chen, “A new learning
automata based approach for online tracking of event patterns”,
Neurocomputing, vol. 137, pp. 205-211, 2014.

[46] M.R. Meybodi, and H. Beigy, “New learning automata based
algorithms for adaptation of backpropagation algorithm
parameters”, International Journal of Neural Systems, vol. 12,
no. 01, pp. 45-67, 2002.

[47] B. Johnoommen, “Absorbing and ergodic discretized two-
action learning automata”, IEEE transactions on systems, man,
and cybernetics, vol. 16, no. 2, pp. 282-293, 1986.

[48] M. Thathachar, and B.R. Harita, “Learning automata with
changing number of actions”, IEEE transactions on systems,
man, and cybernetics, vol. 17, no. 6, pp. 1095-1100, 1987.

[49] T. Goyal, A. Singh, and A. Agrawal, “Cloudsim: simulator for
cloud computing infrastructure and modeling”, Procedia
Engineering, vol. 38, pp. 3566-3572, 2012.

[50] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A. De Rose, and
R. Buyya, “CloudSim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource
provisioning algorithms”, Software: Practice and experience,
vol. 41, no. 1, pp. 23-50, 2011.

[51] R.N. Calheiros, R. Ranjan, C.A. De Rose, and R. Buyya,
“Cloudsim: A novel framework for modeling and simulation
of cloud computing infrastructures and services”, arXiv
preprint arXiv:0903.2525, DOI, 2009.

[52] N. Zekrizadeh, A. Khademzadeh, and M. Hosseinzadeh, “An
Online Cost-Based Job Scheduling Method by Cellular
Automata in Cloud Computing Environment”, Wireless
Personal Communications, DOI, pp. 1-27, 2019.

[53] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task
scheduling based on load balancing ant colony optimization”,
Chinagrid Conference (ChinaGrid), Sixth Annual, IEEE, 2011,
pp. 3-9.

Neda Zekrizadeh Received B.

Sc. degree in Software

Engineering from Islamic Azad

University, Tabriz, IRAN in 2007.

She also received her M.Sc.

degree from Islamic Azad

University, Tabriz, IRAN in 2010 in Computer

Architecture Engineering. She is currently working

toward the Ph.D. degree in Architecture Computer

Engineering at the Science and Research Branch of

Islamic Azad University, Tehran, IRAN (SRBIAU).

Her current research interests include Distributed

Systems, Scheduling and Resource Management in

Cloud and Grid Networks.

Ahmad Khademzadeh was

born in Mashhad, Iran, in 1943.

He received the B.Sc. degree in

Applied Physics from Ferdowsi

University, Mashhad, Iran, in

1969 and the M.Sc. and Ph.D.

degrees respectively in Digital Communication and

Information Theory and Error Control Coding from

the University of Kent, Canterbury, UK. He is

currently a Full professor in ICT Research Institute

(ITRC). He is a member of the Iranian Electrical

Engineering Conference Permanent Committee.

Dr. Khadem Zadeh has received four distinguished

national and international awards including

Kharazmi International Award, and has been

selected as the national outstanding researcher of

the Iran Ministry of Information and

Communication Technology. His research interests

include VLSI Design, Interconnection Network,

Fault Tolerant and Computer Architectures.

 Mehdi Hosseinzadeh received

his B.Sc. degree in Computer

Hardware Engineering from

Islamic Azad University,

Dezful Branch, Iran in 2003. He

also received the M.Sc. and

Ph.D. degrees in Computer

System Architecture from the Science and

Research Branch, Islamic Azad University, Tehran,

Iran in 2005 and 2008, respectively. He is currently

an Associate Professor at Iran University of

Medical Sciences, Tehran, Iran. His research

interests are Information Technology, Data

Mining, Big data Analytics, E-Commerce, E-

Marketing and Social Networks.

Volume 11- Number 2 – Spring 2019 61

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
8-

03
]

Powered by TCPDF (www.tcpdf.org)

 13 / 13

https://ijict.itrc.ac.ir/article-1-372-en.html
http://www.tcpdf.org

