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Abstract— Influence maximization serves as the main goal of a variety of social network activities such as viral 

marketing. The independent cascade model for the influence spread assumes a one-time chance for each activated node 

to influence its neighbors. On the other hand, the manually activated seed set nodes can be reselected without violating 

the model parameters or assumptions. This view divides the influence maximization process into two cases: the simple 

case where the reselection of the nodes is not considered and the reselection case. In this study we will analyze real world 

networks in the reselection case. First we will show that the difference between the simple and the reselection cases 

constitutes a wide spectrum of networks ranging from the reselection-free to the reselection-friendly ones. Then we will 

experimentally show a significant entanglement between this and influence spread dynamics as well as other structural 

parameters of the network. Specifically, we show that under a realistic condition, the reselection gain of a network has 

a correlation of 0.73 to a newly introduced influence spread dynamic. Furthermore, we propose a measure for detecting 

star-like networks and experimentally show a significant correlation between our proposed measure and the reselection 

gain in real world networks with different edge weight models. 

Keywords-Influence Maximization; Network Structure; Independent Cascade; Maximization over Integer Lattice; Core 

Decomposition  

 
 

I. INTRODUCTION
1 

The focus on the influence maximization and 
influence propagation has grown increasingly in the 
social network studies [1]–[5]. The fundamental 
question concerning the influence maximization 
problem is that what group of nodes, when selected as 
the initial influencers, can spread the desired influence 
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to the highest extent possible [6]. The selection of a 
node as an initial influencer practically means spending 
a reasonable amount of budget such as money, time, 
reputation, etc. in order to activate it. An active node 
then tries to influence its neighbors and hopefully the 
cascade of influence would be triggered. 

There are different theoretical models for the 
influence spread in a social network, amongst which the 
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linear threshold (LT) and independent cascade (IC) 
models are the most used ones. In the LT model each 
node is considered to have a threshold and it is activated 
when the number of its active neighbors goes above that 
threshold [7], [8]. The IC model, on the other hand, 
deals with the influence probabilities of the links [9]. 
According to the IC model, each directed link (𝑢, 𝑣) is 
associated with a probability 𝑝𝑢𝑣  that indicates the 
power of 𝑢  at influencing 𝑣 . Once 𝑢  is influenced 
(either as an initial node or during the influence spread), 
it has a one-time chance to activate 𝑣 and is successful 
to do so with probability 𝑝𝑢𝑣 . During the influence 
spread process, giving the node 𝑢 a second chance to 
influence its neighbor 𝑣  will increase the influence 
probability from 𝑝𝑢𝑣  to 1 − (1 − 𝑝𝑢𝑣)2  and the 
parameters of the IC model will be violated. However, 
when a previously influenced node is manually re-
activated the scenario will be different. The difference 
between these two cases is more clarified in the 
following example. 

Consider a social network for which the influence 
of individuals on their connections has been estimated 
from their activity. More specifically, in this example, 
influence has the form of clicking on the link that one 
has posted on the network. Furthermore, once a user has 
clicked on a posted link, his connections will be notified 
as if he has re-posted the link. Suppose that we have a 
web page and we desire to increase the number of our 
page views via advertising it on the mentioned social 
network. Our budget determines the number of initial 
users to whom we afford to introduce our page and ask 
them to post a link of it on the network. During the 
cascade of influence through the network, naturally a 
user will not re-post our link twice. Therefore, the 
connections of an active user will see his post once. But 
assume that we have paid one of our initial users double 
and asked him to post our link twice. Since the second 
chance has been given to him forcefully, the natural 
process of influence spread in the IC model has not been 
violated. Furthermore, if the time interval between the 
two posts of the same user is selected appropriately, his 
influence power will be nearly doubled. 

Alon et al. [10] introduced several budget allocation 
models for influence maximization in social networks. 
In [11] the proposed framework of [10] is extended and 
it is proved that the underlying spread function is 
submodular over the integer lattice. The main 
shortcoming in these models is that they do not consider 
the influence propagation. Avigdor-Elgrabli et al. [12] 
address this issue by introducing a generalized model 
for the budget allocation that captures the influence 
propagation in the network as well. Then, they 
theoretically study the model in both offline and online 
settings and identify a family of monotone submodular 
influence functions over the integer lattice. 

In this paper, we will experimentally study a 
practical budget allocation model and analyze the 
different behaviors of real-world networks towards 
such a model. We will call the situation where a node is 
selected more than once during the influence 
maximization process, the reselection of that node. It is 
worth noting that the reselection approach is quite 
common in the real-world advertising. Usually, based 
on the budget of the company as well as the capacity of 

an advertising hub, the hub is paid more than once to 
popularize a specific product. Reselecting a hub to 
maximize the influence spread demonstrates the fact 
that when a node has a large number of important 
connections, a one-time attempt does not saturate its 
capacity and even if a fraction of its connections has 
been influenced at the first try, the hub’s importance is 
still more than many other nodes in the network. 

We study the dynamics of networks concerning the 
reselection of seed set nodes in an influence 
maximization process. Since in the reselection model 
the seed nodes are not necessarily unique, we use the 
term seed multiset instead of seed set. We first evaluate 
the behavior of different real-world networks against 
the reselection possibility of the seed nodes. It is shown 
that different networks respond differently to this new 
feature. In some networks, there is hardly a duplicate in 
the seed multiset. This means that, in the 
aforementioned networks, introducing a new node to 
the seed multiset usually has a better performance 
compared to reselecting a previous seed node. On the 
other hand, in a number of other networks, only a small 
percent of the seed multiset nodes are unique. These 
networks have a considerably higher influence spread 
in presence of the reselection mechanism. 

The main question of this study is about the cause 
of the above observation in social networks. To tackle 
this question, first it is shown that the reselection gain 
is correlated to another influence dynamics, the 
influence saturation. Roughly speaking, the influence 
saturation measures the extent of degradation in the 
marginal influence spread during the expansion of the 
seed multiset nodes. Then, using the correlation 
between the influence saturation and the reselection 
gain, an entanglement between these dynamics and the 
network structure will be shown. The significance of 
this result is most understood for the large networks on 
which performing the influence maximization 
algorithms is time consuming. In such cases, our results 
can be used to identify, in negligible time, whether or 
not a given network is reselection-friendly. Upon 
identification, suitable influence spread policies can be 
adapted accordingly. 

Another practical point of this paper is that its 
results can be used to detect the origin of reselection-
aware behavior of different networks. This knowledge 
is useful for the organization who wants to maximize 
the influence spread in the network. For example, it 
gives insights on how to manipulate the network, by 
adding new nodes or building new links, in order to 
change its reselection-aware behavior and increase their 
benefit. 

The structure of the consequent sections is as 
follows. In the following two subsections a brief 
overview of the influence maximization research and 
the budget allocation models as well as the definitions 
and parameters required for the following parts of the 
paper are presented. In Section II we will discuss the 
saturation dynamics in the influence maximization and 
propose a L-curve based parameter for measuring it. In 
order to be able to present our observations in the real-
world networks, we first explain our experimental setup 
in Section III. In that section we also introduce a new 
model for the edge weights which considers the 
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transitivity behavior in social networks. After that, in 
Section IV, we first show the different behaviors of 
networks to the reselection possibility. Then, we argue 
why the reselection gain is supposed to correlate to the 
saturation behavior and show such a correlation for a 
class of networks. Finally, we will show a correlation 
between the percentage of low degree nodes and the 
reselection gain. We will conclude the paper and 
propose possible future work in Section V. 

A. Related Work 

The formal definition of influence maximization is 
given in [6] as: 

Definition 1 (Influence Maximization) Given a 
directed graph G as a social network and a diffusion 
model for the influence; determine the set of influential 
targets of size at most k whose activation will cause the 
largest number of activated nodes in G. 

Kempe et al. showed that the influence spread 
function is a submodular function and hence proposed 
a greedy (1 − 1 𝑒⁄ ) -approximation to the above 
problem. The high time complexity of the greedy 
algorithm commenced a new stream of research on the 
scalable influence maximization proposals. In this 
paper the CELF++ algorithm of [13] is referred to as the 
simple greedy algorithm. However, CELF++ and other 
speed ups such as [14], [15] did not scale acceptably for 
the networks of millions of nodes. As the social 
networks grow larger and larger, the need to scalable 
algorithms with promising performances becomes 
more realized. That is why a considerable number of 
scalable influence maximization algorithms have been 
published in recent years [16]–[21]. 

The budget allocation in influence maximization 
models the fact that the probability of an influencer to 
influence its neighbors depends on the budget allocated 
to it. Conveniently, the literature deals with the discrete 
budgets in this context [10]. As such, the allocation of 
𝑘  units of budget to someone means giving her 𝑘 
chances to influence her neighbors (instead of a one-
time chance). Earlier budget allocation models such as 
[10], [11] did not consider the propagation of influence 
in the network. These models are consisted of a bipartite 
graph connecting the source and the target nodes. Based 
on their allocated budgets and according to a given 
influence model, the source nodes influence a number 
of their target neighbors and no spread of influence 
happens. 

In [12] the influence propagation is introduced to 
previous budget allocation models, yielding a rather 
complete model for the influence maximization budget 
allocation in social networks. They consider the 
influence spread as a two-stage process: 

1. Influence of seed nodes based on their allocated 
budget on their neighbors, 

2. Influence propagation initiated by the 
influenced seed neighbors from the previous 
stage. 

Based on the above assumption, they propose the 
budgeted triggering model whose combined influence 
function is a monotone submodular function over the 
integer lattice. 

Hatano et al. considered the adaptive allocation of 
budgets based on the responses from the previous 
campaigns [22]. 

B. Our Contribution 

We use a practical version of the model by [12] to 
analyze the behavior of real world networks on the 
influence spread dynamics when the reselection is 
possible. Unlike [12] which deals with the theoretical 
bounds and approximation algorithms of the budget 
allocation in the influence maximization problem, we 
try to study the practical consequences of this 
generalization. Our contributions can be listed as 
follows: 

 The two currently models for the edge weights, 
namely Weighted Cascade and Trivalency, do 
not consider the transitivity behavior of the 
social networks. We present the transitive 
multi-valency model to address this issue. 

 We show that in all of the three models, the 
networks have a wide range of responses to the 
reselection possibility. The reselection-friendly 
networks demonstrate their friendly behavior 
even for the fading parameters as low as 0.6. 

 We detect a high entanglement between the 
reselection gain and influence spread dynamics 
for a class of network with a specific structure. 

 Finally, it is demonstrated that the star-like 
networks with a high portion of low degree 
nodes have a high probability of being 
reselection-friendly. 

C. Parameters and Definitions 

Considering the possibility of reselection at the 
influence maximization seed set nodes is equivalent to 
substitute set into its generalized concept multiset. A 
multiset is a collection of elements that can have 
multiple instances of elements [23]. The number of 
instances of an element in a multiset is called the 
element’s multiplicity. For example, in the multiset 
{𝑎, 𝑎, 𝑎, 𝑏}  the elements 𝑎  and 𝑏  have multiplicity 3 
and 1 respectively. A set is a special case of a multiset 
for which all the elements have multiplicity 1. Multisets 
are sometimes represented by elements of ℤ+

𝑚, a vector 
of non-negative integers where 𝑚  is the size of the 
elements space and each field of the vector represents 
the multiplicity of the corresponding element. 

Consequently, the reselection possible influence 
maximization is defined with the help of the multisets. 

Definition 2 (reselection possible influence 
maximization) Given a directed graph G as a social 
network and a diffusion model for the influence; 
determine the seed multiset of influential targets of size 
at most k whose activation will cause the largest 
number of activated nodes in G. Each node of the seed 
multiset with multiplicity 𝑚 has a 𝑚 times chance at 
influencing its neighbors. 

One may argue that the reselection of a seed node 
has less influence compared to its selection as the first 
time. To address this issue, we define a more general 
setting that models the possible fading effect caused by 
reselection. 
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Definition 3 (reselection possible influence 
maximization with fading) Given a directed graph G as 
a social network, a diffusion model for the influence 
and a fading parameter 0 ≤ 𝛼 ≤ 1; determine the seed 
multiset of influential targets of size at most k whose 
activation will cause the largest number of activated 
nodes in G. Each node of the seed multiset with 
multiplicity 𝑚 has a 𝑚 times chance at influencing its 
neighbors; but its influence at the ωth chance is faded 
by a factor of αω-1. The extreme cases where 𝛼 = 0 or 
𝛼 = 1 respectively correspond to the simple influence 
maximization case (Definition 1) and the reselection 
possible influence maximization without fading 
(Definition 2). 

Submodular functions play an important role in 
influence maximization as well as a great number of 
computer science optimization problems. A 
submodular function is mostly known by the 
diminishing return property. 

Definition 4 (Submodular function) A set function 
𝑓: 2𝑉 → ℝ is submodular if for every 𝐴 ⊆ 𝐵 ⊆ 𝑉 and 
𝑒 ∈ 𝑉\𝐵 it holds that 

𝑓(𝐴 ∪ {𝑒}) − 𝑓(𝐴) ≥ 𝑓(𝐵 ∪ {𝑒}) − 𝑓(𝐵) (1) 

When the reselection of nodes is possible and we 
are dealing with the multiset rather than set, the set 
function can be extended to a function over the integer 
lattice; i.e. non-negative integer vectors over the 
Euclidean space. A submodular function over the 
integer lattice is characterized as follows: 

Definition 5 (Submodular function over integer 
lattice) A function 𝑓: ℤ+

𝑚 → ℝ  is submodular if for 
every 𝑥, 𝑦 ∈ ℤ+

𝑚 it holds that 

𝑓(𝑥) + 𝑓(𝑦) ≥ 𝑓(𝑥 ∨ 𝑦) + 𝑓(𝑥 ∧ 𝑦) (2) 

Where 𝑥 ∨ 𝑦  and 𝑥 ∧ 𝑦  represent the coordinate-
wise maxima and minima, respectively. 

Through the rest of this paper, the influence spread 
function of a set 𝑆 and a multiset 𝑀 on a network 𝐺 is 
shown by 𝜎𝐺(𝑆)  and 𝜎𝐺

𝑚(𝑀) , respectively. The 
superscript 𝑚 on the latter function denotes the multiset 
domain of the function. To compute the spread of 𝑀, 
each node of the multiset is given as many chances as 
its multiplicity within 𝑀. 

Finally, we define the reselection gain (RG) to be 
the ratio of the influence spread in the reselection case 
to the simple case. Formally, for a given graph 𝐺 and 
seed size 𝑘, the reselection gain is defined to be: 

𝑅𝐺𝐺(𝑘) =
max
|M|=𝑘

𝜎𝐺
𝑚(𝑀)

max
|S|=𝑘

𝜎𝐺(𝑆)
 (3) 

II. INFLUENCE SATURATION 

Suppose that for each 𝑘  the maximum influence 
spread on graph 𝐺 caused by activating 𝑘 nodes of 𝐺 is 
shown by 𝜏𝐺 (𝑘) . The submodularity of the spread 
function implies that 𝜏(𝑘) is a concave function of 𝑘. 
As such, for every graph 𝐺  there is a saturation 
threshold 𝑘𝐺

∗  after which the positive slope of the 𝜏𝐺(𝑘) 
function will be insignificant; i.e. the graph saturates by 
the influential seed set nodes of size 𝑘𝐺

∗ . 

Observations on the behavior of the 𝜏𝐺(𝑘) function 
for real world networks 𝐺  reveals an interesting 
saturation dynamics. For a number of networks the 
saturation threshold is 1. In other words, the influence 
spread of the most influential node is such that the 
marginal gain of the next seed set nodes becomes 
negligible. We call this behavior as the sharp 
saturation. Figure 1 shows two sets of networks with 
different saturation behaviors. The y-axis of these plots 
is the 𝜏𝐺(𝑘) normalized by the node size of graph |𝐺| 
for simplicity of comparison. 

We define the influence saturation (IS) parameter to 
entail the saturation dynamics of different networks. 
The problem of finding a saturation measure for a 
concave function has a resemblance to the L-curves and 
using them to solve ill-posed problems through 
regularization [24]. One method for locating the elbow 
in a L-curve is to find the point with maximum distance 
from the line obtained by connecting the two ending 
 

  

 

Figure 1. The plot of 𝝉𝑮(𝒌)/|𝑮| versus 𝒌. The network in (a) have 

a smooth curve; while the networks in (b) have a sharp saturation 

points of the curve. Using this method, we define 
another metric to measure the sharpness of saturation in 
a graph: 

𝐿𝐶𝐼𝑆(𝐺)

=
|𝑘𝑚𝑎𝑥 ⋅ 𝜏(𝑘𝑚𝑖𝑛) − 𝑘𝑚𝑖𝑛 ⋅ 𝜏(𝑘𝑚𝑎𝑥)|

√𝑘𝑚𝑎𝑥
2 + 𝜏2(𝑘𝑚𝑎𝑥)
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The L-curve Influence Saturation defined in (4) is 
simply the distance of the 𝜏 function at point 𝑘𝑚𝑖𝑛  from 
the line connecting the origin to the last point of 𝜏 at 
𝑘𝑚𝑎𝑥 . A high 𝐿𝐶𝐼𝑆 parameter is a sign of a network 
with sharp saturation behavior. As will be shown in our 
experiments, the two parameters proposed in this 
section are highly correlated. 

The LCIS and RG parameters are expected to be 
high in a star like network. By the star like network we 
mean a network whose nodes can be decomposed into 
two components: 

 Core nodes: a small set of nodes which are 
connected to a considerable fraction of 
network. These nodes are highly influential. 

 Loosely connected nodes: a large number of 
nodes which are weekly connected to each 
other but strongly connected to the core nodes. 

In a star like network, selecting one of the core 
nodes will spread the influence to a large section of the 
network and causes a sharp saturation. On the other 
hand, reselecting the core nodes instead of non-core 
nodes is likely to increase the influence spread which 
means a high reselection gain. 

In our experiments we will test the hypothesis that 
“are all the networks with a high RG, star like?” 

III. EXPERIMENTAL SETUP 

We use the Pearson correlation to show the 
entanglement between different parameters on different 
networks. In order to provide a confidence level for the 
reported correlations, we perform the permutation test 
on the data [25]. We construct the correlation on the 
randomized data 106  times and report the confidence 
level with a precision of three significant figures. 

In the proceeding sections the statistics of the 
experimented networks as well as the models used as 
the edge weights are explained. 

A. Networks 

The experiments of this paper are conducted on the 
real world networks obtained from [26]. The node and 
edge sizes of the networks range from 4k to 317k and 
28k to 2M respectively. All the networks in this paper 
are directed. In the cases where the original network 
was undirected, we have considered two directed edges 
for each undirected edge, making the edge size of the 
network twice its original. The networks are described 
below: 

 Facebook: The Facebook dataset consists of 
friend lists from Facebook. The data is 
collected from survey participants [27]. In our 
experiments we only used the graph of 
friendship. 

 Wiki-Vote: The network contains all the 
Wikipedia adminship voting data until January 
2008. The nodes represent Wikipedia users and 
a directed edge from node 𝑖 to node 𝑗 indicates 
that user 𝑖 has voted for the adminship of user 
𝑗 [28], [29]. 

 Email-Enron: This dataset contains the email 
communications of Enron. The nodes represent 

the Enron email addresses and an undirected 
link between 𝑖  and 𝑗  indicates that either of 
them has sent an email to the other [30], [31]. 

 Epinions: This graph is a who-trusts-whom 
online social network of a general consumer 
review site Epinions.com [32]. 

 Slashdot: Slashdot is a technology-related 
news website known for its specific user 
community. The network contains friend/foe 
links between the users of Slashdot [31]. 

 DBLP: The DBLP computer science 
bibliography provides a comprehensive list of 
research papers in computer science. This 
graph is a co-authorship network where two 
authors are connected if they publish at least 
one paper together [33]. 

 CA-GrQc, CA-HepTh, CA-HepPh, CA-
Astro, CA-CondMat: These graphs are the 
collaboration network from the e-print arXiv 
and covers scientific collaborations between 
authors papers submitted to General Relativity 
and Quantum Cosmology category, High 
Energy Physics Theory, High Energy Physics 
Phenomenology, Astro Physics and Condense 
Matter categories, respectively [34]. 

 Cit-HepPh: The citation graph from the e-print 
arXiv that covers all the citations of High 
Energy Physics Phenomenology papers. A 
directed link from paper 𝑖  to 𝑗  indicates that 
paper 𝑖 cites paper 𝑗 [35], [36]. 

The network statistics are shown in Table 1.  

For the seed (multi)set size, for a network with 𝑛 
nodes we perform the intended influence maximization 

algorithm with seed (multi)set sizes up to 
𝑛

log 𝑛
. 

Table 1. Network statistics 

Network #nodes #edges 

Facebook 4,039 176,468 

Wiki-Vote 7,115 103,689 

Email-Enron 36,692 367,662 

Epinions 75,879 508,837 

Slashdot 77,360 905,468 

DBLP 317,080 2,099,732 

CA-GrQc 5,242 28,980 

CA-HepTh 9,877 51,971 

CA-HepPh 12,008 237,010 

CA-AstroPh 18,772 396,160 

CA-CondMat 23,133 186,936 

Cit-HepPh 34,546 421,578 

 

B. Edge Weight Models 

As is common in the influence maximization 
research on the IC model, for the edge weights we use 
the following two models: 
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 Weighted Cascade (WC) model: In the WC 
model, the influence probability of each edge is 
assigned to 𝑃𝑢𝑣 = 1/𝑑𝑣 , where 𝑑𝑣  is the in-
degree of 𝑣 [6]. 

 Trivalency (TR) model: This model assigns a 
randomly selected probability from {0.1, 0.01, 
0.001} to each directed link [15]. 

The above models for the edge weights do not 
consider the transitivity behavior observed in real world 
social networks. In what follows we propose a new 
Transitive Multi-valency model that does so. 

C. Transitive Multi-valency Model 

Triadic closure [37] and clustering coefficient [38] 
in the social network theory are two strongly related 
concepts that demonstrate the transitive behavior in 
social networks. In the context of influence spread, the 
transitivity of nodes influence on their neighbors can be 
stated as follows: 

Influence Transitivity: The influence of a node 𝑢 
on a neighbor 𝑣 is dependent to the portion of 𝑣 directly 
influencing nodes who are themselves directly 
influenced by 𝑢. 

In other words, let the set of 𝑣 directly influencing 
nodes (also known as its in-neighbors) is shown by 𝑁𝑣

− 
and the set of nodes directly influenced by 𝑢  (also 
known as its out-neighbors) is shown by 𝑁𝑢

+ . The 
influence transitivity states that 

𝑒𝑢𝑣 = 𝑓 (
|𝑁𝑣

− ∩ 𝑁𝑢
+|

|𝑁𝑣
−|

), (5) 

where 𝑒𝑢𝑣 is the weight of the edge connecting 𝑢 to 
𝑣. 

In this study we use our new edge weight model 
based on the influence transitivity which sets the edge 
weights as follows 

𝑒𝑢𝑣 = (
|𝑁𝑣

− ∩ 𝑁𝑢
+|

|𝑁𝑣
−|

)

1.5

⋅ 𝑅𝑢𝑣 (6) 

where 𝑅𝑢𝑣  is a random multi-valency attenuator 
chosen uniformly at random from the set 
{3−2, 3−3, 3−4, 3−5}. This attenuator together with the 
1.5  exponent are included to avoid the influence 
saturation due to the large edge weights. In our 
experiment results, this model is represented by TMv. 

IV. EXPERIMENTS 

The experiments performed in this study are 
discussed in this section. First, the impact of reselection 
possibility on different networks and different edge 
weight models is analyzed. Then, the correlation 
between RG and influence saturation measures is 
studied. Finally, a significant entanglement between 
RG and network structural parameters is identified. 

A. Reselection Impact 

In this section, before studying the relation between 
the previously defined parameters, we show the impact 
of the reselection with varying fading values on 
different networks. Based on their influence spread 

behavior in response to the reselection possibility, we 
categorize the network into the three following cases: 

 Reselection-friendly networks: When the 
reselection gain in a network without any 
fading (α=1) is more than 1.5 we call it a 
reselection friendly network. In these networks 
the possibility of the reselecting the nodes 
increases the influence spread more than 50% 
compared to the simple case. A simple example 
of a reselection friendly network is a star graph 
consisting of a core node and a number of 
pairwise disjoint nodes connected only to the 
core node. Obviously, reselecting the core node 
multiple of times has an outstanding gain 
compared to the simple case where the core 
node can only be selected once. 

 Reselection-aware networks: In the absent of 
fading (α=1) when the reselection gain of a 
network lies between 1.05 and 1.5, the network 
is called to be reselection aware. The impact of 
reselection on these networks is not as 
impressive as the previous case; but it is 
noticeable. 

 Reselection-free networks: These networks 
have a reselection gain less than 1.05. In the 
reselection free networks the multiset obtained 
by solving the reselection possible influence 
maximization hardly differs from the solution 
of the simple influence maximization case. A 
good example of such networks is a clique with 
uniform influence probabilities. In a fully 
connected network all the nodes share the same 
set of neighbors and reselection of a node has 
almost the same influence as selecting a new 
node. 

Figure 2 plots the changes of the reselection gain in 
terms of the fading parameter α  when the influence 
probabilities are derived from the WC model. As can be 
seen in this figure, Facebook and Wiki-Vote networks 
are reselection friendly networks (Figure 2-a), CA-
AstroPh, CA-CondMat, CA-HepPh and Email-Enron 
networks are reselection aware (Figure 2-b) and Cit-
HepTh, CA-GrQc and CA-HepTh networks are 
reselection free (Figure 2-c). It is interesting to note that 
the reselection gain in the reselection friendly networks, 
even with a fading value as low as α=0.6 is still non-
negligible. 

When the TMv model (section III.C) is used, no 
tested network is reselection free. The rise of the 
reselection gain as a result of increasing 𝛼 in the TMv 
model is demonstrated in Figure 3. Similar to the WC 
model, the reselection friendly networks show 
meaningful RG values even at 𝛼 = 0.6. 

Surprisingly, no one of the tested networks in the 
TR model are reselection friendly. Figure 4 illustrates 
the change of reselection gain in terms of fading value 
𝛼 for the TR model. A comparison between Figure 2, 
Figure 3 and Figure 4 shows that the behavior of the 
networks is totally dependent to the influence 
probability model. 
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Figure 2. Reselection gain of different networks with WC model in terms of the fading value (𝛼) 

 

  

Figure 3. Reselection gain of different networks with TMv model in terms of the fading value (𝛼)  

 

  

Figure 4. Reselection gain of different networks with TR model in terms of the fading value (α) 
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B. Influence Spread Dynamics 

In this section, the relation between the reselection 
gain and the influence spread dynamics in the networks 
is experimentally studied. To do so, we have 
constructed the correlation between the influence 
saturation (LCIS) (Section II) and the reselection gain 
(RG) on the real-world networks. 

When the LCIS parameter is high in a network, it 
means that the influence spread of the first seed node is 
considerably higher than the marginal influence spread 
of the next seed nodes. The structural interpretation of 
this dynamics is that the network contains a dense core 
with two important properties: (I) the density of the core 
is such that an influential node within the core can 
influence a great portion of the core; and (II) the 
strength of the connections from the in-core nodes to 
the out-core nodes is such that the activated core nodes 
can influence a great number of outer nodes. 

On the other hand, a high RG ratio suggests the 
presence of strong hubs in the network. In the context 
of influence maximization, a hub usually has two 
properties: (I) it has a significant number of strong 
connections; and (II) its connections, when activated, 
can in turn influence a considerable number of nodes. 

Even though the above situations for the cause of a 
high LCIS and a high RG does not necessarily translate 
to each other, they have a positive correlation in real 
world networks with the WC model. On the contrary, 
when the TR or TMv models are considered, no 
meaningful correlation is observed between the LCIS 
and RG.  

Figure 5 shows the influence spread in the simple 
and reselection cases in a number of our tested networks 
in the WC model. It also contains the linear 
approximation of the 𝜏(𝑘) function. As can be seen in 
this figure, networks such as Facebook and Email-
Enron with a sharp saturation have a high RG ratio, 
while CA-GrQc and CA-HepTh with a smooth 
saturation have a RG ratio near the unity. 

Table 2 shows 𝐿𝐶𝐼𝑆  and 𝑅𝐺  parameters of the 
networks. Using the values presented in Table 2, the RG 
ratio has a significant correlation of about 0.74 to the 
LCIS parameter. 

Table 2. The LCIS and RG parameters of the networks with WC 

model 

Network 𝑳𝑪𝑰𝑺 𝑹𝑮 

Facebook 3.6 1.99 

CA-GrQc 0.61 1.08 

Wiki-Vote 1.76 1.58 

CA-HepTh 0.59 1.08 

CA-HepPh 1.51 1.16 

CA-AstroPh 1.75 1.2 

CA-CondMat 1.76 1.17 

Cit-HepPh 2.29 1.12 

Email-Enron 2.56 1.30 

Epinions 2.84 1.18 

Slashdot 3.35 1.67 

DBLP 0.38 1.04 

 

 

  

  

Figure 5. Influence spread in the simple case versus the reselection case (WC model) 
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This relatively high correlation value demonstrates 
that usually the reselection-friendly networks are the 
ones with sharp saturation, while the reselection-free 
networks usually have a smooth saturation. 

As stated earlier in this section, unlike the WC 
model, the TR and TMv models do not exhibit a 
meaningful correlation between the LCIS and RG 
parameters. Several network parameters such as the 
degree distribution, maximum weighted degree, 
stepped w-core index distribution [39] and maximum 
stepped w-core index have been examined to identify 
the source of this difference. The construction of the 
WC model for the edge weights (i.e. the sum of input 
weights to all of the nodes equals to the unity) leads to 
a maximum stepped w-core index very close to one in 
almost all the tested networks. This observation led us 
to the following hypothesis. 

Hypothesis: The LCIS and RG parameters are 
significantly correlated in the networks whose w-core 
index is close to one. 

In order to test the above hypothesis we collected 
the networks with w-core index within the interval of 
1 ± 0.15 as the gold set. The statistics of the gold set is 
shown in Table 3. The correlation between LCIS and 
RG in the gold set is 0.73 with a confidence of 1. This 
partially verifies our hypothesis on the tested networks. 
It remains to show that the networks outside the criteria 
of the gold set (i.e. w-core outside the 1 ± 0.15 
interval) damage the correlation between LCIS and RG. 
For each of the networks outside the gold set, we have 
constructed the correlation between LCIS and RG on 
the union of the gold set and that specific network. The 
results are expressed in Table 4. This table contains the 
statistics of networks outside the gold set. Furthermore, 
for each network the correlation is constructed on the 
union of that network and the gold set and the result is 
included in the table. The last column of Table 4 
contains the difference of the correlation after and 
before (i.e. 0.73) the insertion. As is shown in this table, 
the insertion of all networks but the Facebook with 
TMv model significantly damage the correlation on the 
gold set. This verifies our hypothesis on the tested 
networks.

Table 3. Tested networks with maximum w-core index within 1 ± 0.15 (gold set) 

Network Model w-core LCIS RG 

Facebook 

WC 

0.858 3.60 1.99 

CA-GrQc 0.995 0.61 1.08 

CA-HepTh 0.988 0.59 1.09 

CA-HepPh 0.998 1.51 1.16 

CA-AstroPh 1 1.76 1.20 

CA-CondMat 0.99 1.77 1.17 

Cit-HepPh 0.998 2.29 1.12 

Email-Enron 0.998 2.56 1.30 

Epinions 0.99 2.85 1.18 

Slashdot 0.914 3.35 1.67 

DBLP 0.982 0.38 1.04 

CA-GrQc 

TMv 
1.122 3.14 1.22 

CA-HepTh 0.863 2.25 1.17 

Table 4. Impact of inserting networks to the gold set on the correlation between LCIS and RG 

Network Model w-core LCIS RG 
Correlation after 

insertion 

Impact on the gold 

set 

Facebook 

TMv 

 

2.869 9.04 2.20 0.86 +0.13 

Wiki-Vote 0.03 1.49 2.56 0.31 -0.42 

CA-HepPh 6.476 20.47 1.28 0.17 -0.56 

CA-AstroPh 1.318 5.17 1.43 0.67 -0.06 

CA-CondMat 0.511 0.65 1.40 0.63 -0.10 

Cit-HepPh 0.06 0.42 1.41 0.60 -0.13 

Email-Enron 0.213 0.80 3.10 0.05 -0.68 

Epinions 0.314 2.67 2.20 0.63 -0.10 

Facebook 

TR 

 

4.17 18.16 1.31 0.22 -0.51 

CA-GrQc 1.227 6.29 1.28 0.51 -0.22 

Wiki-Vote 0.564 17.40 1.42 0.33 -0.40 

CA-HepTh 0.797 0.97 1.29 0.69 -0.04 

CA-HepPh 7.312 22.32 1.16 0.03 -0.70 
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In this section we have experimentally observed that 
the reselection gain is correlated to the influence 
saturation on the networks with w-core index close to 
unity. In the following section a degree distribution 
related parameter is introduced and shown to have a 
high entanglement with the reselection gain. 

C. Network Structure 

Earlier in Section II it was discussed that the star-
like networks are candidates of reselection friendly 
networks. A star-like network can be characterized by 
two properties: 

 A small number of highly connected core 
nodes; 

 A great number of weakly connected border 
nodes; 

After a thorough investigation of network 
parameters concerning the first property, no meaningful 
relation between the tested parameters and the 
reselection gain were found. But for the second 
property, a simple weighted degree test has been 
identified to have a significant correlation with the 
reselection gain. 

We simply set a threshold for the weighted out-
degree of the nodes and compute the percentage of the 
nodes with a weighted out-degree less than the 
threshold value. In what follows this quantity is shown 
by 𝛿 . One may argue about the selection of the 
threshold value. Figure 6 shows that the correlation 
between RG and 𝛿 is hardly sensitive to the threshold 
value and all the threshold values in the range from 
3.0E-04 to 3.0E-03 can be chosen safely. For all of the 
correlations reported in Figure 6, the confidence level 
is greater than 0.994.  

This experiment is performed over all of the 27 
networks listed in Table 3 and Table 4 and shows that 
for a wide range of thresholds, the portion of the nodes 
with a weighted degree below the threshold value has a 
correlation greater than 0.63 with a confidence level 
above 0.994. 

 

Figure 6. Sensitivity of the correlation between RG and 𝛿 to the 
degree threshold value 

V. CONCLUSION 

In this paper we have seen that considering the 
possibility of node reselection in the influence 
maximization, or equivalently targeting multiset of 

seeds instead of set of seeds can have diverse impacts 
on the influence spread in a number of networks. Based 
on the reselection gain of the influence spread, we have 
divided the networks into three groups, namely the 
reselection-free, reselection-aware and reselection-
friendly networks. Our experiments have shown that 
the reselection gain can vary from 1 to 3.1 in different 
real-world networks. 

We have correlated the reselection gain of networks 
to another influence maximization dynamics, called the 
influence saturation. We have shown experimentally 
that there is a 0.73 correlation between the reselection 
gain and the influence saturation in our tested networks 
in the WC model. More generally, we have 
experimentally verified the hypothesis that the 
networks with a w-core index close to unity have a high 
correlation between their reselection gain and influence 
saturation. 

In order to make the propagating models more 
consistent with reality, we have introduced the 
transitive multi-valency (TMv) model which also 
considers the transitivity structures in the network. 
Consequently, our experiments were performed on the 
networks with three models for the edge weight: WC, 
TR and TMv. 

Finally, in a search for detecting the star-like 
networks, we have shown a correlation of at least 0.63 
between the reselection gain and the percentage of low 
degree nodes on a set of 27 networks with WC, TR and 
TMv models. We think that there are still room for 
analyzing the reselection gain dynamics in different 
networks. Finding a stronger entanglement between this 
dynamics and the network structure enables us to 
distinguish the reselection-friendly networks and 
choose our advertising strategies accordingly. 
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