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Abstract—discovering mutations in DNA sequences is the most common approach to diagnosing many genome-related 

diseases. The optimal alignment of DNA sequences is a reliable approach to discover mutations in one sequence in 

comparison to the reference sequence. Needleman-Wunsch is the most applicable software for optimal alignment of the 

sequences and Smith-Waterman is the most applicable one for local optimal alignment of sequences. Their 

performances are excellent with short sequences, but as the sequences become long their performance degeneration 

grows exponentially to the point that it is practically impossible to align the sequences such as compete human DNAs. 

Therefore, many researches are done or being conducted to find ways of performing the alignment with tolerable time 

and memory consumptions. One such effort is breaking the sequences into same number of parts and align 

corresponding parts together to produce the overall alignment. With this, there are three achievements simultaneously: 

run time reduction, main memory utilization reduction, and the possibility to better utilize multiprocessors, multicores 

and General-Purpose Graphic Processing Units (GPGPUs).  In this research, the method for breaking long sequences 

into smaller parts is based on the divide and conquer approach. The breaking points are selected along the longest 

common subsequence of the current sequences. The method is evaluated to be very efficient with respect to both time 

and main memory utilization which are the two confining factors.  

Keywords: DNA sequence alignment; divide and conquer approach; longest common subsequence; big genome data, desease 

diagnosis. 
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I. INTRODUCTION 

Genomic sequence analysis gained extra 
momentum since the beginning of human genome 
project [1]. Nowadays, with the advances in the genome 
sequencing technologies enormous amount of genomic 
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data is continuously being produced which makes it an 
explosive big data area. There are variety of purposes 
such as revealing the relations between genes or 
proteins, understanding their homology and 
functionality, deciphering sequences to disclose 
biological aspects, diagnosing diseases, and producing 



drugs, in the analysis of this big data. Many diseases are 
caused by variations in the genome sequences such as 
many kinds of cancers [2] and variety of disorders 
related to nervous system’s degeneration such as 
Huntington’s disease [3]. Even a repeat polymorphism 
in one of the genes, i.e., IL-lra, is shown to be associated 
with an increased possibility of osteoporotic fractures 
[4].  Comparing a subject sequence against a reference 
one to find the differences is commonly used in this 
analysis. The scientific meaning of comparison here is 
optimal alignment of sequences and revealing their 
differences. It is worth mentioning that optimal 
alignment is not the only method of finding find 
differences in genomic sequences towards diagnosing 
some genome-related diseases, and if the goal is to 
diagnose a particular disease, searching for specific 
patterns that have been proven to lead to that type of 
disease is another mechanism that has many 
applications [5] [6]. However, alignment has a much 
wider application and detects all kinds of variation in 
the subject sequence. 

Alignment of two sequences is the arranging of 
these sequences such that similarities and differences 
are shown in the best possible way while the order of 
elements of each sequence is preserved. Often, a 
scoring function is proposed and the quantitative 
optimal alignment of the two sequences becomes 
equivalent to minimizing or maximizing this function, 
depending on the problem being solved and the 
formulation of the scoring function. Considering the 
countless number of ways that two sequences can be 
aligned, when gaps are allowed, the Dynamic 
Programming (DP) approach is an extremely 
innovative way of optimally aligning sequences. DP is 
a Mathematics-Computer optimization problem. A 
problem has to have the principle of optimality [7] 
property to be considered for being solved using the DP 
approach. This principal of optimality states that an 
optimal principle holds the property that whatever the 
initial state and initial decision are, the decisions that is 
followed must create an optimal solution starting from 
the state resulting from the first decision. The novelty 
of the DP idea is in systematic solution of all possible 
sizes of problems starting from the smallest size and 
going toward the largest, which is actually the given 
problem to be solved. It stores the solution results of 
smaller problems and in solving a bigger problem it can 
use the solution results of any of the previously solved 
sub-problems in an optimized manner. The optimal 
sequence alignment has the principle of optimality and 
it is successfully solved by the DP approach. The two 
most important approaches for sequence alignments are 
the Needleman-Wunsch algorithm and the Smith-
Waterman algorithm. 

Needleman-Wunsch algorithm [8] is often used to 
compare biological sequences with the goal of 
computing the similarity score of the sequences. It does 
so by arranging the sequences in such a way that the 
scoring function is maximized (in some cases the goal 
is to minimize the overall penalty). In this paper we are 
interested in global alignments (not necessarily global 
optimal) of pairs of sequences of DNA, RNA, or other 
similar genomic sequences composed of the four 
nucleotides A(adenine), T(thymine), G(guanine), and 
C(cytosine). The optimization problem is organized as 

filling an m by n matrix S of scores, where m is the 
length of one of the sequences and n is the length of the 
other. Si,j is the maximum score of aligning the i first 
characters of the first sequence and the  j first characters 
of the second one. This is the clue to the dynamic 
program nature of breaking the optimization of a large 
problem into optimization of smaller problems. At the 
end, the bottom right corner of that matrix, i.e., Sm,n,  
gives the overall score of the alignment. To find the 
actual alignment, a technique for going from the bottom 
right corner to the top left corner of the matrix has to be 
followed [9]. For long sequences, the time complexity 
of Needleman-Wunsch algorithm which is O(mn) 
prolongs its execution time, hence continuous efforts 
are made to make it more practical [10] [11]. For 
example, for two human genomes of size 3.2 Giga 
nucleotides each, and considering at least 10 operations 
to fill each cell of the 3.2Giga by 3.2Giga matrix, the 
number of operations needed to fill the whole matrix is 
1020. Using a single processor computer with the 
power of 10 million instructions per second, it takes 
approximately 317,000 years to complete the matrix. 
The amount of memory required by the Needleman-
Wunsch aligner is very high, similar to the amount of 
runtime required. Calculating it is a simple task. A 3.2 
billion by 3.2 billion matrix with each element being 
four bytes, i.e., one word, is required. It is practically 
impossible to get this amount of main memory. Using 
external memory instead, will not work because it 
further greatly increases the runtime. These are the 
reasons that lead researchers to break long strings and 
align the corresponding sections separately. Our effort 
in this research is in this direction. 

Smith-Waterman algorithm [12] is another variant 
of global sequence alignment. Although the alignment 
is global, for the following reasons, it can only produce 
local optimal solutions. An important aspect of this 
alignment is that if the scoring value of a cell of the 
scoring matrix is calculated to be negative, its value is 
set to zero. This means, in such situations, the partial 
alignment score of sequences up to this point should not 
affect the alignment score of the rest of the sequences.  
The net consequence of this assumption is that Smith-
Waterman algorithm will better demonstrate the score 
of local alignments. As a matter of fact, it better shows 
the local alignment scores and hence it is often used for 
finding similar regions of sequences. Smith-Waterman 
algorithm has the same problem as Needleman-Wunsch 
algorithm has, i.e., its time complexity is high and 
hence it’s high execution time for aligning long 
sequences is high. In addition, its space complexity is 
also high such that some later researches have 
concentrated on lowering its space complexity only 
[13] [14]. This method has the same high runtime and 
very high memory requirements of the Needleman-
Wunsch method. The novelty of the present study is the 
use of Longest Common Subsequence (LCM) to break 
large sequences into shorter ones and then align the 
corresponding short strings. 

One way to reduce the alignment execution time is 
to break the two sequences into many pairs of smaller 
sequences, when, possible, and align each pair 
separately. For example, suppose the length of each of 
the original two sequences is 100,000 base pairs, i.e., 
characters. Using the Needleman-Wunsch alignment 
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algorithm, the number of operations would be 
proportional to 1010. Let’s assume we can break the 
two sequences into 10 pairs of sequences such that the 
length of each of the resulting new sequences is 
approximately 10,000 base pairs, i.e., bps for short. The 
number of operations for aligning all these 10 pairs is 
proportional to 10 ∗ 108 = 109 which would need 10 
times less execution time compared to the case when 
the original sequences are aligned. 

Examining the required main memory for this small 
example will also show that by breaking large 
sequences the need for main memory is also greatly 
reduced. If the sequences are not broken and they 
aligned at once, the amount of main memory required 
is equal to 4 ∗ 105 ∗ 105 ≅ 40 gigabytes. But if they 
are broken, the amount of main memory required is 
equal to 4*10^4*10^4≅0.4 gigabytea. Note that, in 
neither of cases it is assumed that the alignment is 
performed in parallel.   

On the global alignment of related long genome 
sequences, many attempts have been made to break 
pairs of such long sequences into many smaller pairs 
[10] [15]. The current research is in the same direction 
to higher the efficiency and the quality of globally 
aligning two related genomic sequences. It uses the 
Longest Common Subsequence (LCS) technology to 
find anchor points, Divide and Conquer (DaC) 
approach to recursively break pairs of longer 
sequences, and Needleman-Wunsch algorithm to align 
every corresponding short pair of sequences. 

Finding the LCS of two genome sequences has 
many applications such as phylogenetic construction 
and analysis, quick search in genome sequences big 
data, and identification of motifs. The natural approach 
to solve LCS of a pair of sequences is to formulate it as 
a dynamic programming problem similar to 
Needleman-Wunsch algorithm. However, there are 
quite newer methods with lower time complexities [16]. 

In this paper, a new divide and conquer approach to 
long genome sequence alignment is proposed. The 
division is along the LCS of the two sequences which 
is located approximately in the middle of the current 
two sequences. Only a section in the middle of the two 
sequences are selected in which the LCS is sought. If 
the discovered LCS is not long enough the sections 
length is enlarged until a reasonable length LCS is 
obtained. The novelties of this approach are highlighted 
in the following. 

• It is much faster than either of Needleman-Wunsch 
and Smith-Waterman algorithms. 

• It is faster than the state-of-the-art anchor-based 
methods which also use some kind of division. At 
the same time the space requirement of the method 
is extremely low. 

• It has the potential to be implemented in parallel in 
three different levels, division of the long 
sequences, alignment of all short pairs of 
sequences, and utilization of General-Purpose 
Graphic Processing Units (GPGPU) within each 
alignment of short sequences. 

 In this study, for the first time, longest 
common subsequence method is used to break long 
genomic sequences in order to divide them into 
corresponding shorter sequences and then aligning 
these the corresponding shorter sequences using 
Needleman-Wunsch approach. It has been shown that 
this is not only possible but also efficient with respect 
to time and main memory utilization. The LCS 
subsequence is removed from both sequences and they 
are considered to be aligned, and hence exempted from 
further processing, which further saves both execution 
time and memory space. 

The structure of the rest of the paper is as follows. In 
Section 2 a short review of related work is presented. 
Section 3 is for clarification of the problem being 
solved. Section 4 details the implementation of the 
proposed method’s solution approach. Section 5 is the 
evaluation section and finally a short conclusion and 
future work is documented in Section 6. 

 

II. RELATED WORK 

Sequence alignment is the canonical point of most 
tools of DNA and other genome sequences alignments. 
Human genome sequencing and analysis [1] formally 
started in 1990 and with it, computational methods, 
especially alignment, became an important part of any 
genome analysis activity. Undoubtedly, with the 
invention of its dynamic programming implementation 
and also after that, there has been great progress in 
making the alignment algorithms efficient and up to 
date. It is worth mentioning that although we have 
focused on genome sequence alignment, alignment is 
widely used in other domains such as protein sequences 
alignment, protein networks alignment [17] and all 
kinds of text alignment [18]. 

Needleman-Wunsch algorithm is the basic method 
for global sequence alignments [8]. Smith-Waterman 
algorithm is a variant of Needleman-Wunsch algorithm 
which is also a global aligner but it is tailored to find 
local similar regions of sequences being aligned [12]. 
The problem with these algorithms is their high time 
complexity which is O(mn), or 𝑂(𝑛2) where the length 
of the two sequences are the same and it is equal to n. 
In addition, the space complexity of these algorithms is 
also O(mn) which can be problematic for large 
sequences. In such cases the solution would be to have 
part of the scoring matrix in the secondary storage 
which will further worsen the execution time 
requirement. Many improvements are reported which 
we will concentrate on the most recent ones, here. 

BLAST is a heuristic algorithm developed to search 
a short sequence in a large volume of data. Based on a 
hashing mechanism and a local alignment method, it is 
capable of finding sequences in the database that are 
similar to the search sequence with some degree of 
similarity [19]. BLAST is not originally developed for 
alignment of genomic sequences and it has the potential 
to be used in any kind of text data with any kind of 
alphabet. Later, specific program versions were 
developed for this purpose. BLASTZ and LASTZ are 
recent versions of the program that are widely used for 
local optimal alignment of genomic and DNA data. It is 
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much faster than Smith-Waterman method especially 
for long sequences [20]. 

Leimeister et al. [10] proposed a new anchor point 
finding method called filtered spaced word match. 
Anchor points are short subsequences in the two 
sequences which will be matched in the final alignment 
of these sequences. Subsequences between consecutive 
anchor points of the two sequences are aligned using 
known alignment algorithms. They claim that their 
superiority is in finding better anchor points. However, 
their comparison with that of Mugsy pipeline [21] did 
not lead to similar quality for closely related sequences 
but they claim it is superior in alignment of distal 
sequences. Neither time nor space complexity of the 
method is reported. Our guess is that its time 
complexity would be in the level of that of Needleman -
Wunsch but there may be improvements is its space 
complexity.  

Another recent development in the field of long 
genome sequence alignment is MUMmer4 [11] which 
is the fourth generation of MUMmer. It is based on a 
48-bit suffix array data structure. It is capable of using 
multicores of the host computer however, this is 
applicable for the case of aligning many sequences to 
the reference genome; e.g., aligning many short reads 
to the human reference genome. In such cases, it can 
handle very large input size up to 141 Tera bps. 
Although the most important aspect of an algorithmic 
computational method is its time and space complexity, 
these are not reported in the paper. 

The research reported by Sun et al. [13] is an effort 
towards space requirement reduction of Smith-
Waterman. similar to that of Smith-Waterman, its input 
is a pair of sequences and it performs the optimal local 
alignment of the sequences. It is capable of aligning 
long sequences up to 100 million bps. It claims that the 
space requirement is tremendously reduced but the 
order of reduction is not reported.  It also claims its time 
complexity is the same as that of Smith-Waterman. 
However, because of extra computations required to 
reduce space, one would expect its time requirement 
would be higher than that of Smith-Waterman. 

A recent method called GSAlign is the last method 
studied here. It is specifically designed for semi-optimal 
alignment of long Genome and DNA sequences [22]. 
Fundamentally, it is composed of three phases: seed 
identification and pairing of the two sequences’ seeds, 
similar region identification by chaining seed pairs, and 
finally the local aligning of regions. To produce the 
overall alignment, local alignment of regions is joined 
together. It is capable to implement the alignment phase 
of the process in parallel using a multithreading 
technique. The authors claim that GSAlign is the fastest 
semi optimal aligner of long sequences. They also claim 
that the developed program produces perfect or nearly 
perfect precision and recalls on the identification of 
sequence variations in the dataset. 

With the exception of Needleman-Wunsch method 
which is an optimal method for aligning genomic 
sequences, all the other methods we have introduced in 
this article are methods that do not guarantee to be 
optimal. We showed that the Needleman-Wunsch 
method cannot be used for large sequences. Therefore, 

efforts are being made to produce methods which 
require less running time and less memory 
consumption, and at the same time aligns the sequences 
more accurately. In the evaluation section, we will show 
that the proposed method is superior to the state-of-the 
art methods. 

 

III. PROBLEM DEFINITION 

Given two genomic sequences S1 and S2 composed 
of nucleotides A, C, G, and T are given. The objective 
is to globally align the two sequences in such a way that 
differences and similarities of the sequences are clearly 
recognizable. A scoring function will be defined and the 
alignment score is supposed to be optimal. However, 
for very long sequences this may not be possible, hence 
the aligner has to produce an alignment with and 
acceptable score. The length of the sequences is 
assumed to be very large to the point that their optimal 
alignment using Needleman-Wusch is practically 
impossible. The length of the sequences could even 
reach the length of human genome which is around 3.2 
billion base pairs. Furthermore, it is assumed that the 
two sequences are very similar, for example one 
sequence is the reference genome of a healthy person 
and the other one is the genome of a person being 
studied to find its differences with that of the healthy 
person. It is expected that the method will use the 
optimal aligner in the cases where the input sequences 
are short or as a result of breaking them the parts which 
are to be aligned are short. 

The approach is to divide the long input sequences 
into a number of corresponding sub-sequences and to 
align these sequences optimally. Finding the right 
breakpoints is a fundamental issue, and various 
methods to find the breaking point have been developed 
by previous researchers. It is important to note that the 
lengths of the corresponding sub-sequences are not 
necessarily equal. In this study, the longest common 
sub-sequence method [15] is used to break a given pair 
of long sequences into two pairs of sub-sequences and 
each pair is aligned separately. The process of breaking 
follows the divide and conquer approach, and continues 
the division until the pairs to be aligned are small 
enough.  

IV. LCSDAC IMPLEMENTATION  

In this section details of the implementation of the 
proposed Longest Common Subsequence Divide and 
Conquer (LCSDaC) alignment of two sequences is 
explained. The system will be able to align similar 
sequences of any sizes up to the length of a human 
genome, i,e., 3.2 Giga bps. If both sequences are short, 
i.e., less than 100 base pairs is assumed here, the 
Needleman-Wunsch will directly be utilized. 
Otherwise, the divide and conquer process will 
systematically break them into many pairs of short 
sequences. Figure 1 illustrates how this breaking 
process works. From the middle of each of the 
sequences a subsequence of length equal to the 
minimum of 1000 and one third of the current 
sequence’s length, i.e., Minimum (1000, n1/3), is 
distinguished which become the input to the LCS 
procedure. This procedure will find their longest 
common subsequence. If this subsequence is long 
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enough the division is successful, otherwise the lengths 
of the distinguished subsequences are doubled and the 
LCS is called again. There is a maximum which is set 
to 3 for this step and in the worst case the longest 
common subsequence obtained in the third iteration is 
accepted as the breaking point. Figure 1 also shows the 
maximum number of times the LCS is called in each 
level of the tree.  

Figure 2 has illustrated this procedure on a 
miniature pair of sequences. It is assumed that the first 
iteration of the procedure gives an acceptable result. In 
this example, the length of each of the sequences is 50. 
Although the length of sequences should be more than 
100 to perform the division, for this example the 
division is applied. The LCS procedure will find the 
longest common subsequence to be 

GGAGCATGAGCTGG. It is located in Locations 17 
to 30 of the first sequence and 19 to 32 of the second 
sequence. These places are assumed to be aligned in the 
final alignment of the two sequences and hence they are 
exempted from further processing. The algorithm 
remembers this alignment and includes it in the final 
alignment. In the second level of the tree of Figure 1 we 
will have to deal with two pairs of sequences to be 
processed. The first pair is in locations 1 to 16 of the 
first sequence and Locations 1 to 18 of the second 
sequence. The second pair is in locations 31 to 50 of the 
first sequence and Locations 33 to 50 of the second 
sequence. The division is not continued because the 
sequences are short. For these two pairs Needleman-
Wunsch is directly applied. 

 

 

Fig. 1. The division process of LCSDaC showing the number of LCS calls. 

  1   2   3   4   5   6   7    8  9   10 11 12 13 14 15 16  17 18 19 20   21 22 23 24 25 26 27 28 29 30 31 32 33  34 35 36 37 38 39 40 41  42 43 44 45 46 47 48 49 50 

CCTTTATCTAATCTTTGGAGCATGAGCTGGCATAGTTGGAACCGCCCTCA 

CCTTTATGTAATCTTTGTGGAGCATGAGCTGGGAGTTGGACACGCCCTCA 
Fig. 2. The effect of applying LCS on two sequences. 

The overall pseudocode of the algorithm of the method presented here is shown in Algorithm 1.  

Algorithm 1. The pseudocode for LCSDaC approach

ڿ l
o
g(
𝑛
)

−
lo
g
(1
0
0
ۀ(

 

1 𝑙𝑐𝑠 

2 𝑙𝑐𝑠 

4 𝑙𝑐𝑠 

log(𝑛)−log(100)ڿ2

 2𝑖

ۀlog(𝑛)−log(100)ڿ

𝑖=0

 ∗ 𝑙𝑐𝑠

1-   Input Sequences S1 and S2 

2-   Global SA1, SA2 // the two sequences after alignment 

3-   Recursive Procedure LCSDaC (S1, S2) 

4-   { 

5- if (S1 < 100 OR S2 <100){ 

6-     SA (S1, S2) // Short Align and place results in SA1, SA2 

7-  Return 

8- } 

9- SELECT (s1, S1)          //s1 is selected from the middle of S1 

10- SELECT (s2, S2) 

11- LCS (s1, s2)       //find the LCS of s1 and s2 

12- S1=left section of S1 up to LCS start 

13- S2=left section of S2 up to LCS start 

14- LCSDaC (S1, S2)   //recursive call for new sequences S1 and S2 

15-      Append (LCS)   //append LCS to current end of SA1, SA2 

16- S1=right section of S1 from end of LCS 

17- S2=right section of S2 from end of LCS 

18- LCSDaC (S1, S2)  

19-   } 
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In Line 2, two new sequences which are the final 
results of the alignment are obtained. Their length is not 
necessarily equal to the length of the original sequences 
and may be a bit longer. The actual processing section, 
Lines 3 to 19, is declared as a recursive procedure. In 
this procedure, whenever one of the two inputs is short, 
i.e., less than 100 base pairs, Needleman-Wunsch is 
called to align the two sequences (Lines 5 to 8). The 
aligned results would be place in output sequences SA1 
and SA2. In Lines 9 and 10, the SELECT procedure 
selects a subsequence from the middle of each of the 
sequences and then the longest common subsequence 
of the selected sequences are computed (Line 11). A 
similar procedure has to be applied to either sides of the 
anchor segments with the LCS being placed in the 
middle (Lines 12 to 18). 

V. EVALUATION 

For the alignment of long sequences, which is the 
interest of this research, both time and space 
complexities are two major limitations. Otherwise, 
Needleman-Wunsch produces the optimal alignment. 
Accuracy is often scarified to be able to obtain a 
approximate solution in tolerable amount of time and 
with the available storage capacity. We proceed first 
with the most important property of the algorithm 
which is time complexity.  

A. Time complexity of Algorithm 1 

Finding the time complexity of Algorithm 1 is 
highly dependent on the time needed to find the LCM 
of pairs of sequences. In [16]. It is calculated that if the 
dominant point approach is used the time needed to find 

the LCM of a pair of strings is proportional to k*||, 

where || represents the cardinality of the alphabet 
which strings are made of. On the other hand, k is the 
length of the longest string of the pair of strings. Note 
that, the sequences considered here consist of 4 
characters A, T, G, and C. Therefore, it is safe to say 
calculation of LCM of a pair of strings is proportional 
to k. On the other hand, the number of times we can 
divide an integer  n by 2 before the final result becomes 
less than 100 is log2(𝑛) − log2(100) or approximately 
log2( 𝑛) - 6. This is the depth of the tree of Figure 1. 
Therefore, the number of times the LCS procedure is 
called is shown by Formula (1). 

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐿𝐶𝑆𝑐𝑎𝑙𝑙𝑠 =    2𝑖

ۀ𝑙𝑜𝑔(𝑛)−𝑙𝑜𝑔(100)ڿ

𝑖=0

 (1) 

Assuming the maximum length of the pair of 
sequences which is sent to the LCS procedure to be k1, 
the number of operations needed to run the whole 
algorithm would satisfy Formula (2). In this formula 
O(SA) represents the time complexity of the Short 
Align (SA) procedure. 

𝑇(𝑛) ≤ 𝐶1 ∗ 𝑘1  2𝑖

ۀ𝑙𝑜𝑔(𝑛)−𝑙𝑜𝑔(100)ڿ

𝑖=0

+ 2𝑙𝑜𝑔(𝑛)+1 𝑂(𝑆𝐴) 

     (2) 

 

Or, 

𝑇(𝑛) ≤ 𝐶1 ∗ 𝑘1 𝑛 + 𝑛 ∗  𝑂(𝑆𝐴).(3) 

Recall that even if the length of the original 
sequences to be aligned is as large as a whole genome 
or any other longer length, in the algorithm, alignment 
for only short sequences with length less than 100 bps 
is called. Let’s assume that the number of operations 
needed to do this alignment is k. It is usually very small 
compared to the length of the input sequences and it is 
bounded by a constant. However, it is not too small to 
satisfy the definition of the big O notation of the time 
complexity to consider it a constant. On the average, for 
alignment of short sequences there would be 
50*50=2500 cells to fill. As this is represented by k, the 
time complexity of the method would be O(kn). Of 
course, there is always an option to set the length of 
short sequences to be less than 100 bps.  

There is a hidden benefit in the proposed method 
which is the exemption of longest common 
subsequences of each pair of sequences from any 
further processing. In the calculation of the time 
complexity, this is ignored because it does not affect the 
time complexity itself but reduces the hidden constant 
of the time complexity, and as a result it has a positive 
effect in processing time of the algorithm. 

B. Space complexity of Algorithm 1 

Space complexity of the alignment methods is as 
important as their time complexities. Some recent 
methods such as Sun et al. [13] have left the time 
complexity of the aligner untouched and have 
concentrated on reducing its space complexity. The 
actual space complexity of their proposed algorithm is 
not reported because, it is calculated for the worst case 
and in the worst case it would not be impressive. 
However, they claim the main memory of a “normal 
personal computer” would be able to align sequences as 
long as 100,000,000 nucleotides.  

Here we explicitly express that the space 
complexity of our algorithm is O(n) where n is the 
length of longer input sequence. There are two input 
sequences of length say n and two output sequences of 
approximate length n, too. LCSDaC would need 4n 
bytes to keep them all in the main memory. Within this 
algorithm, each Needleman-Wunsch execution will 
require at the most 10,000 cells and considering 4 bytes 
for each cell, adds up to 40,000 bytes. In the non-
parallel version of LCSDaC, there would be only one 
running Needleman-Wunsch at any given time. Other 
minor memory requirements are ignorable. Therefore, 
the total memory space needed is expressed by Formula 
(4). 

𝑆(𝑛) = 4𝑛 + 40000  (4) 

For sequences larger than 40000 bps, the space 
requirement would be 

𝑆(𝑛) ≤ 5𝑛  (5) 

Therefore, the space complexity is S(n) ∈O(n). Even 
for the case of parallel implementation of the LCSDaC 
using multicores, the number of multicores is limited 
and it is small, say 16, which still leaves the space 
complexity to be O(n). This is another achievement of 
the current research. Thus, it can be said that the 
proposed method is much more efficient than both 
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Needleman-Wunsch and Smith-Waterman methods 
with respect to both time and space complexities. 
Compared to newer algorithms, its superiority is at least 
in the hidden constants of time and space complexities. 
In any case, the actual time and space utilization of the 
proposed algorithm is less than each of the state of the 
art methods.   

The method presented here has a high potential to 
be implemented in parallel. The simplest section that 
can be paralleled is the “Short align” section of the 
algorithm which is responsible for alignment of short 
sequences. This section corresponds to the lowest level 
of the tree of Figure 1. Within each short align instance 
one can utilize General Purpose Graphic Processing 
Unit (GPGPU) to elevate the degree of parallelism. 
Furthermore, the LCS recognition can become parallel. 
For example, in Level 2 (third level) of the tree of 
Figure 1 four LCS instances could run in parallel. In this 
paper, the whole idea is developed sequentially and the 
compassions are with sequential competitors. Actually, 
we intended to put our idea into practice and evaluate 
the practicality of the method, first. The parallelization 
of the whole algorithm is left for future work.  

For short sequences, there is no need for 
comparison, and the choice is definitely Needleman-
Wunsch [8] with optimal alignment capability. For 
local optimal alignment, the choice is Smith-Waterman 
[12] for local optimal alignment. The latter method 
completely ignores many parts of the pair of sequences 
meaning. It only looks for those parts the sequences 
which are somewhat similar to each other. In some 
applications that parts which should be focused on are 
actually those which are very different. Those parts 
could actually be the cause of some diseases. For 
medium length sequences it depends on the available 
computer, its number of cores, number of General 
Purpose Graphic Process Units (GPGPUs), and the 
capabilities of the employed software program. For 
large and very large sequences the choice is definitely 
not Needleman-Wunsch or Smith-Waterman. A 
practical choice is an efficient heuristic semi-optimal 
methods. Therefore, two such recent methods are 
selected for the comparison part: MUMmer [11], and 
GSAlign [22]. The experiment includes both short 
genomes and long ones. 

BRCA1 is a human gene responsible for 
suppressing tumors and repairing DNA, ATF6 is a 
human gene which acts as a transcription factor inside 
the nucleus, and CFTR gene that is the provider of 
instructions for making a kind of protein. The 
approximate sizes of these genes are expressed in 
thousands (K) of nucleotides in Table 1. These genes 
are taken from 1000 genomes project dataset [23]. 
Escherichia coli (E.Coli), Shigella, and Salmonella are 
three bacteria with the approximate sizes that are 
expressed in millions (M) of nucleotides in this table. 
The bacteria sequences are taken from NCBI site [24]. 
For each gene and bacteria two different variants are 
selected to be aligned. 

The computer used for the experiments is Intel(R) 
core(TM) i7-353U CPU 2GHz, RAM 6GB, and Linux 
Ubuntu 18.0 operating system.  

Table 1 summarizes the result of comparisons of 
MUMmer, GSAlign, and LCSDac methods. 

TABLE I.  SUMMARY OF THE TIMING COMPARISON RESULTS 

Sequence   

→ 

Method 

BRCA1 

#127K 

ATF6 

#198K 

CFTR 

#430K 

E.coli 

#5M  

Shigella 

#5M 

Sal* 

#4.9M 

MUMmer 5s 5s 9s 328s 350s 246s 

GSAlign 2s 3s 4s 125s 240s 160s 

LCSDaC 1s 2s 4s 138s 218s 127s 

*Salmonella 

The overall results of Table 1 for the six tested 
sequences, show that, on the average, LCSDaC is 2.61 
times faster than MUMmer, and 1.29 times faster than 
GSAlign. For example in comparing MUMmer and 
LCSDaC the following computation is used. 

(5 1⁄ + 5
2⁄ + 9

4⁄ + 328
138⁄ + 330

218⁄

+ 246
127⁄ )/6 = 2.61 

Another major area of comparison is the accuracy 
of the methods. It is obvious that Needleman-Wunsch 
is the most accurate one because it is an optimal aligner. 
The problem arises when the sequences are long and its 
time and space requirements using Needleman-Wunsch 
is absolutely intolerable.  Smith-Waterman is not an 
optimal aligner but, it is a locally optimal one. 
MUMmer, GSAlign, and LCSDaC fall into this 
category and none of them could be used as a fully 
accurate one. In the absence of an optimal alignment the 
number of exact matches of the two sequences are taken 
to be a measure for the purpose of correctness 
evaluations.  A higher value of this measure is 
interpreted as the method being more accurate. Table 2 
shows that the method presented in this paper is more 
accurate than others, in all cases. Therefore, the 
Relative Accuracies (RA) of other methods are 
computed in comparison to LCSDaC. 

Evaluating their accuracy in terms of score, 
precision, recall, and F-measure requires extensive 
experiments on numerous sequences which is left for 
the future work. 

TABLE II.  RELATIVE ACCURACY COMPARISON RESULTS 

Sequence→ 

Method 

BRCA1 

#127K 

ATF6 

#198K 

CFTR 

#430K 

E.coli 

#5M  

Shigella 

#5M 

Sal* 

#4.9M 

MUMmer 103521 15250 36624 281466 250537 249410 

GSAlign 98531 12895 32358 245326 237856 210856 

LCSDaC 123087 19727 42144 295584 295876 275470 

* Salmonella 

Therefore, the average relative accuracies of other 
methods are computed in comparison to LCSDaC. 
Details of calculations for MUMmer is shown in the 
following. 

RAMUMmer = (103521/123087 + 152501/197277
+ 366248/421446 + 2814666/2955849
+ 2505372/2958760
+ 2494108/2754703)/6 = 0.864 

Performing a similar calculation for GSAlign evaluates 
its relative accuracy to be 𝑅𝐴𝐺𝑆𝐴𝐿𝑖𝑔𝑛 = 0.6554. 
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Therefore the accuracy of LCSDaC is the highest and 
that of MUMmer is 86 percent of LCSDaC. With 
respect to relative accuracy, the GSAlign is the lowest 
with 66 percent of the LCSDaC. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we introduced LCSDaC which is a novel 
long DNA sequence aligner base on divide and conquer 
approach in which, the division takes place along the 
longest common subsequence of the middle portions of 
the current sequences. The time complexity of the 
method is analyzed and it is shows to be superior to 
traditional aligners. The space complexity of the 
algorithm is also calculated to be O(n) which is superior 
to all classic aligners such as Needleman-Wunsch and 
Smith-Waterman methods. Further, it outperforms all 
state of the art methods. The sequential version of the 
presented method is implemented and it is compared 
against two state of the art heuristic aligners called 
MUMmer, and GSAlign. It is shown that on the 
average, the proposed algorithm, LCSDaC, is 2.61 
times faster than MUMmer, and 1.29 times faster than 
GSAlign. For the accuracy we showed that the accuracy 
of MUMmer is 86 percent of LCSDaC and that of 
GSAlign is 66 percent of the LCSDaC. 
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