
QoS-aware web service composition using

Gray Wolf Optimizer

Meysam Karimi

Department of computer science

Kashan University

Kashan, Iran

Meysam.Karimi84@gmail.com

Seyed Morteza Babamir

Department of computer science

Kashan University

Kashan, Iran

Babamir@kashanu.ac.ir

Received: November 4, 2016- Accepted: March 5, 2017

Abstract— In a service-oriented application, an integrated model of web services is composed of multiple abstract

tasks. Each abstract task denotes a certain functionality that could be executed by a number of candidate web services

with different qualities. The selection of a web service among candidates for execution of each task that is led to an

optimal composition of selected web services is a NP-hard problem. In this paper, we adapt the Gray Wolf Optimizer

(GWO) algorithm for selection of candidate web services whose composition is optimal. To evaluate the effectiveness

of the proposed method, four quality parameters, response time, reliability, availability, and cost of web services are

considered and the derived results are compared with several Particle Swarm Optimization (PSO) methods. The

proposed method was executed in from 100 to 1000 times and the results showed that a better optimal rate (between
0.2 and 0.4) compared with PSO.

Keywords- Optimal web service composition; Gray Wolf Optimizer algorithm; Particle Swarm Optimization; Service

oriented; Quality of service.

I. INTRODUCTION

In recent years, web services as computational
models were developed quickly and played significant
roles in e-commerce and web-based services.
Therefore, the use of convenient and fast web service
with atomic functionality has increased. However, for
an application consisting of tasks, a combination of
web services is used to execute the tasks where each
task (called abstract task) is meant for a specific
function. For each task, there are a number of
candidate web services with the same functionality but
with different quality characteristics. An optimal
solution for execution of an application is a set of
selected web services whose combination is the most

suitable combination for the application. Since optimal
values of quality parameters are not included just in a
candidate web service and are found in different
candidates, the selection of a candidate web service for
execution of a task of the application is difficult.
Furthermore, there may be conflict between some
quality parameters. Lower cost and faster response
time are always desired; however, they are in conflict
with each other because a web service with faster
(more optimal) response time demands more (less
optimal) cost. Hence, it is clear that the web service
composition is a combinatorial optimization problem.
It is worth noting that the quality parameters play an
important role in identifying the best combination of
services at runtime. Finding the optimal solutions for

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
9-

27
]

 1 / 8

https://ijict.itrc.ac.ir/article-1-44-en.html

web services composition with conflicting quality
parameters is a complex problem that cannot be solved
in a polynomial time (NP-Hard).

Generally speaking, the QoS-aware (Quality of
Service-aware) web services composition is resolved
using intelligent computational methods [1-3].
Methods used the PSO algorithm exhibit better results
compared with genetic-based methods [4]. In this
study, we adapted the Gray Wolf Optimizer (GWO)
algorithm to resolve the QoS-aware web services
composition. The proposed method was compared
with standard PSO (Particle Swarm Optimization)
algorithm [5], IDPSO (Improved Discrete PSO) [6]
and QIPSO (Quantum-Inspired PSO) [7]. The results
showed that the proposed method is more effective.
We’ve already had experience using the adapted GWO
for optimization where the GWO results were
compared with those of other optimization algorithms
[8].

This paper is organized as follows. Section 2
addresses the related literature. The GWO algorithm is
described in Section 3. In Section 4, we explain the
proposed method and in Section 5, present the results.
Finally, Section 6 deals with concludes.

II. RELATED WORKS

A number of studies have been carried out for the
QoS-aware web service composition problem. Most
solutions are based on the PSO algorithm and exhibit
better coverage compared with the genetic
optimization algorithm. However, there is still room
for optimization of the QoS-aware web service
composition [6]. PSO is a population-based
evolutionary algorithm in which each particle has a
position and velocity and the population of particles
saves its best local and global position. Each particle
improves its position based on the value of: (1) its
position, (2) the best local position (pbest) and (3) the
best global position (gbest). Each particle has a D-
dimensional vector in which ‘D’ represents dimension
of the space that the particle wants to search.

Kang et al [5] used PSO to solve the problem of
QoS-aware web service composition composed of the
following stages. They noted that the results in terms
of coverage and execution speed are superior to the
genetic algorithm.

I) Reduction of the multi-objective optimization
problem to a single-objective one,

II) Initialization of the particles and adjust the
parameters of the algorithm,

for each particle{

III) Computation of the fitness value of the particle
position as a candidate for the composition,

IV) Comparison of the fitness value of current position
of the particle with pbest of the particle and
replacement of the pbest by the fitness value if the
value is more,

V) Comparison of the pbest value of the particle with
the gbest and replacement of the gbest by the pbest
if the pbest value is more,

VI) Calculation of velocity and position of the particle
using the PSO formulas,

 }

Zhao et al. [6] used IDPSO to address discrete
QoS-aware web service composition. They modified
the PSO position and velocity formulas to resolve the
QoS-aware web services composition and showed that
the quality of the service based on the composition
obtained by IDPSO is higher than PSO. We compared
our results with IDPOS.

QIPSO [9] was created by the integration of
quantum display of problem space and PSO trying to
improve the ability of the PSO algorithm. Jatush and
Gangazaran [7] first reduced the QoS-aware web
service composition problem to the single-objective
optimization and then resolved it through QIPSO.
QIPSO contains three basic parts: (1) quantum
measurement, (2) quantum interference, and (3)
quantum flight.

Quantum measurement is a function to extract
binary particles from quantum particles. Consequently,
the quantum particles can be transformed to binary
vectors in the problem space. Quantum interference is
a function increasing the composition optimization
and decreasing the probability of suboptimal
composition. The main purpose of the quantum
interference is that the state of each qubit tends
towards the optimum composition (solution). A qubit
in quantum computing or quantum bit is a basic unit
like a bit in the classical computing. Quantum flight is
a function allowing a quantum moves from its current
position to its next one to enhance the capacity of the
search space. A new solution uses standard phrases
forming the next position of the particle in the PSO
algorithm. It was shown that QIPSO is more effective
than PSO and IDPSO.

III. GRAY WOLF OPTIMIZER

Gray Wolf Optimizer (GWO) [10] is a population-
based meta-heuristic algorithm that simulates
leadership structure and hunting mechanism of gray
wolves in nature. Gray wolves prefer to live in a
grouping of five to twelve in form of a hierarchical
society consisting of four levels: Alpha, Beta, Delta,
and Omega.

The Alpha wolves (male or female) are leaders and
responsible for deciding on time of hunting, sleeping,
waking, and so on. The rest of the wolves in the group
are forced to obey the order of Alphas. Alphas prevail
over other levels and all their orders must be followed
by members of the group.

The Beta wolves (male or female) are subalterns of
Alphas and help Alphas in decision-making. They are
the best alternatives to the Alphas at the time of death
or aging.

The Delta wolves obey Alphas and Betas, but are
superior to the Omegas. Omegas are considered as
devotees and obey all wolves of their higher levels.
They are the last ones allowed to eat.

GWO simulates hunting of gray wolves where the
hunting process is divided into three phases: (1) to
chase and surround a prey, (2) harass the prey, and (3)

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
9-

27
]

 2 / 8

https://ijict.itrc.ac.ir/article-1-44-en.html

attack the prey. For mathematical modeling of the
problem, the best solution is considered as Alpha (α).
Similarly, the second and third best solutions are
considered as Beta (β) and Delta (δ). Remaining
candidate solutions are considered as Omega (ω).
Hunting (optimization) in GWO is guided by Alphas,
Betas, and Deltas while Omegas follow them. Eqs. 1
and 2 are used to surround a prey [10]:

(1) |)()(.| tXtXCD p




(2) DAtXtX p


..)()1(

As stated above, wolves should surround the prey
first. To this end, the distance of each wolf from the
prey is calculated according to Eq. 1 and the next
position of the wolf is calculated according to Eq. 2

where ‘t’ represents the current run and vectors A and

C are coefficient vectors for distance and prey

respectively.
pX

 and
X

are the prey position vector

and position of the gray wolf, respectively. Vectors A

and C are calculated according to Eqs. 3 and 4 [10]:

(3)
araA


 1.2
(4) 2.2 rC




Elements of the vector  linearly decrease from 2
to zero during the execution of algorithm. Vectors
𝑟1 and 𝑟2 contain random values in interval [0, 1].

The wolves chase the prey based on positions of
Alphas, Betas, and Deltas. Wolves get away from each
other for searching (called divergence) but get close to
each other to attack (called convergence). To model

the divergence, values of the A vector are greater than
1 or less than -1. It forces the search agent to diverge
and perhaps find a better prey. This practice focuses
on exploration and allows GWO to perform a
complete search. Another part of GWO, which

facilitates exploration, is the C vector whose values are
random values in [0,1] denoting weight of prey in Eq.
1. It causes the behavior that is more random during
hunting leading to find a proper prey; this avoids the

local optimization. Note that the C vector decreases

non-linearly. Moreover, the C vector can be
interpreted as natural obstacles in the path of the
wolves in hunting and preventing them from rapidly
reaching the prey. The wolves are able to recognize
and surround a prey position. The hunting of prey
usually is guided by Alphas and Betas and Deltas
participate in hunting in some cases. However, for the
optimization problem, there is no information about
the exact position of the prey. To model the behavior
of hunting, Eqs. 5-7 are used [10].

(5) XXCDXXCDXXCD





.,.,.
321

(6)).(),.(),.(
332211 

DAXXDAXXDAXX




(7)

 3
)1(321

XXX
tX


 



Since there is not the precise estimate of the actual
location of the prey, the distance of each wolf from the
best positions of Alpha, Beta, and Delta is calculated
using Eq. 5. The next position of Alpha, Beta, and
Delta is calculated using Eq. 6. Using Eq. 7, next wolf
position is calculated regarding the average position of
Alpha, Beta, and Delta.

IV. PROPOSED METHOD

In this section, an accurate description of the
problem is defined and then quality parameters of the
QoS-aware web service composition are described.
Afterwards, three steps are taken to solve the
optimization problem using GWO.

A. Problem Description

An abstract description of a workflow is defined as
a composition of abstract services indicated by A =
(A1, A2, .., An) where Ai is an abstract service. Suppose
for each abstract service, there are some candidate
concrete services that are able to perform the abstract
service with different qualities. Concrete candidate
services for abstract service Ai is shown as
Ci={Ci1,Ci2,…,Cim} where Cij is the jth concrete
candidate service for abstract service Ai.

If quality attributes are response time, cost,
availability, reliability, quality of the concrete service
S is defined as:

QoS(S)=(Time(S),Cost(S),Availability(S),
Reliability(S))

The goal is to obtain an optimal composition of
concrete candidate services for services of a workflow
so that the composed web services have the best QoS.
Therefore for each abstract service, say Ai, the goal is
to find solution Sk=Cij. For a workflow consisting of
abstract services A1, A2, .., An, an optimal composition

consisting of candidate services
11 ,jC

22 jC ,…,
knjC

should be obtained with respect to minimizing
response time and cost and maximizing reliability and

availability. Notation
iijC indicates the selected

concrete service for abstract service Ai is ji where ji
denotes the jth concrete service of the services are
candidate for Ai.

 Depending upon the execution of concrete services
in serial or in parallel, response time, cost, reliability,
and availability are calculated according to Table1
[11].

B. QoS-aware web service composition using GWO

To optimize QoS-aware web service composition

using GWO, we should first determine: (1) the

representation of wolfs, (2) the initial population of

wolfs, (3) the fitness function to evaluate wolfs and (4)

the mechanism of updating wolfs’ positions at the end

of each algorithm iteration.

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
9-

27
]

 3 / 8

https://ijict.itrc.ac.ir/article-1-44-en.html

Table 1. Calculation of quality parameters in execution of

serial or parallel services [11]

Parallel Serial Quality parameter

Max(Ti)

(Ti)

Response Time

Ci

(Ci)

Cost

(Ai) (Ai) Availability

Min(Ri)

(Ri) Reliability

C-1 Wolf representation

One of the most important steps in the GWO design

is the representation of a solution (wolf). In a QoS-

aware web service composition, a proper solution is

shown by a vector with D dimensions (called D-

dimensional vector) in which D is the number of

abstract tasks of the workflow. Each element of the

vector has a value (see Eqs. 5 to 7) indicating index of

the concrete service selected from the candidate

services.

Consider a workflow consisting of (n=5) abstract

services, for instance, where n solutions (indicated by

vectors 1x to nx in Fig. 1) were proposed. Each

solution, indicated by ix , shows a composition of 5

candidate services. Vector 1x , for instance, indicates

that concrete services 3, 1, 4, 11, and 6 are selected for

abstract services 1 to 5.

1
x


={3,1,4,11,6}, 2
x


={110,68,63,400,100} . . .

x
n



={40,36,92,57,102} Fig. 1

C-2 initializing population

After representing solutions, a population of

solutions should be initialized. Initially, n wolves

(solutions) are randomly chosen for each abstract task

from candidate services in a dataset. Each wolf

consists of d values (for instance 5 values for the

example stated above).

C-3 Fitness Function

A fitness function should be determined to measure

wolf’s accuracy. For QoS-aware web services

composition, wolf’s accuracy is measured by its

services’ quality values and considering the

importance (weight) of each service quality. To

compute quality of web services, we use the relations

stated in Table 1. Table 2 shows typical weights for

quality services.

Availability and reliability are positive qualities

while cost and response time are negative ones. While

higher values are more desirable for positives, fewer

values are sought for negatives. Because qualities

values have different scales, they should be

normalized. Eqs. 8 and 9 show normalization of

positive and negative qualities, respectively [6].

Table 2. Typical weight (importance) for each quality

Reliability Response time Availability Cost Parameter

0.3 0.4 0.2 0.1 Weight

(8)














otherwise

QQ
QQ

QQ
ii

ii

ii

1

0minmax

minmax

max

(9)













otherwise

QQ
QQ

QQ
ii

ii

ii

1

0minmax

minmax

min

According to Eq. 8, higher (more desirable) value

for the positive quality Qi leads to less value for the

fraction; similarly, based on Eq. 9, less (more

desirable) value for negative the quality Qi does to less

value for the fraction. Therefore, our optimization

problem is a minimization problem.

Given that the Max. and Min. values of reliability

and cost are according to Table 3 and reliability and

cost values of a service are according to Table 4,

normalized values are shown in Table 5.

As stated above, our optimization is a minimization

problem; therefore, according to Eqs. 10 and 12,

Service1 is more reliable than Service 2 but Service2

is less costly than Service1.

Fitness value of each dimension (indicating a

concrete service) in a candidate solution (wolf) is

calculated according to Eq. 14. For instance, fitness

value of concrete Service 3 consisting of values of

100% for response time, 2.2% for availability, 90% for

cost, and 89% for reliability are calculated as follows

(for weights, see Table 2).

Table 6 shows Fitness values of services in vector

(see Fig. 1) as a solution for 5

abstract services of a workflow.

Eq. 15 shows the fitness value of solution 1x ;

similarly, the fitness values of 2x to nx are calculated

and the solution with the smallest value is selected as

Alfa wolf and the smallest values greater than Alfa are

selected as Beta and Delta wolves, respectively.

Table 3. Min. and Max. values of reliability and cost

100 Maximum Reliability(%)

 20 Minimum

80 Maximum
Cost($)

20 Minimum

 6,11,4,1,31x


 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
9-

27
]

 4 / 8

https://ijict.itrc.ac.ir/article-1-44-en.html

Table 4. An example of quality values of 2 services

80 Reliability Service 1

 60 Cost

70 Reliability
Service 2

40 Cost

Table 5. Normalizing quality values

Concrete

service
Reliability(%) Cost(%)

Service 1











`25.0

80

20

20100

80100

(10)











`67.0

60

40

2080

2060

(11)

Service 2











`37.0

80

30

20100

70100

(12)












`33.0

60

20

2080

2040

(13)

fitness(cs)=
1

(())

d

i

weight quality i



 *quality(i) (14)

=(0.4*1)+(0.022*0.2)+(0.9*0.1)+(0.89*0.3)=76%
Table 6. Fitness values of the services in vector x1

Service#
Response

time (%)

Availability

(%)

Cost

(%)

Reliability

(%)

Fitness

value%

3 100 2.2 90 89 76

1 85 1 33 100 67.5

4 83 23 6 89 65.18

11 73 3.7 12 78 54.54

6 46 10 39 89 89

DiFueFitnessVal
D

i
/))((

1



=(76+67.5+65.18+54.54+89)/5=70.44

 (15)

C-4 Update wolf position

In GWO, wolves need to update their position at the

end of each algorithm iteration according to Alpha,

Beta, and Delta (which are the wolves with the best

fitness values in the population), to get closer to the

prey. The classic GWO is not appropriate for solving

discrete problem and since the web service

composition has a discrete space (each dimension of

web services composition is a representation of one

dimension of a concrete service and cannot accept

continuous values), we should justify the basic GWO

to a discrete problem. Kennedy and Eberhart [4] used

a sigmoid method to convert continues problems into

discrete ones. Mirjalili et al. [12] described different

ways of transforming continuous problems to discrete

ones. Leading solutions were considered in this study

and the results showed that the hyperbolic tangent

function is more suitable for our problem. Therefore,

after using GWO equations (Eqs. 5-7) and calculation

of the approximate position of wolves in continuous

space, update formulas for wolf position are applied.

The next position of a wolf (calculated using Eq. 7)

is used as argument of the hyperbolic tangent function

in Eq. 16 and the output of the function is compared

with a random number between zero and one. If it is

lower than the random value, it means that we do not

need to change the concrete service; otherwise, we

must replace the concrete service with a new one.

For example, suppose Alpha, Beta, and Delta are
defined as follows:

, ,

To update solution (wolf) , distance

of each dimension of the concrete service from the
corresponding dimensions of Alpha, Beta, and Delta is
calculated and then a new approximate position is
calculated according to Alpha, Beta, and Delta
separately.

(16)





 


otherwise

UtXTanhif
X idnew

id

,0

))1,0()1((((,1

Moreover, the mean of these positions is used in the

transition function. Afterwards, output of this function
determines whether this service should be replaced or
not. The following example shows the calculations
stated above.

10.2983.092.058.0|.1|1_  XXCD




45.3183.088.058.0|.2|_1  XXCD




34.2783.095.058.0|.3|_1  XXCD



95.14410.2*)82.1(92.0|).(1|1_1   DAXX



22.11645.31*)89.0(88.0|).(2|1_2   DAXX


77.7334.27*)78.0(95.0|).(3|1_3   DAXX


3

321
)1(1

XXX
tX


 



64.111
3

77.7322.11695.144










 


otherwise

tXTanhif
alueTransformV

0

))1,0()1(((1
.




Tanh(111.64)=1,U(0,1)=0.41,1≥0.41TransformValue=1

 Because the value of the transition function is 1,

this concrete service is replaced by one of randomly

selected candidate services of this abstract service. The

presented calculations were done for the first

dimension of a candidate solution (wolf). Similarly,

 7,41,139,12,500x


 900,76,219,29,17x


 84,606,739,1101,2028x


 6,11,4,1,3x


 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
9-

27
]

 5 / 8

https://ijict.itrc.ac.ir/article-1-44-en.html

this process should be done for all dimensions of a

wolf. Pseudo code of proposed method is presented in

Fig. 2.

InitializePopulation();
currentIteration=0;
While(currentIteration < maxIteration){

GetQualityParameters(population);
UpdatePopulation(population, Alpha, Beta, Delta)
currentIteration++;

}

InitializePopulation(){
 Foreach dimension in Dimension
 {
 SelectRandomService(Repository);
 }
}

UpdatePopulation(population, Alpha, Beta, Delta){
 Foreach wolf in population
 {

XXCD


  .1
;

XXCD


  .2
;

XXCD


  .3
;

).(11  DAXX




;

).(22  DAXX




;

).(33  DAXX




;

;
3

321
)1(

XXX
tX


 



))1,0())1(((UtXTanhIf 



 GetNewConcreteServiceFromRepository();
 }
}

Fig. 2. Pseudo code of the proposed method

V. EVALUATION OF THE PROPOSED METHOD

We implemented the QoS-aware web service
composition using GWO in C# programming language
and tested using PC with Intel® Core (TM) i5, 2.6
GHz and RAM of 8 GB. The optimal rate of the
proposed method was compared with PSO [5], IDPSO
[6] and QIPSO [7] using the QWS dataset [13]
containing 2507 real web services. The optimality rate
was calculated using Eq. 17 [14].

OptimalityRate=
OptimalSolution

InitialSolution

 (17)

The “Initial Solution” is the best solution at the end
of the first iteration of the algorithm and the “Optimal
solution” is the best solution after convergence of the
algorithm. Table 7, for instance, shows initial and
optimal solutions of algorithms A and B. According to
Eq. 17, the optimal rate of algorithms A and B are 0.33
and 0.5, respectively. Since the minimum value of the
optimal rate is desired, algorithm A outperforms
algorithm B. To compare our proposed method with
other methods, the optimal rate is used (Fig. 3). As
Fig. 3 shows, the optimal rates of QIPSO and IDPSO

are better than PSO and QIPSO outperforms IDPSO
when the number of iterations increases. However, the
optimal rate of the proposed method shows it
outperforms other methods.

A suitable algorithm is the one that produces
effective results independently from the number of the
algorithm iterations; GWO enjoys such feature. In this
study, we run the proposed algorithm 40 times with an
arbitrary number of iterations in each execution. Table
8 shows convergence of the algorithm for 10 services.

VI. CONCLUSION AND FUTURE WORKS

In this study, the effective use of GWO for QoS-
aware web service composition was investigated. To
found an optimal composition of solutions in a discrete
space, we modified the basic GWO.

To evaluate the effectiveness of the proposed
method, we thought of quality parameters: response
time, reliability, availability, and cost for each web
service. By comparing results of the proposed method
with several variations of PSO, it was shown the
proposed method outperforms the various PSO-based
methods.

We showed that the GWO was a suitable

algorithm to produce effective results independently

from the number of the algorithm iterations. In this

study to produce effective results and not using non-

optimal results, we run the proposed algorithm 40

times with an arbitrary number of iterations in each
run.

The disadvantage of the proposed method,

however, is that if a web service has the best fitness

value it will be selected as the suggested solution;

while there may be several similar solutions with

lower fitness values but with more user-friendly

candidates. In this case, these solutions would stay

away from users. Therefore, as future work, we plan

to solve QoS-aware web-service composition problem

using the Pareto front concept without transforming it

to the single-objective optimization problem. This

would produce good non-dominated results and user
would be free to decide between several suggested

solutions.

As a future work, we may use Analytical

Hierarchical Process (AHP) when we reach to a set of

optimal solutions instead of single one. AHP is used

when we should choose a solution from a set of

alternatives. A solution is chosen from alternatives by

considering some criteria influencing on the solutions.

Table 7. Initial and optimal solutions of 2 algorithms

Alg. Initial Solution
Optimal
Solution

Init. S./
Opt. S.

A 0.6 0.2 0.2/0.6=33

B 0.4 0.2 0.2/0.4=0.5

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
9-

27
]

 6 / 8

https://ijict.itrc.ac.ir/article-1-44-en.html

Fig. 3- The optimality rate of PSO, IDPSO, GWO, and QIPSO

Table 8. Convergence of the proposed algorithm

OG: #Optimal Generations, RI: #Run Iterations

RI OG

RI OG

600 401 6 100 32 1

700 325 7 200 131 2

800 597 8 300 242 3

900 702 9 400 211 4

1000 654 10 500 273 5

REFERENCES

[1] A. Strunk, “QoS-Aware Service Composition: A Survey,”
The 8th IEE European Conference on Web Services, pp. 67–

74, 2010.

[2] M. Amiri and H. Serajzadeh, “Effective Web Service
Composition Using Particle Swarm Optimization Algorithm,”

The 6th IEE Symposium on Telecommunications, pp. 1190–
1194, 2012.

[3] S. Ludwig, “Applying Particle Swarm Optimization to
Quality-of-Service-Driven Web Service Composition,” The

26th IEEE International Conference on Advanced
Information Networking and Applications, pp. 613–620,

2012.

[4] Q. Bai, “Analysis of Particle Swarm Optimization
Algorithm,” Computer and Information Science, Canadian

Center of Science and Education, vol. 3, no. 1, pp. 180-184,
2010.

[5] G. Kang, J. Liu, M. Tang and Y. Xu, “An Effective Dynamic

Web Service Selection Strategy with Global Optimal QoS
Based on Particle Swarm Optimization Algorithm,” The 26 th

IEEE International Symposium Workshops on Parallel and
Distributed Processing, pp. 2280–2285, 2012.

[6] X. Zhao et al., “An Improved Discrete Immune Optimization
Algorithm Based on PSO for QoS-driven Web Service

Composition,” Applied Soft Computing, Elsevier, vol. 12, no.
8, pp. 2208–2216, 2012.

[7] C. Jatoth and G.R. Gangadharan, “QoS-aware Web Service

Composition Using Quantum Inspired Particle Swarm
Optimization,” Intelligent Decision Technologies, Springer,

pp. 255-265, 2015.

[8] A.Khalil and S.M. Babamir, “A Pareto-based Optimizer for
Workflow Scheduling in Cloud Computing Environment”,

International Journal Information and Communication
Technology Research, vol. 8, no. 1, pp. 51-59, 2016.

[9] A. Layesb, “A Quantum Inspired Particle Swarm Algorithm

for Solving the Maximum Satisfiability Problem,”
International Journal of Combinatorial Optimization Problems

and Informatics, vol. 1, no. 1, pp.13–23, 2010.

[10] S.A. Mirjalili, S.M. Mirjalili and A. Lewis, “Grey Wolf
Optimizer,” Advances in Engineering Software, Elsevier, vol.

69, no. 1, pp. 46-61, 2014.

[11] Y. Yao and H.Chen, “QoS-aware Service Composition Using
NSGA-II,” The 2nd International Conference on Interaction

Science: Information Technology, Culture and Human, ACM,
2009.

[12] S.A. Mirjalili, A. Lewis, “S-Shaped Versus V-Shaped
Transfer Functions for Binary Particle Swarm Optimization,”

Swarm and Evolutionary Computation, Elsevier, vol. 9, no.1,
pp. 1-14, 2013.

[13] E. Al-Masri and Q.H. Mahmoud, "Discovering the Best Web

Service," The 16th International Conference on World Wide
Web, pp. 1257-1258, 2007.

[14] B. Boussalia and A. Chaoui, “Optimizing QoS-based Web

Services Composition by Using Quantum Inspired Cuckoo
Search Algorithm. In Proceedings of the Mobile Web

Information Systems, vol. 8640, pp. 41–55. Springer, 2014.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200

O
p

ti
m

al
it

y
R

at
e

Iterations

GWO QIPSO

IDPSO PSO

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
9-

27
]

 7 / 8

https://ijict.itrc.ac.ir/article-1-44-en.html

which is developing digital repository under .Net technology, as a

full-time Developer, and soon was promoted to the project manager

in 2009. Since that time, he has been with the Lovin, where he was

a technical manager, Scrum Master and part-time developer. In

2010, he joined Ministry of Education as a teacher and he has been

teaching computer courses for students eagering to join an

associate's degree. Also, he has held lecturing position at Azad

University of Islamshahr, Tehran, Iran. He was the recipient of the

best teacher of the Conservatory of Mostafa Khomeini in 2014,

2016, and 2017. His current research interests include software

engineering, service oriented, cloud computing, distributed

systems, evolutionary algorithms, and big data.

Seyed Morteza Babamir received BS

degree in Software Engineering from

Ferdowsi University of Meshhad and

MSc and PhD degrees in Software

Engineering from Tarbiat Modares

University in 2002 and 2007 respectively.

He was a researcher at Iran Aircraft

Industries, in Tehran, Iran, from 1987 to

1993, head of Computer Center in

University of Kashan, Kashan, Iran, from

1997 to 1999 and haed of Computer Engineering Department at

University of Kashan from 2002 to 2005. Since 2007, he has been

an associate professor of Department of Computer Engineering at

University of Kashan, Kashan, Iran. He authored one book in

Software Testing, 4 book chapters, 20 journal papers and more than

50 international and national conference papers

(http://ce.kashanu.ac.ir/babamir/ Publication.htm). He is managing

director of Soft Computing Journal published by supporting

University of Kashan, Kashan, Iran.

Meysam Karimi received the B.E.

degree in software engineering from the

Tabarestan University, Chalus, Iran, in

2007, and M.Sc. degree in Software

Engineering from University of Kashan,

Kashan, Iran in 2016, respectively. In

2008, he joined the Lovin Information

Technology Company; a software house

 [
 D

ow
nl

oa
de

d
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n

20
24

-0
9-

27
]

Powered by TCPDF (www.tcpdf.org)

 8 / 8

https://ijict.itrc.ac.ir/article-1-44-en.html
http://www.tcpdf.org

