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Abstract—One of the most important issues in the design of CNN accelerators pertains to the accelerator's ability to effectively leverage the available opportunities in the type and processing of input data, and the task of achieving this objective mostly lies with the dataflow. Equal channel size in the input feature map and filter of CNNs is one of these opportunities, which makes it desirable to design dataflow as Channel Dimension Stationary (CDS). On the other hand, the complexity of designing computations based on the Cartesian product (due to its all-to-all nature) is lower, especially in CDS dataflows. But, since the Cartesian product method causes the generation of useless products and, as a result, reduces performance and energy efficiency, there is less desire for this type of design. This paper presents a frame called FUCA for Cartesian product-based dataflows, which avoids operations leading to useless products. The analysis revealed that FUCA reduces runtime and energy consumption in the Cartesian product-based dataflow by 1.5x, potentially surpassing the sliding window-based dataflow.
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Introduction
In today's applications, deep neural networks are frequently employed for processes such as machine vision, speech recognition, and classification [1-3]. Using the Convolution Neural Network (CNN) in various Artificial Intelligence (AI) applications, Deep Learning has produced results with excellent accuracy [4]. However, these algorithms face challenges in real-time applications due to the high volume of input parameters and computations required. Therefore, CNN’s hardware accelerators have emerged, and research to develop them continues [5].
Dataflow is one of the crucial aspects in the design of accelerators, as it greatly influences the utilization of processing elements, performance, and energy efficiency [6]. In hardware accelerators that focus on exploiting opportunities such as data reuse (Eyriss [7]), sparsity (NullHop [8] and SCNN [9]), parallel computing (almost all accelerators), etc., most of this happens through dataflow optimization.
In convolutional layers, an interesting characteristic is that the number of filter channels (C) is equal to the number of input feature map (ifmap) channels (Fig. 1). Crucially, the products obtained by multiplying one Channel Dimension Array (CDA) of ifmap by one CDA of filter all pertain to a single value of output feature map (ofmap) and must be gathered together. Therefore, the design of the accelerator's dataflow as the Channel Dimension Stationary(CDS) can significantly reduce implementation complexity [10]. In particular, this approach can also enhance the exploitation of the sparsity opportunity. For instance, by adopting the same technique and without adding hardware overhead, the MCPS [10] dataflow, which is based on CDS and focuses on exploiting sparsity, has been able to increase performance by 2.9x and energy efficiency by 2.11x at a sparsity of 70%.
The computational method in convolution-based dataflows is the next issue. This can be either Sliding Windows based Convolution (SWC) or Cartesian Product based Convolution (CPC), depending on the main goal of the accelerator. For example, dataflow in MAERI [11] and Eyeriss [7] is based on SWC, while dataflow in SCNN [9] and MCPS [10] is based on CPC.
Applying the CPC method in the dataflow, particularly in the CDS dataflow, due to the simpler algorithm (the nature of all to all), can reduce the complexity of the implementation. Rather, in CPC, there is a challenge of generating useless products that manifest as overheads in computation and data transfer, adversely affecting both energy efficiency and performance. Due to this issue, the SWC is now more often employed in accelerators than the CPC.
In the current study, we concentrated on CPC-based dataflows for CNN accelerators and attempted to create a constraining frame called FUCA for this kind of computation, so as to avoid the transfer and processing of data leading to useless results. To evaluate the FUCA, we have chosen the MAERI [11] as the target accelerator. This accelerator is reconfigurable and can be configured based on various dataflows. With loop transformations and tiling, we have designed a CDS dataflow for MAERI that is based on CPC. Then, this designed dataflow was upgraded based on FUCA in several steps to prevent the generation of useless products and overheads.
Due to the nature of computations in CPC-based dataflow, it is simple to ignore channels with any position on the ifmap plane. Therefore, FUCA does not send the channels produced by zero-padding for computations. Furthermore, because FUCA also avoids sending channels that lead to useless products, the volume of computations is significantly reduced compared to the case without FUCA. Tests demonstrated that the suggested frame significantly lowers runtime and energy consumption when it applies to CPC-based dataflows. Especially in layers that have high zero-padding, this is a multi-fold reduction.
Compared to SWC-based dataflows, the computation volume of the proposed method is less when the number of zero-padding (ZP) > 0. This makes the performance and energy efficiency of the provided dataflow—which is CPC-based and enhanced by FUCA—better than the original MAERI dataflow (which is even improved by various techniques) in at least half of the cases.
The proposed idea can be used to optimize various dataflows, particularly CDS dataflows that are based on CPC, to enhance performance and reduce energy consumption.
The key contributions of this work are the following:
The nature of all-to-all in CPC causes the generation of useless results. We offer a frame for CPC-based dataflows called FUCA, which avoids transferring and mapping data, leading to useless products.
In order to improve performance, we strengthen FUCA to prevent the processing of zeros resulting from zero-padding.
To evaluate the presented frame, we establish a CDS dataflow based on CPC for the MAERI accelerator. This dataflow enables the multiplication of all-to-all between ifmap and filter.
Our study demonstrates that employing FUCA in dataflows based on CPC can effectively decrease both runtime and energy consumption. 
The subsequent sections of this work are structured in the following manner. Section II presents a concise explanation of CNN accelerators and the MAERI architecture. Section III explores the CPC and how it generates useless products. The algorithm of the designed dataflow for the FUCA test is explained in Section IV. Section V provides a comprehensive description of the proposed frame and how it is applied to a CPC-based dataflow. Section VI includes evaluation measures, methodologies, and their corresponding results. Lastly, Section VII offers the conclusion.
Background
To further comprehend the details, an introduction to the MAERI accelerator—the target accelerator in this work—is required. Thus, this section provides a summary of MAERI's architecture together with a brief overview of CNNs.
 CNNs and CNN Accelerators
Notably, modern CNNs demand billions of multiply-accumulate (MAC) operations [12]. Each CNN layer's large computational volume is the reason for this huge amount of computation. In addition, the number of layers in advanced CNNs is also continuously increasing to improve accuracy [7, 13, 14]. For instance, by adding more layers, CNNs like GoogleNet [15], ResNet50 [16], DenseNet [17], and various versions of YOLO [18-21] have expanded the network.
CNNs generally include two main kinds of layers: convolutional layers and fully connected layers. Usually, the number of convolutional layers in CNNs is much higher. Thus, the majority of the work in CNNs is done by convolutional layers [22]. 
Each convolutional layer in CNN performs computations by applying filters to ifmaps in order to extract features and generate ofmaps [7]. Ifmaps, ofmaps, and filters have several dimensions in each convolutional layer (typically four dimensions). The dimensions and computations of a convolutional layer are shown in Fig. 1. Also, Fig. 3 shows a simpler and more accurate example of convolution layer computations.
While GPUs can be utilized for training CNNs, they are inefficient when used for inference in applications, particularly on energy-constrained mobile devices [8, 9]. Thus, to deal with this issue, CNN accelerators have been developed to effectively process enormous data volumes while minimizing energy consumption and delay. These accelerators incorporate a large number of MAC units. For example, the google Tensor Processing Unit (TPU) [23] consists of 64K MACs. The energy management and parallelization of this large number of MACs, efficient data transfer management between MACs, effective delay management and energy consumption optimization across memory hierarchies, and adaptability to various types of layers are among the challenges that accelerators face, and work on them continues [12]. 
The efficiency of a spatial accelerator is significantly influenced by its mapping and dataflow [24]. Hence, some reconfigurable accelerators are engineered to adapt to diverse dataflows, with the aim of enhancing both performance and energy efficiency across various CNNs. One of these accelerators is MAERI, which is the target accelerator in the current work. Its structure is described below.
MAERI accelerator
MAERI [11] is the name of the accelerator developed by Kwon et al. Its main goal is reconfigurability to support various dataflow patterns. This accelerator has targeted the connections and structure of the processing elements. The MAERI architecture is depicted in Fig. 2.
Three networks—the Distribute Network (DN), Multiplier Network (MN), and Reduce Network (RN)—make MAERI's Network On Chip (NOC), as shown in Fig. 2. DN and RN networks are built based on tree topology, and the MN network has a linear topology. The role of the DN tree is to transfer the ifmap values and weights from the prefetch buffer to the MN. On the other hand, the RN is responsible for accumulating the MN products at several levels to generate the ofmap values or psums. The computed values of ofmap are first modified by activation units, such as Rectified Linear Units (ReLU), and subsequently stored back into the prefetch buffer.
VN construction. The major characteristic of MAERI is the Virtual Neuron (VN) construction, which involves the segmentation of MAERI's NOC and the setting of the MN, RN, and DN according to this division. Every VN, independently,  concurrently,  and 
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The MAERI accelerator's architecture

parallelly with other VNs, executes the necessary MAC operations to generate a single ofmap value or psum.
A simple example of VN construction. A simple convolution layer with the dimensions N = 1, X = 4, Y = 4, C = 2, R = 2, S = 3, K = 2, X' = 3, and Y' = 2 is shown in Fig. 3. Fig. 4 depicts the mapping of the same layer on MAERI, providing a clear visual representation of MAERI's primary mapping method, which is based on SWC. It also illustrates VN Construction. In this case, the mapping strategy is according to the VNsize = R  S  C [footnoteRef:2] and the NOC has been set up in accordance. As shown, the MN has been divided into VNnumber VNs based on equation 1 [11]. The MSnumber represents all of the Multiplier Switches (MSes) in the MN. [2:  R, S, and C are the dimensions of a single filter, and VNsize is the number of MSes in each VN.] 


Since C is equal to 2, the VNsize has been determined to be 12, which is equal to the total number of weights of the one filter's planes. In this example, the dataflow is Weight Stationary (WS), which means that the weights are initially transferred to and kept in MSes. Subsequently, fresh ifmap values are inserted into MSes in each cycle. For example, following the depicted cycle, the next window values from the two ifmap channels (a2, a3, a4, a6, a7, a8, b2, b3, b4, b6, b7, b8) will be transmitted to MSes for computation.
generation of useless products in CPC
The CPC-based convolution involves multiplying all possible combinations. This method is simple but generates useless products, resulting in computational and transmission overheads. 
The Side
A portion of the ifmap plane is defined by the term "Side" in this paper. It is described as follows: "All multiplications of the ifmap values that are not on the Side are certainly useful, but multiplying some of the ifmap values on the Side may lead to useless products". In the CPC-based convolution operation, depending on the dimensions of the filter plane, one or more rounds of the ifmap plane edges are the Side. In Fig. 5(a), the filter plane is 2  2. This has caused one round of ifmap plane edges to be the Side. Increasing the size of the filter will result in a larger Side size. For example, in a convolution operation with 7  7 filter plane dimensions, six rounds from the ifmap plane edges are the Side.  Fig. 5(a) illustrates an example of CPC-based convolution. As seen, only 12 of the 32 products of ifmap values that are on the Side are useful. In this example, only the A5 is not on the Side, and all its products have become useful.
The impact of zero-padding on the quantity of useless products
The majority of convolution layers have zero-padding. In these types of layers, if the CPC operation is modified to eliminate the computation of additional data caused by zero-padding, the number of useless products will be reduced. Fortunately, during CPC operations, it is simple to avoid computing ifmap values that result from zero-padding. 
Fig. 5(b) demonstrates the impact of ignoring added data by zero-padding. In this example, ZP is 1, and the multiplication of its values has been skipped. This has caused the number of useless products to be reduced to zero.
When this approach is applied in CPC, the number of multiplications needed is often even lower than when the SWC method is used. For example, the SWC method requires 64 multiplications in the layer of Fig. 5(b), whereas the CPC with the mentioned approach only requires 36 multiplications.
Equation 2, where R = S; K = 1; C = 1; N = 1, determines the number of useless products in the CPC operation when zero-padding values are ignored. Fig. 1 describes R, S, K, C, and N. X represents the width and height of the ifmap plane after removing the zero-padding data. This equation clearly shows that as ZP increases, the number of useless products decreases.
                                                                              (2)


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The computations in a simple example of a convolutional layer
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  mapping over MAERI  and VN Construction ( mapping the example layer of Fig. 3 based on the main dataflow of MAERI )
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An illustration of CPC operation. (a) CPC with full computations. (b) CPC with ignoring computations of added zeros by zero-padding
Implementing a CDS dataflow based on CPC to test the proposed frame
To evaluate the proposed frame aimed at improving dataflows based on the Cartesian product, we have designed a new data flow for the MAERI architecture. To maintain simplicity and focus on the study's core theme, this data flow's chosen type is CDS. Because to implement the computations of CPC operation, exploiting channel features can significantly reduce design complexity. In the designed dataflow, we have taken advantage of two of these features. First, the number of filter channels (C) in convolutional layers is identical to the number of ifmap channels. Second, the psums produced by multiplying a Channel Dimension Array (CDA) of ifmap by a CDA of filter all belong to one ofmap value and need to be summed. Fig. 1 depicts this feature along with ifmap CDA and filter CDA.
The designed dataflow is shown in Fig. 6. The description of this dataflow can be summarized as follows: The CPC operation is completed during processes whose number is equal to the number of Ifmap CDAs. Each process executes and finishes all computations relating to a single ifmap CDA.
Initially, MAERI is configured based on the channel length (C), and VNs are established. Following the operation's commencement, each process begins with multicasting the current ifmap CDA to all VNs. Subsequently, in each following cycle, co-location CDAs of multiple filters are unicasted[footnoteRef:3] to VNs for multiplication. Once all the filter CDAs are sent, the operation proceeds with the next process. [3:  i.e., each filter CDA is transmitted to one VN.] 

The proposed frame (FUCA)
This section describes the method of developing and implementing the proposed frame over the designed CPC-based dataflow. It begins by presenting the designed dataflow as pseudo-code and then proceeds with applying the FUCA in several steps.



[image: ]
The designed CPC-based dataflow to test the FUCA (designed as CDS)



Pseudo-code of designed dataflow
Fig. 7(a) displays the pseudo-code that has resulted from applying transformations and tiling over nested loops of a convolution layer based on the designed dataflow. As seen, the loops of dimensions K and C have moved to the lowest level. This is because the designed dataflow operates on a CPC basis, where all ifmap CDAs are multiplied by all filter CDAs. The red dotted part in Fig. 7(a) illustrates the computations of each cycle. As clear, during each cycle, computations occur out on one ifmap CDA and multiple CDAs from various filters. The dataflow's CPC-based structure has resulted in the offsets +r and +s being negative, and, together with d[footnoteRef:4], they have been transferred from I[n][c][x][y] to O[n][k][x][y]. The pseudo-code in Fig. 7(a) is for situations where C is less than MSnumber. MAERI's reconfigurability allowed us to apply tiling on the loop of dimension C. The result was pseudo-code 7(b), which has been introduced for cases where C exceeds MSnumber. [4:  The stride of convolution.
] 

We also provided another dataflow to better demonstrate the impact of the FUCA. This dataflow performs similarly to pseudo-codes 7(a) and 7(b), but it ignores computations of zero values resulting from zero-padding. This can be considered the first step in improving the CPC-based dataflow. Because preventing the transmission and computation of ineffective data will save energy and reduce runtime. Based on this, Figures 7(c) and 7(d) are improvements of pseudo-codes 7(a) and 7(b), respectively.
 The FUCA's foundation and applying it to CPC-based dataflow
As mentioned in the description of CPC (Section III), if an ifmap value located at position (n, x, y) relative to R and S is on the Side of the ifmap plane, multiplying that ifmap value by a number of weights will result in useless products. Here, we have articulated this issue in a formulaic manner. In a way, the result of multiplying an ifmap value at position (n, x, y) by a filter weight at position (r, s) will be useless if at least one of the following conditions is met (where the zero-padding zeros are ignored in the computations).
(                                               (3)

 
 

In the convolution layer, if K = 1 and C = 1, multiplying the position (n, x, y) by the position (r, s) under the above conditions results in a single useless. However, K and C typically have values greater than 1, so multiplying those two positions instead of one leads to K  C useless products. This amount is certainly considerable and hurts performance and efficiency.
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the pseudo-code of designed dataflow ((a),(c),(e) for C <  MSnumber cases and (b),(d),(f) for C > MSnumber cases). (a),(b) Cartesian Product based DataFlow with no improvement (CPDF). (c),(d) Cartesian Product based DataFlow with the Ability to Ignore Zero-padding Zeros (CPDF-AIZ). (e),(f) Improved Cartesian Product-based DataFlow with FUCA (CPDF-FUCA)
[bookmark: _GoBack]In contrast, the advantage of CDS dataflow based on CPC is that the K and C loops have moved to the lowest level (Fig. 7a). As a result, only one ifmap plane position and one filter plane position are processed in each tile. Consequently, either all multiplications will be useless in a cycle or all will lead to useful products. Therefore, we can simply avoid the cycles that result in useless products. To do this, we could put the conditions of equation 3 into pseudo-code 7(c) or 7(d) after the loops for dimensions R and S. So that a comparison between the position (r, s) of the filter and the position of the current ifmap CDA is performed first, and if one of the conditions is true, the sending and processing of all filter values with position (r,s) are prevented. In this case, though, the issue is that the equation 3 comparisons will be executed a great number of times. Notably, if C > MSnumber (Fig. 7(d)), the frequency of these comparisons will also be increased. This issue, as the overhead, can negatively impact the runtime and the energy consumption. 
Therefore, we have converted the comparison operation into a constrained frame named FUCA (Fig. 7(e) and Fig. 7(f)). The FUCA, at two higher levels of pseudo-code after the Y loop, establishes the frame for filter positions. With the assurance that none of its positions in computation with the current ifmap CDA would generate useless products. Thus, at the start of a process, when the current ifmap CDA is mapped to MSes, the FUCA sets the frame at the same time. Then, only the filter CDAs in the frame are sent to MSes for computations in subsequent cycles of the process. This strategy results in the number of comparisons being equivalent to the number of ifmap CDAs, which is significantly lower than in the preceding case.
Figures 7(e) and 7(f) depict the final pseudo-codes of the designed dataflow that improved with FUCA. Pseudo-code 7(e) is for C < MSnumber cases, while pseudo-code 7(f) is intended for C > MSnumber cases.
Evaluation
First, this section discusses the functionality of the selected tool to evaluate the FUCA. Then, it details the chosen layers and dataflows for the experiment. Finally, the merits and weaknesses of the suggested idea are analyzed by illustrating the results.
 Analyzer tool
We assessed the designed and enhanced dataflows using the mRNA tool (mapper for Reconfigurable Neural Accelerators) [25]. Based on the MAERI architecture, mRNA is an open-source tool for analyzing dataflow and mapping strategies at various layers and finding the best mappings.
The mRNA first receives the parameters of the input layer (dimension sizes, stride, etc.) and accelerator resources (number of MSes, bandwidth, etc.) and then lists mapping strategies with the most potential for MS utilization. Next, it assesses each strategy listed and presents the results of all of them, including metrics like energy consumption, runtime, utilization, etc. 
The convolutional layer’s dataflow in mRNA is the same as the MAERI dataflow and is based on SWC. This dataflow is described in Section II-B. In reality, mRNA defines and evaluates different tilings on input layer dimensions as mapping strategies and then finds the optimal one from the set. Thus, the dataflow is constant across all mapping strategies, and only the values of the tiling parameters vary. For this reason and also because the purpose and focus of this work are to evaluate the dataflows, not different strategies, we have considered the average results of different strategies in a dataflow as the results of that dataflow.
To support the designed and enhanced dataflows, we have upgraded the mRNA. We have included a parameter in the mRNA input file that, when set to "true", lets mRNA run the extended part and evaluate the input layer mapping according to the designed dataflow.
Methodology
To illustrate the impact of FUCA, four distinct dataflows, each with the names and characteristics listed below, have been taken into consideration for analysis and comparison.
MAERI-MDF (MAERI’s Main DataFlow) [11, 25]. The basic MAERI’s dataflow for convolutional layers, which is based on SWC (described in Section II-B). The original dataflow in mRNA is likewise this one.
CPDF (Cartesian Product based DataFlow). The presented CDS dataflow, which is based on CPC (described in Section IV and displayed as pseudo-code in Figures 7(a) and 7(b)). No improvements have been made to this dataflow.
CPDF-AIZ (Cartesian Product based DataFlow with the Ability to Ignore Zero-padding Zeros). The same dataflow as CDPS, where only the transmission and computation of zeros resulting from zero-padding are prevented (displayed as pseudo-code in Figures 7(c) and 7(d)).
CPDF-FUCA (Improved Cartesian Product-based DataFlow with FUCA). Improved final dataflow by FUCA, which not only prevents unnecessary computations caused by zero-padding but also avoids processing data with useless results (displayed as pseudo-code in Figures 7(e) and 7(f)).
To better compare the mentioned dataflows and evaluate the influence of zero-padding, we defined a set of identical custom convolution layers with different numbers of zero-paddings and, consequently, different output dimensions. Table 1 presents the parameters for these layers. We also chose multiple convolutional layers from various advanced DNNs with varying strides and zero-paddings to assess the effectiveness of the proposed approach across different DNNs. These layers are displayed in Table 2.
 The custom convolution layers defined for evaluating the proposed frame
	LayerName
	Input
	Output
	Filter

	
	X
	Y
	C
	N
	X’
	Y’
	R
	S
	K
	d
	ZP

	Custom Layer-0
	27
	27
	64
	1
	11
	11
	7
	7
	128
	2
	0

	Custom Layer-1
	27
	27
	64
	1
	12
	12
	7
	7
	128
	2
	1

	Custom Layer-2
	27
	27
	64
	1
	13
	13
	7
	7
	128
	2
	2

	Custom Layer-3
	27
	27
	64
	1
	14
	14
	7
	7
	128
	2
	3

	Custom Layer-4
	27
	27
	64
	1
	15
	15
	7
	7
	128
	2
	4

	Custom Layer-5
	27
	27
	64
	1
	16
	16
	7
	7
	128
	2
	5



the chosen layers from different advanced DNNs to evaluate the influence of FUCA
	DNN-Name/
LayerName
	Input
	Output
	Filter

	
	X
	Y
	C
	N
	X’
	Y’
	R
	S
	K
	d
	ZP

	DarkNet-19 [26]/
CONV13
	14
	14
	256
	1
	14
	14
	3
	3
	512
	1
	1

	ResNet18 [16]/
CONV4a-1
	28
	28
	128
	1
	14
	14
	3
	3
	256
	2
	1

	ResNet50 [16]/
CONV4a-shortcut
	28
	28
	512
	1
	14
	14
	1
	1
	1024
	2
	0

	DenseNet121 [17]/
Transition3(CONV)
	14
	14
	1024
	1
	14
	14
	1
	1
	512
	1
	0

	YOLO [19]/
Block2-CONV1
	112
	112
	64
	1
	112
	112
	3
	3
	192
	1
	1

	AlexNet [27]/
CONV2
	27
	27
	96
	1
	27
	27
	5
	5
	256
	1
	2



 Results
The findings from evaluating the impact of FUCA on CPC-based dataflow. The runtime and energy consumption of convolution layers in Table 1 have been evaluated by the mRNA in four dataflows (MAERI-MDF, CPDF, CPDF-AIZ, and CPDF-FUCA), and the results are shown in Fig. 8 as two charts.
Figures 8(a) and 8(b) show the results of normalized runtime and normalized energy consumption, respectively. As can be observed, both in terms of runtime and energy consumption, the final presented dataflow (CPDF-FUCA) performs better than other dataflows, even topping MAERI's original dataflow (MAERI-MDF). The results of CPDF-FUCA and MAERI-MDF are nearly identical at ZP = 0, but CPDF-FUCA has performed significantly better in layers where ZP > 0.
The correctness of the discussion in Section III-B can be observed by the comparison of the CPDF-FUCA and CPDF-AIZ results. In Custom Layer-0 (where ZP = 0), based on equation 2, the number of useless products will be high. So, CPDF-FUCA has a lower energy consumption and runtime in this layer compared to CPDF-AIZ due to the prevention of useless product generation[footnoteRef:5]. But as the results of the next custom layers show, because as ZP increases, the number of useless products decreases, the results of these two dataflows are closer to each other. [5:  Note that the sole distinction between CPDF-FUCA and CPDF-AIZ is that CPDF-FUCA prevents the generation of useless products, whereas CPDF-AIZ does not.] 

According to charts, the CPDF performs worse than the other dataflows in all custom layers, but the CPDF-AIZ does perform better than even the MAERI-MDF in high ZPs. However, since the ZP of the convolution layers of most DNNs is between 0 and 2, it's safe to say that the CPDF-AIZ's good efficiency in high ZPs doesn't matter.
Evaluation results of the chosen DNN layers. The normalized runtime results of CPDF-FUCA and MAERI-MDF dataflows for chosen DNN layers (Table 2) are displayed in Fig. 9. As it is known, CPDF-FUCA has a lower runtime than MAERI-MDF in all layers except for Alexnet-CONV2, indicating that the proposed method has performed better in these layers. 

(a)

(b)

Evaluation results of MAERI-MDF, CPDF, CPDF-AIZ, and CPDF-FUCA dataflows on identical custom layers with different zero-paddings. (a) Normalized runtime results. (b) Normalized energy consumption results


Normalized runtime results of CPDF-FUCA and MAERI-MDF dataflows for DNN layers of Table 2
The greater runtime of the CPDF-FUCA in the Alexnet-CONV2 compared to the MAERI-MDF has been caused by a lack of work on mapping strategies in the designed dataflow, which is outside the scope of this paper. CPDF-FUCA utilizes only 75% of the MSes in each cycle for the AlexNet layer, resulting in an approximate utilization rate of 75%. Enhancing the utilization rate of the designed dataflow through tiling on various dimensions in future work will lead to a reduction in runtime in layers similar to AlexNet.
Fig. 10 displays the normalized total energy consumption results of the CPDF-FUCA and MAERI-MDF dataflows for selected DNN layers. Each bar in the one-layer chart displays the energy consumption based on related dataflow, both total and separated in different parts of MAERI. The red color indicates energy consumption in the DN network, green in the MN network, yellow in the RN network, blue in the SPM (ScratchPad Memory, which is the same prefetch buffer), and black in the DRAM.
As the charts show, in the layers of ResNet50, ResNet18, and DenseNet121, the CPDF-FUCA dataflow has lower energy consumption compared to MAERI-MDF. However, in the remaining layers, MAERI-MDF exhibits better energy consumption. If we pay attention to the energy consumption of the parts of MAERI separately in all charts, we find that the very high energy consumption of CPDF-FUCA in DN and SPM for DarkNet, Yolo, and Alexnet layers has caused its total energy consumption to be higher for these layers. High energy consumption based on the presented dataflow in DN and SPM usually occurs where R > 1, S > 1, and d < 2. The reason for this is that in MAERI-MDF, which is a WS dataflow based on SWC, ifmap values are reused in two ways. First, in each cycle, the values of a window from the ifmap plane are multicast to VNs instead of unicast. Second, only a portion of the new window of the ifmap is multicast to MSes per cycle due to MAERI's store-and-forward multicast capability. These two factors reduce DN transmissions and the number of accesses to the prefetch buffer during sequential cycles, leading to an improvement in energy consumption in both the SPM and DN. Efforts to reuse data in the presented dataflow can result in improved energy in future works.
Conclusion 
This paper presents a frame called FUCA for CPC-based dataflows with an all-to-all nature. FUCA effectively eliminates the processing of data that leads to useless results. This frame ensures that the number of computations in CPC-based dataflows not only becomes equivalent to the number of computations in SWC-based dataflows, but at some layers, it becomes even less due to the consideration of a policy for zero-padding.
To evaluate the FUCA, we designed a CDS dataflow based on CPC and implemented the FUCA on it. The FUCA algorithm, placed in the middle of the designed dataflow, prevents the transmission of filter values that result in useless products. We assessed the current work using the mRNA tool, which is a dataflow and mapping analyzer for MAERI. Of course, we upgraded this tool to support the suggested idea.
              DN        MN          RN          SPM           DRAM   


Normalized energy consumption results of CPDF-FUCA and MAERI-MDF dataflows for DNN layers of Table 2
Our experiments were conducted on two sets of layers. In the first set, all layers are custom and the same, only differing in the number of zero-padding and, naturally, the output dimensions. The second set includes layers selected from various advanced DNNs.
 The experiments on the first set indicated that FUCA in CPC-based dataflows leads to an average reduction of 39% in both energy consumption and runtime. Based on these experiments, we even observed that the CPC-based dataflow with FUCA outperforms the SWC-based dataflow of MAERI when ZP > 0. Also, when ZP is equal to zero, the performance of the developed dataflow is nearly identical to that of MAERI's dataflow. The findings from the experiments conducted on the second set also demonstrated that, in some instances, MAERI's dataflow performs better. The use of techniques such as store-and-forward multicast and data reuse in the dataflow and architecture of MAERI is the reason for this. As part of future work, one can try to incorporate such techniques into the proposed dataflow to address this issue.
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Remove ZeroPadding data from ifmap;  //Consequently,  X-=2*ZP and Y-=2*ZP 

for(n=0; n < N; n++) {

 for(x=0; x<X; x++) {

  for(y=0; y<Y; y++) {

   Configure MAERI based on ifmap CDA[n,x,y];

   rBegin=(x+ZP)%d;      sBegin=(x+ZP)%d;

   rEnd=R;               sEnd=S;

   if (x+ZP - R +1 <0)   rEnd=x+ZP+1;     

   if (y+ZP - S +1 <0)   sEnd=y+ZP+1; 

   if(x-ZP >X-R)         rBegin=R-(X-x)-ZP;

   if(y-ZP >Y-S)         sBegin=S-(Y-y)-ZP;

   for(r= rBegin; r<rEnd; r+=d) {

    for(s= sBegin; s<sEnd; s+=d) {     

     for(k=0; k<K; k=k+T_K) {  

      for(t_k=k;t_k<min(k+T_K,K);t_k++){                                                             

       for(c=0; c< C; c++){

        O[n][t_k][(x+ZP-r)/d][(y+ZP-s)/d] +=W[t_k][c][r][s]* I[n][c][x][y];

     }}

   }}}

}}}

Remove ZeroPadding data from ifmap;  //Consequently,  X-=2*ZP and Y-=2*ZP 

for(n=0; n < N; n++) {

 for(x=0; x<X; x++) {

  for(y=0; y<Y; y++) {

   Configure MAERI based on ifmap CDA[n,x,y];

   rBegin=(x+ZP)%d;      sBegin=(x+ZP)%d;

   rEnd=R;               sEnd=S;

   if (x+ZP - R +1 <0)   rEnd=x+ZP+1;     

   if (y+ZP - S +1 <0)   sEnd=y+ZP+1; 

   if(x-ZP >X-R)         rBegin=R-(X-x)-ZP;

   if(y-ZP >Y-S)         sBegin=S-(Y-y)-ZP;

   for(c=0; c< C; c=c+T_C){ 

    for(r=rBegin; r<rEnd; r+=d) {

     for(s=sBegin; s<sEnd; s+=d) {     

      for(k=0; k<K; k++) { 

       for(t_c=c;t_c<min(c+T_C,C);t_c++){                                        

        O[n][k][(x+ZP-r)/d][(y+ZP-s)/d] +=W[k][t_c][r][s]* I[n][t_c][x][y];

       }

    }}}}

 }}}   
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(e)

(f)

operations of each process

operations of each process

Forming the frame to avoid 

the generation of useless 

products

Remove ZeroPadding data from ifmap;  //Consequently,  X-=2*ZP and Y-=2*ZP 

for(n=0; n < N; n++) {

 for(x=0; x<X; x++) {

  for(y=0; y<Y; y++) {

   Configure MAERI based on ifmap CDA[n,x,y];

   for(r=(x+ZP)%d; r<R; r+=d) {

    for(s=(y+ZP)%d; s<S; s+=d) {     

     for(k=0; k<K; k=k+T_K) {  

      for(t_k=k;t_k<min(k+T_K,K);t_k++){                                                             

       for(c=0; c< C; c++){

        O[n][t_k][(x+ZP-r)/d][(y+ZP-s)/d] +=W[t_k][c][r][s]* I[n][c][x][y];

      }}

   }}}

}}}

Remove ZeroPadding data from ifmap;  //Consequently,  X-=2*ZP and Y-=2*ZP

for(n=0; n < N; n++) {

 for(x=0; x<X; x++) {

  for(y=0; y<Y; y++) { 

   Configure MAERI based on ifmap CDA[n,x,y];

   for(c=0; c< C; c=c+T_C){ 

    for(r=(x+ZP)%d; r<R; r+=d) {

     for(s=(y+ZP)%d; s<S; s+=d) {     

      for(k=0; k<K; k++) { 

       for(t_c=c;t_c<min(c+T_C,C);t_c++){                                        

        O[n][k][(x+ZP-r)/d][(y+ZP-s)/d] +=W[k][t_c][r][s]* I[n][t_c][x][y];

       }

   }}}}

}}}

tile

tile

(c)

(d)

operations of each process

operations of each process

Forming the frame to avoid 

the generation of useless 

products

for(n=0; n < N; n++) {

 for(x=0; x<X; x++) {

  for(y=0; y<Y; y++) {

   Configure MAERI based on ifmap CDA[n,x,y];

   for(r=(x%d); r<R; r+=d) {

    for(s=(y%d); s<S; s+=d) {     

     for(k=0; k<K; k=k+T_K) {  

      for(t_k=k;t_k<min(k+T_K,K);t_k++){                                                             

       for(c=0; c< C; c++){

        O[n][t_k][(x-r)/d][(y-s)/d] +=W[t_k][c][r][s]* I[n][c][x][y];

      }}

   }}}

}}}

for(n=0; n < N; n++) {

 for(x=0; x<X; x++) {

  for(y=0; y<Y; y++) { 

   Configure MAERI based on ifmap CDA[n,x,y];

   for(c=0; c< C; c=c+T_C){ 

    for(r=(x%d); r<R; r+=d) {

     for(s=(y%d); s<S; s+=d) {     

      for(k=0; k<K; k++) { 

       for(t_c=c;t_c<min(c+T_C,C);t_c++){                                        

        O[n][k][(x-r)/d][(y-s)/d] +=W[k][t_c][r][s]* I[n][t_c][x][y];

       }

   }}}}

}}}
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