
 

A Partial Method for Calculating CNN 

Networks Based On Loop Tiling 
 

Ali  A.D. Farahani  

School of Computer Engineering 

Iran University of Science and Technology 

Tehran, Iran  

Hakem Beitollahi  

School of Computer Engineering 

Iran University of Science and Technology 

Tehran, Iran  

Beitollahi@iust.ac.ir 

Mahmood Fathy  

School of Computer Engineering 

Iran University of Science and Technology 

Tehran, Iran 

Reza Berangi  

School of Computer Engineering 

Iran University of Science and Technology 

Tehran, Iran 

                  

 

Received: 12 October 2022 – Revised: 1 November 2022 - Accepted: 1 January 2023 

Abstract—Convolutional Neural Networks (CNNs) have been widely deployed in the fields of artificial intelligence and 

computer vision. In these applications, the CNN part is the most computationally intensive. When these applications 

are run in an embedded device, the embedded processor can hardly handle the processing. This paper implements loop 

tiling to explain how one can construct a lightweight, low-power, and efficient CNN hardware accelerator for embedded 

computing devices. This method breaks a large CNN engine into small CNN engines and calculates them by low 

hardware resources. Finally, the results of small CNN engines are added and concatenated to construct the large CNN 

output. Using this method, a small accelerator can be configured to run a wide range of large CNNs. A small accelerator 

with one layer is designed to evaluate our methodology. Our initial investigations show that based on our methodology, 

the constructed accelerator can run a modified version of MobileNetV1, 70 times per second.  

Keywords: Convolutional neural networks (CNNs), Hardware Accelerator, Embedded system, Low Power. 

Article type: Research Article 

© The Author(s). 
Publisher: ICT Research Institute 

 

 

 

 

 

 
 Corresponding Author 

https://orcid.org/0000-0002-0827-7739
https://orcid.org/0000-0002-8420-6545
https://orcid.org/0000-0003-0852-5488
https://orcid.org/0000-0002-8405-8984


 

I. INTRODUCTION 

Convolutional neural networks are used in 
computer vision applications widely [2]. Artificial 
intelligence and deep learning use CNNs in their 
applications [3]. CNNs are the most computation-
intensive part of all vision networks, such as ResNet, 
MobileNet, VGG, and AlexNet [1]. The processing of 
CNNs has two different phases training and inference. 
Only the inference phase could be run on small 
embedded processors, and training should be run 
exclusively on powerful GPUs [3].  

Using GPUs is a simple option for inference; 
however, it is too expensive and power-hungry. Also, 
powerful GPUs may not be physically available 
anywhere, and these powerful GPUs provide their 
computing capability as a cloud service to all devices 
that require it [1]. However, access to these services has 
several problems, including extra cost, extra power for 
wireless or 5G interfaces, continuous bandwidth 
requirements, delay in sending and receiving responses, 
network disconnection possibility, Etc. Therefore, there 
is a solid demand in the semiconductor industry for a 
tiny co-processor or accelerator to run CNNs efficiently 
beside small and embedded processors at the edge.  

The main contribution of this work is that we 
convert the loop tiling method into a new partitioning 
scheme in hardware implementation. Using this scheme 
in hardware, a small fixed CNN accelerator engine, as a 
basic unit, can calculate a wide range of large CNNs in 
the above networks, partially and in a step-by-step 
manner. This methodology is hardware implementation 
or dual loop tiling method that was previously used in 
lots of software implementation of CNN execution in 
small processors. The designed CNN accelerator is as 
small as that can be integrated into a low-power 
embedded processor. 

The rest of the paper is organized as follows. 
Section II discusses the related works. Section III 
provides a background on CNN networks. Section IV 
states the problem statement. Section V proposes the 
partitioning method. Section VI presents the 
experimental results and finally section VII concludes 
the paper.  

II. RELATED WORKS 

Many academic and industrial kinds of research 
have been done on convolutional network accelerator 
hardware. Many of these research projects focus on 
accelerating convolutional networks on FPGAs. Some 
accelerators are only designed for a specific 
convolutional neural network [7]. In [5], the team has 
developed a software-hardware template that can 
generate the appropriate hardware convolutional 
network as well as the software components (if needed) 
by receiving the Python code [16]. 

Others focus on faster access to memory and 
optimal use of memory to reduce the memory 
bottleneck effect and thus increase the accelerator 
performance [8]. In [18] an analytical model has been 
proposed to find the best loop-level optimization 
configuration, including loop tiling and loop 
permutation for CNNs on multi-core processors. Loop 
level optimization (loop tiling and loop permutation) is 

an essential transformation to reduce data movement 
and provide an efficient memory architecture in CNNs. 

[17] presents an enhanced version of loop-tiling in 
the software manner. This technique utilizes various 
combinations of affine and non-affine loop 
transformations to find the best transformation 
sequence for minimizing the CNN execution time. To 
find the best combination, a cost model evaluates the 
speedup of each sequence of transformations, which 
would yield. 

Most research studies have used Depthwise 
Separable Convolution networks to reduce hardware 
size and speed up the execution [7], [9]. In [16], a CNN 
accelerator with a 14 × 16 processing element (PE) 
array is designed and then utilized in a loop tiling 
structure and Ping-Pong operations to efficiently 
transmit feature maps from the on-chip buffer to the PE 
array. Moreover, a roofline model is used to explore the 
best tiling parameters. Additionally, this technique has 
been implemented on the FPGA. 

RASHT [19] is a scalable architecture that resizes 
PEs to match any layer shape of CNN layers. The main 
idea behind RASHT is that a CNN network consists of 
different layers of different sizes. Instead of designing 
a fixed PE engine for all layers, the engine resizes itself 
based on the layer it operates on it. 

III. CONVOLUTIONAL NEURAL NETWORKS (CNN) 

Almost all CNNs contain from a few ten to a few 
hundred layers of convolutional [3]. In CNNs, the last 
layer is converted to a flat matrix and fed to the input of 
fully connected layers. Then, a fully connected neural 
network is executed in one or two layers on this data for 
classification purposes. Finally, a nonlinear function 
analyzes the outputs of this neural network, and the 
most likely classes are selected as the network output. 
Therefore, most of today’s AI networks have a CNN 
network similar to Fig 1. In the first layers, the 
resolution of feature maps is usually high, but the 
number of kernels (filters) is relatively low. In the final 
layers, the number of kernels is between 128-2048, but 
the resolution is decreased because of several pooling 
layers. 

 

Figure 1.  A sample CNN network 

CNNs are widely used in vision applications [1], 
[2], [3]. The input layer (layer 0) in a vision application 
is an RGB image. The first layer is generated directly 
by convolving kernels and the input image. Step by 
step, the other layers of feature maps are generated by 
convolving kernels with previously generated feature 
maps. Every convolution operation has several MAC 
(Multiplications and Accumulate) operations, including 
some element-by-element multiplications, followed by 
adding those multiplication products. Besides 
convolution, there are other layers in CNNs: Mean or 

Volume 15- Number 2 – 2023 (12 -18) 
 

13 



 

Max Pooling, ReLU, addition, and normalization, that 
are widely used in CNNs.  

There are many mathematical operations in the 
convolutional layers, so even for desktop and server 
processors, executing a CNN is a heavy computational 
task. For instance, AlexNet, Resnet, and VGG-16 
include 724 million, 3.9 billion, and 15.5 billion MAC 
operations, respectively [11]. There are two common 
simplifications used in CNNs to reduce the number of 
MAC operations and decrease the computation load: (1) 
Compression of CNN models [10] and (2) 
simplification of CNN models by replacing standard 
convolution with Depthwise Separable Convolution 
[6]. In Depthwise Separable Convolution, the 
convolution operation is divided into two parts with a 
smart kind of factorization [4]. As a result, this 
factorization effectively reduces the volume of 
mathematical operations. Due to the sharing of 
calculations, the parameters of these calculations 
(multiplication coefficients and biases) are also shared, 
reducing the number of network parameters [4]. The 
compression of CNN models tries to reduce the number 
of kernels by removing redundant feature maps and, 
consequently, redundant MAC operations [10].  

MobileNetv1 is one of the first vision networks to 
use depthwise separable convolution. Using this 
convolution type, the needed operation for each image 
is reduced to as low as about 1 billion MAC instructions 
[6]. Another light vision model, ShuffleNet, uses the 
depthwise technique and has about 0.5 billion MAC 
instructions [15].  

IV. PROBLEM STATEMENT 

The methodology of designing a lightweight and 
low-power CNN accelerator for embedded systems as 
a general-use case is our primary objective in this paper. 
To this end, a one-layer CNN accelerator is designed 
with minimum hardware resources. This CNN 
accelerator can run only one Depthwise CNN layer at a 
time. 

CNNs have different layers of convolutions. There 
are several kernels in each layer of the convolution. 
Usually, the number of kernels is mainly a power of 
two, i.e., 16, 32, 64, 128, 256, 512, 1024, Etc. Usually, 
the number of kernels in the first layer is 16 or 32. This 
number gradually increases layer by layer when we go 
through the network. Each CNN accelerator has several 
input feature maps and several output feature maps. 
Consider a convolutional network whose first layer has 
16 kernels and its last layer has 128 kernels; as the CNN 
accelerator runs the convolutional network, step by 
step, the CNN accelerator should support 128 feature 
maps as input and could generate 128 feature maps as 
output. Otherwise, this CNN accelerator cannot run the 
last layers. Note that a 128x128 CNN accelerator is a 
huge CNN accelerator that is not considered to be used 
in an embedded processor. If a large CNN accelerator 
is designed, it can run a wide range of CNNs; however, 
the use of a large CNN accelerator increases the 
hardware resources and the chip area, power 
consumption, and cost. This kind of design eventually 
leads to a significant decrease in the circuit's speed of 
execution and frequency. Moreover, some parts of the 
hardware are actually unused in the layers of 

convolutional networks where the number of kernels is 
less than the maximum number of kernels predicted for 
the accelerator. Therefore, the resource usage and the 
efficiency of the CNN accelerator are decreased. 

It is known that in embedded systems, the chip area, 
size, and power consumption of any accelerator must be 
small as possible. However, the use of a small CNN 
accelerator leads to a limited number of input and 
output feature maps in the CNN accelerator. In this 
situation, it is impossible to calculate the convolution in 
that network layer whose number of kernels is greater 
than the predicted number in the CNN accelerator. 
Thereby, it leads to a useless accelerator because it 
cannot run most convolutional networks. Due to the 
problems stated above, we have used loop unrolling 
hardware implementation of the loop tiling technique 
[13, 14, 18].  

Loop tiling is used in executing the CNN network 
over some relatively small processors that can be 
embedded in chips. This type of execution of CNN 
networks is called “software implementation” [17]. It 
means that dedicated hardware for CNN execution is 
not designed. The small processor executes each layer 
of CNN. When the execution of the layer is finished, all 
the result is kept in memory. The result of the previous 
layer is used as input for the next layer in the 
convolutional layer. Therefore, memory should have 
enough capacity to keep at least the two biggest CNN 
layers in the worth case plus the required parameter in 
the multiplication of this layer. It is about 1-2 Mbyte in 
a relatively small CNN network that is designed for 
mobile and embedded applications. 

To execute a CNN on a processor, the cache 
capacity of the processor is an essential issue that 
should be considered. Processors could execute over a 
large amount of data in their cache very quickly 
(Fomula.1). However, if the required data of execution 
are out of the cache and in the main memory, then a 
long delay is unavoidable due to the fetch operation, 
which slows down the processor.    

For a = 0 to A-1: 

  For b = 0 to B-1: 

    For c = 0 to C-1: 

                𝑋(𝑎, 𝑏, 𝑐 ) = ∑ 𝑋( 𝑎 + 𝑗, 𝑏 + 𝑘,   
2,2

𝑗=0,𝑘=0
c)*M(a)[k, j]  

Fomula.1. Original Convolution 
 

The above pseudocode (Formula.1) shows a typical 
calculation for computing one feature map over 
previous feature maps in the last layer, where A is the 
number of feature maps, and B and C are the input 
image sizes. M represents the parameters of each 
convolution. 

The calculation of each CNN feature map in a new 
convolution layer in a processor is a nested loop, as 
shown above. This calculation should be repeated for 
each feature map in the new convolution layer over all 
feature maps in the last convolution layer. A 
convolution layer with 224x224 resolution and 256 
feature maps has 800 Kbytes integer data (number) and 
about 70 Kbytes integer parameters. If the processor 
cache is about 256 Kbytes, not all the needed data can 
be placed in the cache, and logically several consequent 

Volume 15- Number 2 – 2023 (12 -18) 
 

14 



 

cache misses are happened during the processing 
because of the capacity cache miss.  

To overcome this problem, the above loop is broken 
down to several small loops with less than 64K bytes 
and can hold all in the cache, and the amount of cache 
missed is kept as low as possible to speed up the 
execution of the CNN network. Each small loop is 
called a “tile,” and the overall technique is “loop tiling.” 
Then the result of each tile is added together and 
sometimes re-arrayed to build the originally required 
output, that is, a convolution output. 

The Tiling method divides the convolution into 
several smaller convolutions (Formula 2). In the 
software implementation, the parameters and data of 
these small convolutions can be stored in the 
processor's cache. Finally, based on the shape and size 
of the original convolution, several small convolutions 
are combined, and the big (original) convolution is 
rebuilt . 

In Formula 2, it is assumed that a large convolution 
has the number of feature maps equal to FMD, and the 
size of the parameters and data of the convolution is 
larger than the processor’s cache. The processor’s cache 
can only hold the parameters and data of a convolution 
length LD. However, by breaking the big convolution 
and making it smaller by the number of (1 + FMD/LD), 
the smaller convolutions are quickly calculated in the 
processor . 

f  or i = 0 to (
𝐹𝑀𝐷

𝐿𝐷
): 

for a = 0 to A-1: 

  for b = 0 to B-1: 

    for c = 0 to 𝐿𝐷 − 1: 

                 𝑋(𝑖, 𝑎, 𝑏, 𝑐 ) = ∑ 𝑋(𝑖, 𝑎 + 𝑗, 𝑏 + 𝑘,   
2,2

𝑗=0,𝑘=0
c)*Mi (a)[k, j]  

Fomula.2. Small Convolution made from Original 

Convolution. 
In a software implementation, it is clear that loop 

tiling needs more memory for storing tiles for future use 
but effectively reduces cache miss and keeps the 
processor at the high-speed execution. 

In the hardware implementation, the cache miss 
problem faces like a limitation of input feature maps 
and output feature maps in accelerators because of 
using the small accelerator. It also appears as a 
limitation in the size of on-chip memory. Therefore, 
breaking down the CNN to small CNN, like the concept 
of tiling, could be useful, especially in edge and 
embedded systems with several limitations in memory, 
area, power, Etc. This technique (loop tiling) is called 
CNN partitioning in this paper. By using CNN 
partitioning, it is possible to use a small-size hardware-
based CNN accelerator to run a wide range of CNNs, 
from small to relatively large CNN. 

V. THE PARTITIONING METHOD 

This paper proposes a hardware-based methodology 
that utilizes a lightweight, simple, and small CNN 
accelerator engine to execute a wide range of relatively 
large CNNs. In this way, it is like one design a big CNN 
accelerator inside an embedded system, but actually, 
there is a small lightweight accelerator capable of 
running big CNNs efficiently with less hardware and 
memory.  

 Using this engine, any type of CNNs can be 
calculated in a step-by-step and partial method that is 
similar to the concept of loop tiling [13, 14]. Our used 
methodology and the designed CNN accelerator engine 
can perform depthwise convolutional operations at very 
good performance and standard convolution but at 
lower performance. The designed CNN accelerator 
engine as a basic unit has sixteen feature maps as input 
and produces sixteen output feature maps. For 
simplicity, a convolution with sixteen inputs and 
sixteen outputs is displayed as 16x16. Note that these 
numbers do not mean image resolution or feature map 
pixels. This accelerator can perform convolution 
operations on any image size with any resolution. To 
minimize the hardware, this accelerator operates on 8-
bit integer numbers. Also, the CNN accelerator has 16 
fast internal SRAM banks as internal memories for 
storing the calculated feature maps. Therefore, every 
output feature map has its own dedicated fast memory 
bank, and no congestion happens during accessing 
memory. 

The basic-unit CNN engine performs a part of a 
large convolution layer at each time. Finally, these parts 
should be added or concatenated, as discussed below. 
In other words, using this approach, instead of 
generating all feature maps in one step in a layer, feature 
maps for that layer are generated and placed in multiple 
steps. The details of the technique are explained using 
an example on MobileNet-v1. 

V.I MOBILENETV1: AS AN EXAMPLE  

MobileNetV1 is chosen as an example. This 
network has 16 convolutional layers, as explained in 
table 1. The first row of the table represents the first 
convolutional layers. Layer 1 includes three input parts 
of input image and 32 output feature maps (Conv3x32). 
Layer 2 includes 16 input feature maps and 32 output 
feature maps (Conv16x32). Layer 3 includes 32 input 
feature maps and 32 output feature maps (Conv32x32). 
The other layers are repeated as shown. The two last 
layers have 128 output feature maps, as shown in the 
figure (Conv64x128 and Conv128x128, respectively).  

This example shows how a small CNN accelerator 
(the basic unit) runs a relatively big MobileNetV1 CNN 
from the first layer to the last layer, step by step. The 
CNN accelerator stores the results of each layer in the 
memory banks that are allocated for storing the results 
of the CNN accelerator. CNN accelerator will use these 
results as input for the next layer in the next step. In the 
last layer, all output feature maps that are stored in the 
memory banks are treated as the output of the CNN. 

TABLE I.  MOBILENET-V1 BODY ARCHITECTURE  

Type / Stride Filter Shape Input Size 

Conv / s2 3 × 3 × 3 × 32 224 × 224 × 3 

Conv dw / s1 
Conv pw / s1 

3 × 3 × 32 dw 
1 × 1 × 32 × 64 

112 × 112 × 32 
112 × 112 × 32 

Conv dw / s2 
Conv pw / s1 

3 × 3 × 64 dw 
1 × 1 × 32 × 128 

112 × 112 × 64 
56 × 56 × 64 

Conv dw / s1 
Conv pw / s1 

3 × 3 × 128 dw 
1 × 1 × 128 × 128 

56 × 56 × 128 
56 × 56 × 128 

Conv dw / s2 
Conv pw / s1 

3 × 3 × 128 dw 
1 × 1 × 128 × 256 

56 × 56 × 128 
28 × 28 × 128 

Conv dw / s1 
3 × 3 × 256 dw 

1 × 1 × 256 × 256 
28 × 28 × 256 
28 × 28 × 256 

Volume 15- Number 2 – 2023 (12 -18) 
 

15 



 

Conv pw / s1 

Conv dw / s2 
Conv pw / s1 

3 × 3 × 256 dw 
1 × 1 × 256 × 512 

28 × 28 × 256 
14 × 14 × 256 

5× Conv dw / s1 
Conv pw / s1 

3 × 3 × 512 dw 
1 × 1 × 512 × 512 

14 × 14 × 512 
14 × 14 × 512 

Conv dw / s2 
Conv pw / s1 

3 × 3 × 512 dw 
1 × 1 × 512 × 1024 

14 × 14 × 512 
7 × 7 × 512 

Conv dw / s2 
Conv pw / s1 

3 × 3 × 1024 dw 
1 × 1 × 1024 × 1024 

7 × 7 × 1024 
7 × 7 × 1024 

Avg Pool / s1 Pool 7 × 7 7 × 7 × 1024 
FC / s1 1024 × 1000 1 × 1 × 1024 

Softmax / s1 Classifier 1 × 1 × 1000 
 

 An example explains this process. Assume a 16x16 
CNN accelerator is available (the basic unit that we 
have designed already). As discussed above, the 
MobileNetV1 network has 32 kernels in the first layer, 
64 kernels in the second layer, and up to 1024 kernels 
in the last layers. In the first layer, the first group of 
feature maps is generated from the input image. As the 
first CNN layer has 32 kernels in this layer, the CNN 
accelerator can execute the whole network in two tries 
or steps, as shown in Fig.2. All 32 generated feature 
maps from the input image will be stored in the memory 
banks for using in the next convolution. As there are 
only 16 memory banks, in the second convolution try, 
the generated feature maps should be stored again in the 
16 memory banks but in different locations. 

In the second layer of convolution, the second group 
of feature maps should be generated from 32 generated 
feature maps in the previous layer. Because the CNN 
has 32 input kernels and 32 output kernels in this layer, 
the CNN accelerator can execute the whole convolution 
in four tries. A 32×32 convolution is supposed as four 
16x16 convolutions, as shown in Fig. 4. Therefore, it is 
executed as four consequent convolutions. Again the 
generated feature maps should be stored in the 16 
memory banks but different locations (Fig. 3 and also 
Fig. 4, 5 for next layers). 

 

Figure 2.  16x32 convolution in two consequent steps. 

 

Figure 3.  Executing 32x32 convolution in four consequent steps. 

 

Figure 4.  Executing 32x64 convolution in eight consequent steps. 

In the third layer of convolution, the third group of 
128 feature maps should be generated from 64 
generated feature maps in the previous layer. As shown 
in Fig. 6, a convolution calculation can be done in 32 
tries. In this case, the whole convolution is done by 32 
runs of CNN accelerator (the basic unit). In addition, 24 
”add” operations should be done to add partial 
convolution and convert sixteen parts into four. 

In the fourth layer of convolution, the group of 128 
feature maps should be generated from 128 generated 
feature maps. As explained in Fig. 7, convolution can 
be calculated in 64 tries. Fifty-six ”add” operations 
should be done to add partial convolutions and merge 
eight parts into four sets of feature maps.  

In the fifth layer of convolution, the group of 256 
feature maps should be generated from 128 generated 
feature maps in the previous layer. Similar to what is 
shown in Fig. 7, a convolution calculation can be done 
in 128 tries. In this case, the whole convolution is done 
by sixteen runs of the CNN accelerator. In addition, 112 
”add” operations should be done to add partial 
convolutions. 

This process continues similarly until the network 
reaches the last layer of CNN. The last layer of CNN is 
the fourteenth layer, which has 1024 feature maps and 
a 7x7 resolution of each feature map, as shown in 
Table.1.  

 The remaining three layers are average pooling, 
fully connected, and SoftMax layer. These layers are 
not computation intensive out of accelerator in CPU 
with ant major computation load. So, only the core of 
the CNN network is executed by the accelerator at high 
speed. 

 

Figure 5.  Executing 64x64 convolution in sixteen consequent 

steps. 

 

Figure 6.  Executing 64x128 convolution in sixteen consequent 

steps. 

Volume 15- Number 2 – 2023 (12 -18) 
 

16 



 

 

Figure 7.  Executing 128x128 convolution in sixty forth 

consequent steps. 

The layers between the fifth and eleventh layers are 
equal to or similar to those described in the example. 
For example, in layer ten, the 64 input and 128 output 
feature maps must be created. This issue is similar to 
Figure 5. In this layer, the number of convolutions is 32, 
and the number of additions is 24. If the number of 
kernels in the last layer reaches 256, then the last layer 
is calculated similarly to what is shown in Fig. 5, with 
different steps. Therefore, it is shown visually that this 
accelerator can partially run each layer of a big CNN 
network. 

 Usually, the size of convolutions is duplicated in 
some layers of CNNs. In rare cases where the size of 
convolutions is not multiplicand of 16, it is possible to 
calculate those convolutions by adding some zeroes to 
the end side of convolutions and fix sizes to true 
multiplicand of 16 as needed (similar to the concept of 
padding). According to what has been described earlier, 
using this accelerator in networks whose dimensions 
are more than eight times the dimensions of the 
accelerator will lead to lots of overheads and delays. 
Therefore, it is better to use 32x32 accelerators for 
networks with 256 kernels in the last layers in the above 
case. The occupancy chip area of a 32x32 accelerator 
that can produce 32 feature maps from 32 input feature 
maps is about four times more than a 16x16 accelerator. 
Therefore, a good trade-off should be established 
between the accelerator chip area and the level of 
required processing capability. 

Our proposed method enhances the performance of 
the CNN network in terms of resource utilization. This 
issue reduces the required resources (hardware 
resources), which are necessary for embedded systems. 
Moreover, loop tiling reduces memory resources. In 
other words, we need less memory in the embedded 
system for processing the CNN network by utilizing the 
loop tiling. 

VI. RESULTS 

This paper originally describes the methodology of 
partial calculation of a relatively big CNN network with 
a small CNN accelerator. Although the implementation 
is not the primary goal, a small prototype CNN 
accelerator is designed for the proof concept. This 
design is implemented on the ZedBoard for initial 
evaluation. ZedBoard is an FPGA development board 
that contains a medium size FPGA from Xilinx 
(XC7Z020). This ZYNQ FPGA has two built-in ARM 
Cortex processors. One of these processors is used as 
the main processor. The main processor is connected to 
the CNN accelerator using the built-in AXI bus in 
ZYNQ FPGAs. 

Different networks for testing the built-in 
accelerator and the loop tiling method are considered. 
These networks are MobileNetV1, MobilenetV2, fd-
MobileNet, ShuffleNet, Xception, MobileNetV1-0.5 
and MobileNetV1-0.25. These are all networks that are 
all designed for embedded and mobile processors in 
terms of network parameters, computing volume, and 
network bandwidth. 

The execution strength of the built accelerator is 
obtained as frames per second (FPS), which is shown in 
Figure 8. As can be seen, for most of the selected 
networks, an average of seventy images are processed 
in one second, which is beyond the needs of most 
hidden applications. In the meantime, only the Xception 
network runs slightly slower than the others. It is 
necessary to explain that the Xception network is 
relatively heavy with reasonable accuracy from the 
point of view of computation. This network is also 
capable of processing seventeen images per second, 
which is suitable for most embedded applications . 

As most of the previous state-of-the-art papers have 
used MobileNet, especially MobileNetV1, the results of 
MobileNetV1 are used to evaluate the proposed 
method . 

 

Figure 8.  Amount of frame rate per second (FPS) of lightweight 

CNN models on the proposed accelerator and using loop tiling. 

Using this medium-size FPGA, we show how 
compact and small our design is compared to [5] and 
[7]. Table.2 shows the initial result of the 
implementation of an accelerator designed for eight-bit 
integer data on ZedBoard in comparison with two 
recently published works [5, 7]. 

TABLE II.  RESULT OVER XC7Z020 FPGA (ZEDBOARD) 

FPGA DSP BRAM Power Clock Work 

XC7Z020 200 112/140 3.1 W 
120 

MHz 
Current 

Stratix-V 
GXA7 

256 2330/2560 19.1 W 
100 

MHz 
Ref [5] 

XC7VX690T 1027 850 / 1470 9 W 
200 

MHz 
Ref [7] 

XC7Z045 224 162/545 5.3 W 
200 

MHz 
Ref 
[16] 

 

As can be seen, the accelerator designed for the 8-
bit integer data is fully embedded in the FPGA chip and 
takes up almost 91.4% of its resources. The 
MobileNetV1 is run on this FPGA board about 70 times 
per second over a 224×224 resolution image at the 
frequency of 120MHz, which is a good execution rate 
for a small FPGA at low power of 3.1 Watt. The image 
has been selected from the ImageNet dataset and has a 

Volume 15- Number 2 – 2023 (12 -18) 
 

17 



 

resolution of 224×224. The MobileNetV1 is trained for 
remote sensing classification application with 21 
classes. 

VII. CONCLUSION 

This paper uses a new method for executing large 
convolutions over a small CNN accelerator. We select 
the MobileNetV1 CNN network as a case study. Our 
initial implementation shows that the applied method 
can effectively break up and run MobileNetV1, which 
has 1024 convolution kernels at its last layers. This 
paper shows how a large convolutional network is 
visually broken up and run partially with a lightweight 
CNN accelerator. This method is useful for low-power 
and embedded processors that cannot tolerate a huge 
CNN accelerator.  

 

REFERENCES 

 
[1] Tianyi, Liu, et al.: ‘Implementation of Training Convolutional 

Neural Networks’, arXiv:1506.01195, 2015. 

[2] Andrii O. Tarasenko, et al.: ‘Convolutional Neural Networks 
as a Model of the Visual System: Past, Present, and Future’, J. 
Cognitive neuroscience, 2020. 

[3] Asifullah Khan1, et al.: ‘A Survey of the Recent Architectures 
of Deep Convolutional Neural Networks’, Artificial 
Intelligence Review, DOI: https://doi.org/10.1007/s10462-
020-09825-6. 

[4] Min Wang, et al.: ‘Factorized Convolutional Neural 
Networks’, P. IEEE International conference on Computer 
Vision Workshops, P.545-553, 2017. 

[5] Yufei Ma, et al. ‘ALAMO: FPGA acceleration of deep learning 
algorithms with a modularized RTL compiler’, Integration, the 
VLSI Journal, 2018, ELSEVIER, pp14-23. 

[6] Andrew G. Howard, et al. ‘MobileNet: Efficient Convolutional 
Neural Networks for Mobile Vision Applications’, 
arXiv:1704.0486,2017. 

[7] Xiaocong Lian, et al. ‘High-Performance FPGA-Based CNN 
Accelerator With Block-Floating-Point Arithmetic’, IEEE 
TRANSACTIONS ON VERY LARGE SCALE 
INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 8, 
AUGUST 2019, pp.1874-1885. 

[8] Yongming Shen, et al. ‘Escher: A CNN Accelerator with 
Flexible Buffering to Minimize Off-Chip Transfer’, Annual 
IEEE Symposium on Filed-Programmable Custom Computing 
Machine FCCM, 2017, pp.93-100. 

[9] Wei Dinga, et al. ‘Designing Efficient Accelerator of 
Depthwise Separable Convolutional Neural Network on 
FPGA’, Journal of Systems Architecture, ELSEVIER 2019, 
DOI: https://doi.org/10.1016/j.sysarc.2018.12.008. 

[10] Jiang Su, et al. ‘Redundancy-reduced MobileNet Acceleration 
on Reconfigurable Logic For ImageNet Classification’, 
International Symposium on Applied Reconfigurable 
Computing, 16-28, 2018. 

[11] Yu-Hsin chen, et al. ‘Efficient Processing of Deep Neural 
Networks: A Tutorial and Survey’, pp. 2295-2329, 
Proceedings of the IEEE - Vol. 105, No. 12, December 2017. 

[12] H. Kopka and P. W. Daly, A Guide to L AT EX, 3rd ed. 
Harlow, England: Addison-Wesley, 1999. 

[13] A. Stoutchinin, et al. `Optimally Scheduling CNN 
Convolutions for Efficient Memory Access', IEEE Transaction 
on computer-aided design of integrated circuits and systems, 
Feb 2019. 

[14] H. Sharma, et al. `Bit Fusion: Bit-Level Dynamically 
Composable Architecture for Accelerating Deep Neural 
Networks', ISCA 2018. 

[15] X. Zhang, et al. “SuffleNet:An Extremly Efficient 
Convolutional Neural Network for Moblile devices”, 2017, 
arxiv:1707.01083v2. 

[16]  Y. Huang, et al. “An efficient loop tiling framework for 
convolutional neural network inference accelerators june”,  
vol.16, pp.116-123, the Institue of Engineering and 
Thechnology, IET Circuits Devices Syst,  2022. 

[17] M. Merouani, et al. "Progress Report: A Deep Learning Guided 
Exploration of Affine Unimodular Loop Transformations" 
IMPACT 2022. 

[18] R. Li, et al. "Analytical Characterization and Design Space 
Exploration for Optimization of CNNs" ASPLOS ’21, April 
19-23, 2021, Virtual, USA. 

[19] P. Darbani, N. Rohbani, H. Beitollahi, P. Lotfi-Kamran " 
RASHT: A Partially Reconfigurable Architecture for Efficient 
Implementation of CNNs" IEEE Transactions on very large 
scale integration (VLSI), Vol. 30, Nr. 7, pp. 860-868, 2022.  

 

 

 

Ali A. D. Farahani received his B.Sc. 

degree in Electronic Engineering from 

the Iran University of Science and 

Technology (IUST), Tehran, Iran, in 

1999 and his M.Sc. degree from K. N. 

Toosi University of Technology 

(KNTU) in 2001. He is currently 

working toward the Ph.D. degree at the Department of 

Computer Engineering, IUST. His research interests 

include Computer Architecture, Hardware 

Accelerators, and Reconfigurable Computing. 

Hakem Beitollahi received his B.Sc. 

degree in Computer Engineering from 

the University of Tehran, Tehran, Iran, 

in 2002, the M.Sc. degree from the 

Sharif University of Technology, 

Tehran, in 2005 and the Ph.D. degree 

from the University of Leuven, Leuven, Belgium, in 

2012. He is currently an Assistant Professor and the 

Head of the Computer Architecture Branch, School 

of Computer Engineering, Iran University of Science 

and Technology (IUST), Tehran. His research 

interests include Real-Time Systems, Reconfigurable 

Computing, and Hardware Accelerators. 

Mahmood Fathy received his B.Sc. 

degree in Electronics from the Iran 

University of Science and Technology 

(IUST), Tehran, Iran, in 1985, the M.Sc. 

degree in Computer Architecture from 

Bradford University, Bradford, U.K., in 

1987 and the Ph.D. degree in Image Processing 

Computer Architecture from The University of 

Manchester, Manchester, U.K., in 1991. He is 

currently a Full Professor with the School of Computer 

Engineering, IUST. His research interests include High 

Performance Computing (HPC), Quality of Service, 

Hardware Design and Real-Time Image Processing. 

 

Reza Berangi was an Associate 

Professor at IUS. He is currently retired. 

His main research interests are Digital 

Signal Processing, Networking, Deep 

Learning, Hardware Accelerator and 

Cloud Computing. 

 

Volume 15- Number 2 – 2023 (12 -18) 
 

18 


