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Abstract—In the present research we have used gray level co-occurrence matrices (GLCM) and Gabor filters to extract 

texture features in order to classify satellite images. The main drawback of GLCM algorithm is its time-consuming 

nature. In this work, we proposed a fast GLCM algorithm to overcome the mentioned weakness of the traditional 

GLCM. The fast GLCM is capable of extracting approximately the same features as the traditional GLCM does, but in 

much less time (about 200 times faster). The other weakness of the traditional GLCM is its lower accuracy in the regions 

near the class borders. Since features extracted using Gabor filters are more accurate in boundary regions, we combined 

Gabor features with GLCM features. In this way we could compensate the latter mentioned weakness of GLCM. 

Experimental results show good capabilities of the proposed fast GLCM and the feature fusion method in classification 

of very high resolution remote sensing images. 

Keywords- fast GLCM; Gabor filters; texture feature; classification; Remote Sensing. 

 

 

I. INTRODUCTION 

Features commonly used in classification of remote 
sensing images are categorized into two main groups: 
spectral features and spatial features. A spectral feature 
vector of a pixel is a vector whose elements are the 
reflected energy, from a point in the scene 
corresponding to the pixel recorded in different spectral 
bands, or linear/nonlinear combinations of these 
reflectance values [1]. So, a spectral feature vector is 
defined only for colored, multispectral (MS), and 
hyperspectral (HS) images. On the other side, spatial 
features of a pixel are the ones which are obtained from 
processing the gray level values of a pixel and its 
neighbors in a single-band image [2-7]. Thus, this kind 
of features can be defined for single-band images, such 

as panchromatic satellite images, as well as individual 
bands of colored, MS, or HS images. Spatial features 
used in image processing can be divided into two main 
categories: texture and shape features. Texture features 
act as a measure of coarseness, size, and directionality 
of image details, while the latter assesses the shape of 
these details [8-10]. However, there is not a clear 
distinction between these two categories, e.g. features 
extracted from gray level co-occurrence matrices 
(GLCM) are known as texture features while they could 
be used as shape measures too [9, 10]. 

Texture analysis and classification is one of the 
active areas in machine vision and image processing, 
and is used in various applications such as object 
recognition and tracking [2-4], image retrieval [5, 6], 
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and satellite image classification [7, 11, 12]. A wide 
variety of techniques for image texture analysis have 
been proposed. Keen readers may find good 
information in [8, 10, 13]. 

In the present research, we try to utilize two kinds 
of spatial features in order to classify single-band 
images: statistical features extracted from GLCM 
matrices, and structural features obtained using Gabor 
filters. 

GLCM matrices capture image properties related to 
the second-order statistics of the pixel intensities [14] in 
an image, and are one of the most well-known texture 
feature extraction approaches. Despite their popularity 
and the ability to extract texture context, GLCM 
features have two main drawbacks; being highly time-
consuming, and having relatively low accuracy in the 
regions near the class borders. To address these 
deficiencies, we have proposed two solutions: 1) a fast 
algorithm to extract GLCM features while preserving 
their quality, and 2) fusing GLCM features with the 
features obtained from another approach which is more 
accurate in border regions, i.e. Gabor features [7, 15-
20]. These features are obtained through processing the 
input image in the joint spatial-Fourier domain by 
applying Gabor filters; without concerning Heisenberg 
uncertainty inequality which is a known issue when 
using Fourier transform as a local structural feature 
descriptor [13]. Note that this paper is an extended 
version of the work published in [21]. We extended our 
previous work by providing more detailed discussions, 
a comparison between complex and real Gabor 
features, some performance evaluations using 
analytical computational complexity assessments, and 
implementing the method on non-mosaic remote 
sensing panchromatic dataset with natural borders 
between different land covers. 

The outline of the remainder of this paper is as 
follows. In section II, we briefly introduce GLCM 
matrices and Gabor filters, and propose a fast algorithm 
for GLCM calculations. In section III, GLCM and 
Gabor features are fused to make it possible to use their 
advantages simultaneously. In addition, the 
computational complexities of the feature extraction 
methods are analytically compared. Finally, section IV 
concludes this work. 

II. FEATURE EXTRACTION ALGORITHMS 

A. GLCM 

One of the simplest statistics of a two dimensional 
image is the information obtained from its one-
dimensional histogram, i.e. the probability of gray level 
occurrences. One-dimensional histogram does not 
consider the relationship between pixels exactly, thus it 
is not a good texture measure. To overcome this 
weakness, two-dimensional histogram was introduced 
[14] which is in fact the probability of occurrence of 
two different gray levels in the neighborhood of a pixel 
under examination. In this approach, the relationship 
between pixels is considered more accurately, but it is 
very time consuming. Again to solve this new problem, 
an approach was proposed in which between-pixel 
relationships were considered only in a few predefined 
directions and distances. To be more accurate, for a 
pixel with (xc,yc) coordination placed at the center of its 

neighborhood window
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in which, δ[.,.] is the Kronecker delta function, I is a 
gray level image, i and j are two gray levels from the 

range {1,…,G}, 
 ,c cx y

W  is the neighborhood window 

centered at (xc,yc), and (x2,y2) is a location at the angular 
distance (d,θ) from (x1,y1). 

Using (1), for every distance-direction couple, (d,θ), 

a G×G   c c,

,

x y

d GLCM matrix is obtained, in which G is 

the number of gray levels in the image. After obtaining 
GLCM matrices for each pixel in the input image, some 
statistics such as mean, standard deviation, and entropy 
is extracted from these matrices and are dedicated to the 
owner pixel. An important parameter in GLCM 
computations that should be considered is the size of the 
neighborhood window. Small window sizes, 
theoretically, result in better discrimination in regions 
near borders, while in practice they will generate sparse 
GLCM matrices which cause inaccurate feature 
extraction process. On the other hand, although large 
window sizes will result in more accurate extracted 
features, they cause different classes to mix up in the 
regions near the class borders. So, choosing appropriate 
neighborhood window size is an important step in 
GLCM process. 

GLCM features provide good description of image 
texture, but they need strong processing resources. 
Many approaches have been proposed to face this 
problem. The simplest one is to reduce G by re-
quantizing the gray levels of the image pixels. This 
causes the dimensions of GLCM matrices to decrease. 
In addition, this preprocessing phase will reduce the 
sparsity of GLCM matrices. Another approach is to 
consider less distance-direction couples, (d,θ). It is 
shown that the features extracted from GLCM matrices 
corresponding to “(d,θ)=(1,0)” are enough to describe 
texture of most images [14]. 

Although GLCM were introduced about four 
decades ago, it is a strong method to extract texture 
features and still many attempts are being made to 
improve its speed and performance, or to use it in 
combination with newer methods. Here, we will 
propose a new way to conquer the computational 
resource consuming nature of GLCM while 
maintaining the strength of the extracted features. In 
other words, we make it faster while the accuracy of the 
image classification using these features (as a criterion 
to assess the quality of the extracted features) is not 
affected. 
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The proposed method is based on the concept that 
the features of spatially-close pixels are closely related. 
The simplest type of dependency is linear dependency. 
With assumption of this type of correlation, we can 
calculate GLCM matrices (and then extract the related 
features from them) only for a few pixels (let’s call 
them key pixels) by skipping pixels with a step size of 
Ls in row and column. Then the extracted features for 
these key pixels are assigned to all the pixels in their 
neighborhood with a pyramidal weight matrix such as 
the matrix shown in Fig 1.(a). Finally, the feature vector 
associated to each non-key pixel p is the weighted sum 
of all feature vectors from all the weighting windows 
which embrace p. In other words, we calculate GLCM 
features for the key pixels and use interpolation 
technique to estimate the GLCM features of all other 
pixels.  This could be shown as 

      
1

    
n

i i

i

p a p x


 f f  

in which, ( )pf  is the feature vector of any non-key 

pixel p; xi is the key pixel located at the center of each 
of the overlapping weighting windows which include p; 

and ( )ia p  is the weight associated to pixel p in the 

weighting window centered at xi (Fig 1). For each non-
key pixel, the number of the overlapping windows, n, is 
always less than or equal to 4; e.g. for the sample point 
p shown in Fig 1.(b), n=4. The last point that should be 
mentioned here is that, GLCM features for the key 
pixels are calculated in the original image not in a 
subsampled image. However, as said before, the 
neighboring key pixels are separated by Ls rows and/or 
columns. Also, we select the pixel located at 

   , / 2 , / 2s sx y L L       as the starting key pixel ( .    

denotes the integer part operator). 

In order to evaluate the proposed fast GLCM, we 
implemented the algorithm on three single-band images 
with different sizes: (a) a 1024×1024-pixel image, (b) a 
512×512-pixel image, and (c) a 256×256-pixel image 
(Fig 2). Each of these images contains 5 different 
textures from Brodatz set. The parameters used in this 
implementation are selected as follows (see TABLE I): 

 The size of the GLCM extraction window, 
 ,c cx y

W , is considered to be 33×33. Although 

more complex methods for window size 
selection, such as adaptive algorithms [22], 
could be adopted, we used a fixed size window 
for simplicity. 

 As mentioned before, to reduce the 
computational burden of GLCM matrices 
extraction process, and also to decrease the 
sparsity of GLCM matrices, input image gray 
levels are usually re-quantized in order to 
reduce G. Here, G is reduced from 256 levels 
to 32 levels. So the generated GLCM matrices 
will be 32×32. 

 Contrast, Correlation, Energy, Homogeneity, 
Entropy, and Variance, are the 6 features 
extracted from GLCM matrices. According to 
the authors’ experiences, it is good practice to 

apply a principal component transform (PCT) 
on these features to reduce the redundancy. 

To evaluate the effect of the main parameter of the 
fast GLCM algorithm, i.e. the skip length (Ls), on the 
extracted features quality, Ls is picked from the range 1 
to 16. Note that, “Ls=1” corresponds to normal GLCM. 
To assess the quality of the extracted features, we have 
used overall ML classification accuracy as quality 
measure. In order to train ML classifier, 5% of pixels 
are selected randomly. The other 95% of pixels are used 
as test samples. The overall ML classification accuracy 
and the relative GLCM feature extraction times are 
illustrated in Fig 3 against various skip lengths, 
Ls=1,…,16. The given processing times are normalized 
to the processing time for the case of Ls=1, i.e. normal 
GLCM. As can be seen, fast GLCM algorithm can 
significantly reduce the processing time 
(approximately, by a factor of Ls

2) while preserving the 
features quality. 

A point that should be mentioned here is the effect 
of the minimum size of objects (connected areas of the 
same texture) in the input image, on the maximum 
value of the algorithm parameter, Ls. It goes without 
saying that the skip length should be less than the 
dimensions of the smallest connected area of the same 
texture in the image; otherwise the smaller regions may 
be dismissed. Thus a prior knowledge about the image 
is required to select an appropriate value for Ls. 

 
(a) 

 

(b) 

Fig 1.  (a) Linear (pyramidal) weighting window for a window 

length of Lw=7, and (b) four Lw×Lw weighting windows with an 

overlap of length Lov; features of pixel p are the weighted sum of 
that of xis. 

TABLE I.  PARAMETERS USED IN EVALUATING FAST GLCM 

ALGORITHM 

Parameter value 

(d,θ)  in  (1) (1,0) 

G (The number of gray 

levels of the image after 
re-quantization) 

25 bits = 32 levels 

GLCM matrices: 32×32 

Features extracted from 
GLCM matrices 

Primary features (6 features): 

Contrast, Correlation, Energy, 
Homogeneity, Entropy, Variance 

Final features (5 features): 

First, applying PCT to the 
primary features and then 

selecting the first 5 components 

GLCM extraction 
window 

33×33 

Weighting window 33×33 pyramid (Fig 1. ) 

Ls (skip length) 1,…,16 

1 1 1 1 1 1 1

1 2 2 2 2 2 1

1 2 3 3 3 2 1

1 2 3 4 3 2 1

1 2 3 3 3 2 1

1 2 2 2 2 2 1

1 1 1 1 1 1 1

Lov

Ls

x1 x2

x3 x4

p

Lw

Ls

Ls
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(a) 

(b) (c) 

 

 
Fig 2.  Single-band images, containing 5 different textures 

synthetized from Brodatz set, used to evaluate the proposed fast 
GLCM algorithm: (a) 1024×1024, (b) 512×512, and (c) 256×256. 

The curves plotted in Fig 3.(a) show variations in 
classification accuracy versus Ls for all test images 
of Fig 2. These trends are approximately increasing for 
all 3 cases. As mentioned before, if we take a look at 
(2), we see that fast GLCM features are actually 
estimations obtained from linear interpolations of key-
pixels’ features. Employing linear interpolation always 
causes smoothness. Therefore, the proposed GLCM 
features will be smoother than traditional GLCM 
features. Consequently, the proposed GLCM features 
are able to provide more homogeneous classification 
maps with higher classification accuracies.  

On the other hand, as Fig 3.(b) suggests, increasing 
skip length will dramatically increase the speed of the 
algorithm. In fact, the algorithm is faster approximately 
by a factor of Ls

2. This is because GLCM features are 
calculated for N/Ls out of N pixels, where N is the 
number of all pixels in the image. This will be discussed 
analytically in subsection III.C. 

To sum up, according to the obtained results of the 
experiments and the above discussions, for the test 
images shown in Fig 2, choosing Ls=16 would be an 
appropriate choice. 

B. Gabor Filters 

Gabor filters have been widely used in different 
areas of image processing such as texture classification, 
edge detection, fingerprint identification, and image 
coding [7, 15-20]. Also, different methods have been 
developed to use Gabor filters in image classification 
[16, 18]. In [7], Gabor wavelets are utilized to extract 
image texture features. The idea is based on detecting 
linear directional elements in the image. 

 

(a) 

 

(b) 

Fig 3.  (a) Overall ML classification accuracy for the images 
shown in Fig 2 using fast GLCM features, (b) the computational 

load reduction ratio; The horizontal axis shows the main parameter 

of the fast GLCM algorithm, i.e. skip length (Ls); The legends 
represent the dimensions of the input images. 

 

Fig 4.  Gabor features extraction process. Refer to context for 
details. 

In this method, a set of wavelets 

, s d{ | 1 ,  1 }s d s N d N   h  is generated using (4) 

from a mother wavelet given by (3): 


2 2

h2 2

1
( , ) 2πj

2π 2

1
exp

x y x y

x y U
x y

x
   


   
     
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φ

 

    
1

h
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l

,   .   ,

s

s

s d

U
x y X Y

U



   
 

h φ  

where, 

   

   

1
h

0 0

l d d

1
h

0 0

l d d

π π
cos sin

π π
sin cos

s

s

s

s

U d d
X x x y y

U N N

U d d
Y x x y y

U N N










                       


      
          
        
 

and, s=1,…,Ns and d=1,…,Nd are the scale and direction 
parameters of wavelets; (x0,y0) is the filter center 
coordination in the spatial domain; Ul and Uh are 
respectively the minimum and maximum center 
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frequency of filters on the horizontal axis in Fourier 
domain. 

Then the whole input image is fed as the input of the 
wavelet set (see Fig 4). Moreover, in order to reduce the 
within-class variances, and consequently reducing 
classification errors, a Gaussian LPF is applied to these 
values [7]. To reduce the number of features and also to 
lower the information redundancy –which is due to the 
overlapping of filters– principal component transform 
(PCT) is usually applied to the outputs of Gabor 
wavelets. The main characteristic of PCT is that the 
output components of the transform are theoretically 
uncorrelated. Typically, after applying this transform to 
input feature vectors, a number of the output 
components (elements of the output vector) which their 
cumulative sum of energy is bigger than a user defined 
threshold are preserved and the rest are discarded. The 
number of preserved components depends on the 
selected threshold, as well as the input data 
characteristics. 

Since the filters output values are complex, we may 
use the magnitude of these values or their real parts. 
According to our experiences, the magnitudes of the 
complex global Gabor features are much more powerful 
than the real Gabor features. To show this, we 
compared these two approaches. The results are 
depicted in Fig 5. As can be seen, magnitudes of 
complex Gabor features are far preferable to the real 
features. 

Two key parameters of Gabor filters are the number 
of scales and directions, Ns and Nd. To find the optimum 
values for these parameters, we classified the images 
shown in Fig 2 using Gabor features extracted for 
different values of Ns and Nd, by applying an ML 
classifier. The parameters used in this implementation 
are listed in TABLE II. Again, the overall classification 
accuracy is used as the selection criteria. According 
to Fig 6, although the optimal choice of Ns and Nd 
differs for different input images, there is an obvious 
distinction between accuracy values for “Nd≥4 and 

Ns≥6”. So, the boundary values of Nd=4 and Ns=6, 
would be appropriate choices regardless of the input 
data. 

III. IMPLEMENTATION 

In the previous section, we saw that by utilizing the 
proposed fast GLCM algorithm we were able to 
overcome the main drawback of GLCM –i.e. its slow 
nature– while benefiting from its strength in extracting 
texture features. Also, according to the diagrams in Fig 
3, a good choice for skip length in fast GLCM was 
Ls=16. In addition, we saw that selecting the number of 
directions and scales, Nd=4 and Ns=6, for Gabor filters 
could be a practical option. 

Here, we will extract fast GLCM and Gabor features 
from two sets of images: a set of images synthesized 
from different Brodatz textures (see Fig 2), and two 
panchromatic satellite image gathered over Tehran/Iran 
(Fig 10). It should be noted that the synthesized images 
shown in Fig 2.(b), and (c) are not the resized versions 

of the image depicted in Fig 2.(a). Actually they all 
include Brodatz textures of the same resolution. 

The test setup flowchart is illustrated in Fig 7. 

A. Implementation on Brodatz textures 

Fast GLCM and Gabor features are extracted from 
the images shown in Fig 2. The parameters are selected 
as shown in Fig 7. The results are illustrated in Fig 8.(a1 
and b1) through Fig 8.(a3 and b3), respectively for the 
images shown in Fig 2.(a) through Fig 2.(c). As can be 
seen in these Figs, Gabor features have good ability to 
find class boundaries, but there is a tendency to generate 
small speckle like objects in output class maps.  

On the other hand, GLCM features are less accurate 
in areas close to class borders, but small objects in 
output class maps are rare. Therefore, it seems that by 
combining these two types of features, we may be able 
to use the advantages of them both. 

TABLE II.  PARAMETERS USED IN GABOR FEATURE 

EXTRACTION 

Parameter Value 

Filter parameters 21×21 window, Ul =0.01, Uh=0.049 

Number of filters Nd×Ns  (Nd directions and Ns scales) 

Extracted features 

Primary features: Nd×Ns features 

Final features: 

Extracted by applying PCT to  the primary 
features and using a threshold level of 95% 

(the number of final features, Npc, depends 

on this threshold and characteristics of 
input features) 

Gaussian LPF (w×w), σx = σy = w/3, w = 21 

 

 

Fig 5.  Overall classification accuracies with different numbers 
of scales (Ns) and directions (Nd) for “magnitudes of complex 

Gabor features” vs. “real Gabor features”. 

 

Fig 6.  Overall ML classification accuracy for the images 
shown in Fig 2, using Gabor features for different numbers of 

scales (Ns) and directions (Nd). 
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Fig 7.  The proposed algorithm with parameters values. 

 

   
(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

Fig 8.  ML classification maps for the images shown in Fig 2, using (a) fast GLCM features, (b) Gabor features, and (c) fused features; 

Upper row shows results for the 1024×1024-pixel image, middle row for the 512×512-pixel image, and lower row for the 256×256-pixel 
image. 

 
Fig 9.  Overall ML classification accuracy for the images shown in Fig 2 using Gabor, Fast GLCM, and fused features (Fast GLCM + 

Gabor); 5% of pixels for each case are selected randomly to train ML classifier. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig 10.   (a) PAN satellite image of north-west of Tehran/Iran, a 988×1890-pixel scene containing 11 different land covers; (b) the ground 

truth map (GTM) of (a); (c) PAN satellite image of north-east of Tehran/Iran, an 822×1154-pixel scene containing 5 different land covers; 

(d) the GTM of (c).  

To verify this idea, we fused Gabor and GLCM 
feature vectors by simply stacking them. Then we 
classified these new vectors. The results are shown 
in Fig 8.(c1) through Fig 8.(c3). Also, in Fig 9, overall 
ML classification accuracies are illustrated for different 
feature sets. These results clearly confirm the 
superiority of the fused feature vectors over the 
individual feature vectors. 

B. Implementation on satellite data 

The classification results for the synthesized images 
in the previous subsection demonstrated the power of 
the extracted features and the fusion idea. Now we will 
try to implement the proposed fast GLCM feature 
extraction method and the fusion technique (see Fig 7) 
on two panchromatic (PAN) satellite images. The 
scenes are subsets of a large PAN data gathered over 
Tehran/Iran, with 1-meter spatial resolution. The first 
scene – Fig 10.(a) – corresponds to a region located in 
north-west of Tehran, and contains 908×1892 pixels 
and 11 different land cover classes. The ground truth 
map of the data is shown in Fig 10.(b). The second 
scene – Fig 10.(c) – belongs to a region located in north-
east of Tehran. This scene has 822×1154 pixels and 
contains 5 land cover classes. The corresponding 
ground truth map is depicted in Fig 10.(d). The output 
ML classification maps are depicted in Figs 11 and 12, 

respectively: (a) the classification map using fast 
GLCM features, (b) the map obtained from Gabor 
features, and (c) the map resulted from fused features. 
The overall classification accuracies are given in 
TABLE III.  

As the table shows, for the first PAN data, the 
overall accuracy provided by GLCM is much lower 
than that delivered by Gabor features (78.86% versus 
92.81%). Moreover, the classification map of Gabor 
features is much more satisfactory through visual 
inspection and the borders’ of the classes are much 
more preserved. However, speckle-like errors are more 
on its map. 

TABLE III.  OVERAL ACCURACIES (OA) OF ML CLASSIFICATION 

USING DIFFERENT FEATURES. FOR TRAINING THE CLASSIFIER, 5% OF 

THE LABELED SAMPLES ARE RANDOMLY SELECTED. 

OA (%) 
Features 

Fast GLCM Gabor both 

PAN1  

(Fig 10.(a)) 
78.86 92.81 96.05 

PAN2 
(Fig 10.(c)) 

88.37 95.70 98.25 
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(a) 

 
(b) 

 
(c) 

Fig 11.  Output ML classification map for the PAN image shown 

in Fig 10.(a) using: (a) Fast GLCM, (b) Gabor, and (c) fused 

features; 5% of labeled pixels are selected randomly to train the 
classifier. 

The classification map obtained using both types of 
features – Fig 10.(c) – not only has a higher  accuracy 
in terms of OA (96.05%) , but is more homogeneous 
than the map of Gabor (this is an inheritance from 
GLCM features) and also has inherited the border 
preservation property from Gabor features. 

The above discussion is also valid for the second 
PAN data. Therefore, we can conclude that by 
combining GLCM features with Gabor features 
extracted from PAN satellite images, we are able to 

achieve the classification map homogeneity offered by 
GLCM features while preserving class borders 
provided by Gabor features. 

C. Computational complexity assessment 

As shown in Fig 3.(b), the proposed fast algorithm 
for GLCM feature extraction process reduces the 
computational load approximately by a factor of LS

2, 
where Ls is the skip parameter of the algorithm. In this 
subsection, we will compare the computational load of 
feature extraction processes, i.e. GLCM, fast GLCM, 
Gabor, and “fast GLCM+Gabor”, analytically.  

TABLE IV and TABLE V show the computational 
complexity of GLCM and Gabor feature extraction 
processes. As can be seen, the computational 
complexity of GLCM is of the order of O(G2), where G 
is the number of gray levels of the input image after re-
quantization process in GLCM (see TABLE I and 
subsection II.A).  

 

TABLE IV.  ORDER OF COMPUTATIONAL COMPLEXITY FOR 

GLCM ALGORITHM. 

Process Number of Operations 

GLCM matrix 

generation 
w(w-1) ≈ w2 

Feature extraction Multiplication Summation Other 

Contrast  2G2 2G2 - 

Correlation  4G2 3G2 - 

Energy  G2 G2 - 

Homogeneity  G2 3G2 - 

Entropy  G2 G2 G2 

Variance  2G2 2G2 - 

All features 11G2 12G2 G2 

TOTAL  

(for each pixel) 

w2 (Comparisons) +11G2 

(Multiplications) 
+ 12G2 (Summations) + G2 (log) 

Order of 

complexity 

With the assumption of w having the 

same order of magnitude as G:   O(G2) 

Note: G is the number of the gray levels of the input image after 

initial re-quantization, and w is the length of the neighborhood 

window in GLCM feature extraction 

 

TABLE V.  ORDER OF COMPUTATIONAL COMPLEXITY FOR 

GABOR FEATURE EXTRACTION ALGORITHM. 

Parameter Value 

Number of 2D FFT operations 

(for the whole image) 
NxNy log2(NxNy) 

Number of Gabor filters NsNd 

TOTAL number of operations 
(for the whole image) 

3NxNy log2(NxNy) NsNd 

Order of complexity O(log2(NxNy)) 

Note: Nx and Ny are the dimensions of the input image, and Ns 

and Nd are the number of scales and directions of Gabor 

wavelets, respectively 
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(a) 

 

(b) 

 

(c) 

Fig 12.  Output ML classification map for the PAN image shown 

in Fig 10.(c) using: (a) Fast GLCM, (b) Gabor, and (c) fused 

features; 5% of labeled pixels are selected randomly to train the 
classifier. 

Similarly, the computational complexity for Gabor 
feature extraction process is of the order of 
O(log2(NxNy)), in which Nx and Ny are the dimensions 
of the input image. The calculation of the computational 
complexity for fast GLCM is straight forward: 
O(G2/LS

2). This is approximately the same result as that 
of Fig 3.(b). TABLE VI summarizes the discussion and 
as can be seen, the proposed method (Gabor + Fast 
GLCM) has good performance in terms of 
computational load, too. 

TABLE VI.  ORDER OF COMPUTATIONAL COMPLEXITY FOR 

DIFFERENT METHODS OF FEATURE EXTRACTION. 

Method 

Order of complexity 

Parametric Numerical 

example for our 

experiments(1) 

GLCM O(G2) 1024 

Fast GLCM O(G2/Ls
2)   4 

Gabor O(log2(NxNy)) 20 

Gabor +  

Fast GLCM 
O(log2(NxNy)+G2/Ls

2) 24 

(1) G=32, Ls=16, Nx=Ny=1024. 

Note: G and w are respectively the number of the gray levels 

of the input image after initial re-quantization and the length 
of the neighborhood window in GLCM feature extraction. 

Nx and Ny are the dimensions of the input image, and Ns and 

Nd are the number of scales and directions of Gabor 
wavelets, respectively. 

 

IV. CONCLUSIONS 

In this paper, we tried to utilize two well-known 
methods for extracting texture features from single-
band satellite images: GLCM and Gabor filters. 
Although the traditional GLCM method has good 
performance in texture feature extraction, it is very time 
consuming. Here, we proposed a fast GLCM algorithm 
which significantly improved the speed of GLCM: 
about 200 times faster (corresponding to the skip length 
of Ls=16). This increase in speed was obtained while 
preserving the quality of extracted features.  

The overall ML classification using the extracted 
features was used as the measure of quality for the 
features. The classification results showed that Gabor 
features are more powerful than GLCM features in the 
areas close to the class borders, while GLCM features 
are preferable in the areas within classes. Using these 
findings, we could test the idea of fusing these two 
types of features in order to benefit the advantages of 
both. The implementation results were acceptable and 
confirmed the idea. In addition, we compared the 
computational complexity of the feature extraction 
methods and showed that the proposed method has a 
very good performance in terms of computational load, 
too. 
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