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Abstract—Utilizing IoT technologies for monitoring large-scale smart facilities such as power, water and gas distribution 

networks has been the subject of many studies recently. The aim is to detect anomalous events in the network due to 

elements’ failure, bad designs, attacks or abuses of the network and alert the network operators in a timely manner. As 

the centralized cloud-based approaches are impractical in time-critical and real-time anomaly detection applications 

due to 1) high sensor-to-cloud transmission latency 2) high communication cost and 3) high energy consumption at the 

sensor nodes, the distributed anomaly detection methods based on Deep Neural Networks (DNN) have been applied in 

past studies vastly. In these methods, in order to detect anomalies in real-time, copies of the anomaly detection model 

are placed at the sensor nodes (rather than placing one at the cloud node) reducing the sensor-to-cloud transmissions 

significantly. Nevertheless, new normal samples collected at the sensor nodes still need to be transmitted to the cloud 

node at predefined intervals to re-train the distributed anomaly detection DNNs. In order to minimize these sensor-to-

cloud transmissions during the retraining process, in this paper, two well-known lossless coding algorithms: Huffman 

Coding and Arithmetic Coding were studied and it was observed that the Huffman and Arithmetic Coding were able 

to reduce the transmission traffic up to 50% and 75% respectively using two IoT benchmark datasets of pipeline 

measurements. Besides, the Huffman Coding shown to be computationally feasible on resource limited sensors and 

resulted in up to 10% saving in energy consumption on each sensor resulting in longer network longevity. Moreover, 

the experimental results showed that the auto-encoder DNN could outperform the one-class SVM in the iterative 

distributed anomaly detection method. 
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I. INTRODUCTION 

     Utilizing the IoT technologies for monitoring the 

large-scale smart city facilities such as intelligent 

transportation systems, utility distribution networks 

(power, water and gas distribution networks), waste 

collection and sewage collection networks has been the 

subject of many studies recently [1-3]. The aim is to 

detect anomalous events and incidents such as faulty 

elements, bad designs, attacks or abuses of the network 

and alert the operators in a timely manner. For 

monitoring the smart cities’ infrastructures such as 

pipelines, these facilities are equipped with IoT devices 

and wireless sensors in order to measure local metrics 

as the raw data and process and transmit them to the 

edge of the network and subsequently to the cloud for 

further analysis [2]. Unexpected and unusual events in 

the environment such as element failures, attacks or 

abuses may cause measurements that lie far from the 

normal pattern of data and are called anomalies [4]. In 

other words, anomalies are unusual observations that 

differ from the majority of the data and anomaly 

detection is the process of identifying and reporting 

anomalous patterns [2]. There are three approaches in 

anomaly detection: (1) supervised; which requires 

labelled dataset; labels are either ‘normal’ or 

‘abnormal’ (2) Unsupervised; in which labels are not 

needed and statistical methods are applied to spot 

outlying parts of data as anomalies  and (3) Semi-

supervised; where training data needs to be labelled, 

however only the normal data is used for the training 

[2]. Auto-encoder neural networks and one-class 

Support Vector Machines(SVM) are used in this 

approach [5]. Semi-supervised methods have shown 

very promising results in IoT applications and we have 

used them in this study as well. 

     With respect to the computation infrastructure, the 

anomaly detection task could be performed either at the 

cloud node (centralized architecture) or at the IoT 

sensors (distributed architecture). The former, in which 

the anomaly detection model is placed at the cloud 

node, involves high sensor-to-cloud transmission 

latency which is not acceptable particularly in time-

critical and real-time IoT applications. Moreover, due 

to continuous transmission of sensor measurements to 

the cloud over the wide area network, the cloud-based 

model incurs high communication costs. In contrast, in 

the distributed architecture, the copies of Deep Neural 

Network (DNN) anomaly detection model are placed 

at the IoT sensors, to reduce the transmission costs and 

also to achieve desirable response time in anomaly 

detection process. However, there are two important 

challenges in the distributed anomaly detection models 

that needs to be addressed: (1) Training the anomaly 

detection model with the normal data could not be done 

on the sensor nodes due to the limited computational 

capacity on sensors and (2) the initial training dataset 

is very small and limited. To address the first 

challenge, the training process is performed on the 

cloud node and the model parameters are provided to 

the sensor nodes; however as mentioned in the second 

challenge, due to limited number of normal samples at 

the beginning, this process is repeated as new normal 

samples are detected by the model copies at sensors 

[5]. In this iterative training process, the new normal 

data samples collected at the sensors are transmitted to 

the cloud node to be used for the next training round. 

Here, the third challenge arises: (3) minimizing the 

incurred cost of transmitting the normal data samples 

from sensors to the cloud node for retraining purpose. 

This challenge is addressed in this paper. It is notable 

that the distributed and iterative anomaly detection 

model explained above is superior to the cloud-based 

model as it significantly lowers the anomaly detection 

latency due to the local DNNs replicated over the IoT 

sensors. As the DNN is trained at the cloud-node and 

not at the sensors, no extra operational and 

maintenance cost is needed in the distributed model.  

Moreover this model reduces the overall sensor-to-

cloud transmission costs due to the fact that only the 

normal measurements are sent to the cloud at retraining 

intervals.         

     Two further reducing the sensor-to-cloud 

transmissions, in this paper the effect of applying two 

well-known lossless coding algorithms: Huffman 

Coding (HC) and Arithmetic Coding (AC) [6] on 

minimizing the communication traffic between sensors 

and cloud node are studied and an energy efficient 

distributed anomaly detection model is proposed. The 

contributions of this paper are summarized as follows: 

 Augmenting the previous distributed anomaly 

detection models by adding a coding module 

to achieve energy efficiency. 

 Comparing two well-known coding schemes 

based on their communication and 

computation costs in the context of IoT 

applications in processing the pipeline 

sensory measurements. 

 Analyzing the impact of deploying two 

coding-schemes on the sensors from the 

energy consumption point of view.      

 Studying the effect of two important semi-

supervised learning models: auto-encoder 

DNN and one-class SVM on the overall 

accuracy of the distributed anomaly detection 

model. 

 Conducting extensive experiments using two 

real-world IoT datasets in the area of gas 

industry. 

     The rest of this paper is organized as follows: 

section II presents the related works; the proposed 

model and coding schemes are explained in section III; 

the evaluation method, the experimental results and a 

discussion on the results are presented in section IV; 

and finally section V concludes the paper. 

II. RELATED WORKS 

     The previous studies in the area of anomaly 

detection in IoT systems are categorized into 

unsupervised, supervised and semi-supervised 

methods [2, 7]: In [8] an unsupervised and scale-able 

K Nearest Neighbor (KNN) based method for anomaly 

detection in WSN was proposed to protect the network 

from faults and attacks. In this study, to cope with the 

lazy learning problem of the conventional KNN 
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algorithms a new hyper-grid based KNN method was 

presented to be used in online anomaly detection 

process. In [9] a distributed anomaly detection 

algorithm based on isolation forests is proposed for 

WSNs. Here a global detector model is built using the 

local detectors propagated by the neighboring sensors. 

This method applies the lightweight statistical isolation 

trees to detect anomalies rather than non-linear 

powerful methods such as neural networks. In [10] the 

application of hierarchical anomaly detection in 

detecting anomalous incidents in water distribution 

networks (WDN) has been studied. First, by using an 

unsupervised ellipsoidal clustering algorithm the 

model of sensory data is created and subsequently the 

outlying clusters are detected using a distance-based 

method. The performance of the algorithms is very 

dependent on the selected window size of the 

clustering algorithm that should be chosen carefully. 

Moreover, no energy saving mechanism has been 

presented in this study.       

     With respect to the supervised anomaly detection 

methods, in [11] a supervised time-series anomaly 

detection method based on Long Short Term Memory 

(LSTM) neural network has been proposed. LSTM 

networks are a variant of Recurrent Neural Networks 

(RNN) that are very effective in predicting future 

values based on past history of the data and hence they 

are useful in anomaly detection in the time-series data 

such as Vehicular Traffic Flow data. LSTM models are 

known as effective replacement for semi-supervised 

models such as auto-encoders in detecting anomalies. 

They are trained with time-series of normal 

measurements and then are used to detect outlying 

patterns. However, energy efficient transmission of 

normal subsequences to the cloud node to be used for 

training next models still remains a challenge. In [12] 

a Federated Learning (FR) based model is proposed to 

create a neural network anomaly detection model. In 

FR, each edge node creates its own local neural 

network model representing the local patterns of data 

and then transmits the model parameters to the server 

node to be aggregated with the parameters received 

from other edge nodes in order to create a combined 

model. The newly created consolidated model then is 

transferred back to the edge nodes for the next round. 

The downside of applying FR in the IoT systems is the 

incurred computational cost of training the neural 

network on the resource-limited IoT sensors.      

     In semi-supervised anomaly detection methods, 

opposed to the supervised methods, a model is trained 

using only the normal data samples and then is used to 

spot outlying samples. Regarding the semi-supervised 

anomaly detection category, in [13] a one-class 

Support Vector Machine (SVM) is proposed to detect 

outliers. Here a hyper-ellipsoid with minimum 

effective radius is fit around the normal data. In [14] to 

attain a real-time, accurate and also lightweight 

anomaly detection mechanism in WSNs, an online 

distributed method based on ellipsoidal one-class SVM 

has been proposed. They also considered the spatial-

temporal correlations of data and keep their model 

updated to reflect the changes in the normal behavior 

of data over time. While one-class SVM is a means to 

detect anomalies, in previous studies no comparison 

has been conducted with other semi-supervised models 

such as auto-encoders. In [5] an iterative and 

distributed anomaly detection method using auto-

encoder is presented. The initial auto-encoder model is 

built at the cloud node using a small number of training 

normal data samples. This initial model then is 

transmitted to the sensor nodes to be used for anomaly 

detection in the first round. The newly detected 

anomalous and normal data at the sensor nodes then are 

transmitted back to the cloud to be added to the 

previous dataset. At the next round the cloud node re-

train the model using the new (larger) dataset and the 

above mentioned process repeats at the successive 

rounds. The advantage of this method is that the 

training overhead is not posed on the sensors and is 

done at the cloud node, however, transmitting the data 

samples from sensors to the cloud node poses high 

communication cost on the sensor nodes.  In [15] to 

cope with the noisy training data and also capturing the 

spatial-temporal correlations in the normal data a deep 

learning-based anomaly detection algorithm was 

proposed. By applying a proper regularization method 

in a deep convolutional auto-encoder model, the first 

challenge is addressed. To address the second 

challenge a combination of linear and non-linear time-

series prediction models has been applied. Although 

the model has shown promising results, it was not 

designed to be executed on a distributed computational 

infrastructure.  
     Following the previous studies in the area of semi-
supervised anomaly detection, in this paper the 
distributed iterative methods using auto-encoders 
presented previously are augmented by adding a coding 
module to the sensor side in order to reduce the 
communication cost between sensors and the cloud 
node. In addition to the energy efficiency, we also 
compared the performance of auto-encoder models 
with one-class SVM in this framework when working 
on datasets of pipeline measurements in Gas Industry. 
A comparison between previous studies is presented in 
Table 1. 

TABLE I.  COMPARATIVE STUDY OF RELATED WORKS 

Paper Approach method Objective 

main 

Differences 

with this 

study 

[8] Un-supervised 
Hyper-grid 

KNN 

Addressing 
the lazy 

learning 

problem of 

KNN 

Non-iterative 

learning 

scheme 

[9] Un-supervised Isolation Forest 

Lightweight 

statistical 
method 

No energy 

saving 
mechanism 

[10] Un-supervised 
Hyper-

ellipsoidal 

clustering 

Scale-able 

outlier 

detection 
method  

No energy 
saving 

mechanism 

[11] supervised 
LSTM neural 

networks 

measuring 

the distance 
of predicted 

values from 

the actual 
values in 

the time-

series 

No energy 
saving 

mechanism 
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[12] supervised 
Federated 

Learning 

Anomaly 

detection 

while 

keeping the 
privacy of 

IoT data 

No energy 
saving 

mechanism, 

High 
computation 

cost of 

training phase 
on sensor 

nodes 

[13] 
and 

[14] 

Semi-supervised One-class SVM 

Online, 

accurate 
and 

lightweight 

method 

Non-iterative 
learning 

scheme ,No 

comparative 
study with 

auto-encoders 

[5] Semi-supervised Auto-encoder 

Iterative 

model of 
learning 

No energy 

saving 
mechanism 

[15] Semi-supervised 

Deep 

convolutional 

auto-encoder 

model 

to cope with 

the noisy 
training 

data, 

capturing 

the spatial-

temporal 

correlations 
in the 

normal data 

Not designed 

for distributed 

computing 

 

III. ENERGY EFFICIENT DISTRIBUTED ANOMALY 

DETECTION  

In this section first, the two important coding 
schemes are explained and subsequently the enhanced 
energy efficient iterative learning framework for IoT 
environments is presented in details. 

A. Coding Schemes 

Two important lossless coding schemes namely 

Huffman Coding (HC) and Arithmetic Coding (AC) [6] 

were studied in this paper. The former creates codes for 

symbols in the text based on the symbol frequencies. 

The idea is to have shorter codes for the symbols with 

higher occurrence in the text and vice versa. The 

concept of HC is illustrated in Fig.1 left where the input 

text “test” is coded with binary “101001” using a 

particular prefix tree called Huffman Tree. The HC 

algorithm first creates the tree where the leaves of the 

tree hold the symbols and any path from the root to a 

leaf determines the code for the respective symbol. The 

tree is created such that the symbols with lower 

frequencies are placed in deeper leaves and vice versa. 

In contrast to the HC that builds the code table first and 

then replaces the symbols in the text with the respective 

codes from the code table, in AC the entire source text 

is assigned a code arrived at by a rather complicated 

process. Methods in AC vary but they all have specific 

things in common: the source text is assigned a sub-

interval from [0,1) that represents the source text. 

Afterwards, a fraction r in that sub-interval is chosen as 

the source code. Fraction r could be either decimal or 

binary. The larger the calculated sub-interval is, the 

fewer decimal places fraction r will have resulting in 

shorter code for the source text. Due to many 

multiplications of fractional numbers needed when 

coding the long source texts in AC, implementing AC 

in practice requires that a precision parameter P be 

provided to the algorithm. This precision parameter 

determines the max number of digits in the generated 

fractional code. Different implementations of AC vary 

in how to choose r and P. The concept of AC is 

illustrated in Fig. 1 right where the text “test” is coded 

with binary expansion “0.0101101”. As shown in this 

figure (step by step from top to bottom), the symbol 

frequencies are used to partition the range [0,1) and to 

assign a sub-interval to each symbol whose length is 

proportional to its frequency. Afterwards, the whole 

text is scanned symbol by symbol from left to right and 

a sub-interval in the current interval is chosen 

corresponding to the current symbol. Finally we arrive 

at the sub-interval [0.01011, 0.010111] representing the 

whole text. Note that in the final sub-interval the 

boundaries are binary fractional numbers. A 

representative number within the final sub-interval is 

chosen as the code. 

B. Proposed Model 

The proposed model is based on the iterative 

distributed anomaly detection model presented in [5] 

that works as follows: An anomaly detection model is 

trained at the cloud node with available normal dataset. 

The objective is to train the auto-encoder model to 

reconstruct the normal data samples (model of the 

normal data). Copies of this model then are distributed 

among sensor nodes. Sensor nodes apply their model to 

discriminate between normal and anomalous 

measurements over predefined intervals. New normal 

data collected at the sensor nodes are transmitted to the 

cloud node to be added to the normal dataset. The 

process repeats from step 1. We have augmented the 

abovementioned model by adding a coding module to 

be used at step 3. The main function of the coding 

module is to compress the normal data so that the 

sensor-to-cloud transmissions at step 3 are lowered as 

much as possible. By reducing the transmission 

volume, not only is the communication costs reduced 

drastically but also the energy consumption at the 

sensor nodes is saved. Two important lossless coding 

algorithms: Huffman Coding (HC) and Arithmetic 

Coding (AC) were studied in this paper from the 

compression rate and computation cost perspectives 

(the results are reported in the Evaluation section). The 

architecture of the distributed anomaly detection with 

coding module is illustrated in Fig. 2. We also studied 

the effect of replacing the auto-encoder with one-class 

SVM as the anomaly detector models.  As shown in 

Fig.2 right, the communication between sensors and the 

cloud node which involves both model parameters 

(published by the cloud node) and the normal data 

samples (published by the sensor nodes) takes place via 

a message broker over MQTT protocol which is usual 

in IoT applications.  As presented in [5] (where auto-

encoder is applied as the anomaly detector model), to 

discriminate between normal and anomalous data 

vectors at sensor s, vector x(s) is input to the auto-

encoder to obtain output vector x̂(s). Then the 

deviation rx(s) is computed: 
𝑟𝑥(s) = 𝑥(𝑠) − 𝑥(𝑠) (1) 

 

The label of x(s) is determined based on the distance 
between rx(s) and the mean of r(s) values for the normal 
data vectors: 
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𝐿𝑎𝑏𝑒𝑙𝑥(𝑠) = {
𝑁𝑜𝑟𝑚𝑎𝑙:  | 𝑟𝑥(𝑠)  −  µ|  ≤  𝑝𝜎
𝐴𝑛𝑜𝑚𝑎𝑙𝑦: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 
(2)  

 

 

 

 

 

 

 

Figure 1.  The coding schemes: (left) HC and (right) AC  

 

 

 

 

 

Figure 2.  The distributed anomaly detection Architecture 

 

Where μ and σ are the mean and mean deviation of 
r(s) values for all normal data vectors respectively and 
ρ is a constant parameter. The values of μ and σ are 
computed by the cloud node in successive intervals. 
The pseudo-code of the sensor and cloud algorithms are 
listed below in Listing 1 and 2 respectively. 
     The cloud node iteratively updates the auto-encoder 
model with newly obtained normal samples from the 
sensors. Sensors receive the updated model to be used 
for next anomaly detection step. In the case of one-class 
SVM, the hyper-sphere fitting method which is a 

special form of the hyper-ellipsoidal method has been 
applied [13][14]. 

 

Figure 3.  The sensor procedure  

t 
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e 
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t 

(0.01011, 0.010111) => Code= 0.0101101 

Huffman Code Arithmetic Code 

 

(Data1 

Data2 

… 

) 

 

 
Abnormal Data 

Vectors 

 
Normal Data 

Vectors Auto-encoder 
- one Class 

SVM 

   Cloud 

Sensor Data 

Broker(MQTT Protocol) 

Compressed 

Normal Data 

Vectors 

Samples, Model Parameters 

Samples, Model Parameters 

Coding Module Sensor 
Sensor 

Sensor 

Transmission 

over WAN 

While True: 

Obtain sensor readings x(s)  
Use auto-encoder to obtain x̂(s) 

Calculate residual r(s) = x − x̂; 
Label data vector x; 

Compress and send x(s) and r(s) to the cloud; 
Update model parameters (W, b, μ, σ) received from cloud; 
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Figure 4.  The cloud procedure 

      

     In the hyper-ellipsoidal method (the general 
problem) a hyper-ellipsoid with minimum effective 
radius is fit around the majority of data vectors centered 
at the origin. This is formulated as an optimization 
problem as follows [13]: 

Minimize:    L(R, ξi) = 𝑅2 +
1

𝑣𝑛
∑ ξi𝑛

𝑖=1  (3) 

Subject to:         𝑥𝑖 ∑ 𝑥𝑖
𝑇 ≤ 𝑅2 + ξi , ξi ≥ 0, i = 1. . n −1   

Where n is the number of sample vectors in dataset, 
xi is the ith sample vector, R is the effective radius of the 
hyper-ellipsoid, ξi  is the slack factor allowing xi to 
reside outside the hyper-ellipsoid for a given R, v is the 
regularization parameter in range (0,1) and ∑-1 is the 
inverse of the samples’ covariance matrix. By replacing 
the covariance matrix ∑ with the unit matrix, the 
problem is reduced to the hyper-sphere based scheme. 
By solving this minimization problem, the effective 
minimum value for R will be obtained for which the 
resulting hyper-ellipsoid (or hyper-sphere) covers the 
majority of samples. To decide for a given sample z, the 
distance of z from the center of hyper-ellipsoid is 
computed; if the distance is greater than R, z will be 
classified as an anomalous sample. 

IV. EVALUATION 

The objective of the evaluation has been to study the 
effect of applying HC and AC encoding algorithms in 
reducing the transmission traffic between sensors and 
the cloud node in the proposed architecture. Moreover, 
the effect of replacing the auto-encoder with one-class 
SVM as the anomaly detector model has been 
evaluated. To do the experiments a test-bed consisting 
of eight sensor nodes developed using Python 
communicating over MQTT using the Mosquitto 
broker [16] were used. To constrain the sensor node 
resources (CPU and Memory) as well as having an 
isolated runtime environment, each sensor was 
executed as a Docker [17] container. The HC and AC 
coding schemes were implemented using Numpy [18] 
and Decimal [19] libraries. The auto-encoder model is 
a fully connected neural network that uses Adam 
optimizer, Mean Squared Error Loss function 
(MSELoss) and Sigmoid activation function. For the 
ECG5000 dataset, the auto-encoder model consists of 7 
layers and 140 input-output dimensions, for Gas 
dataset, which is a smaller dataset, auto-encoder model 
has 5 layers with 16 input-output dimensions. The 
learning rate of the model in both cases has been set to 
0.0001. The one-class SVM model was implemented 
using the sklearn.svm.OneClassSVM python class [20]. 
This implementation of one-class SVM allowed us to 
make the classification either by means of the standard 
threshold or a customized threshold. To obtain the best 

accuracy we chose to use the customized threshold 
which is controlled by a percentile hyper-parameter s. 

A. DataSets 

In order to do the experiments two datasets were 
used: (1) ECG5000 dataset [21] consisting of 140 
attributes and 5000 samples collected during 20 hours 
of sensory measurements and (2) a dataset consisting 
measurements from Gas pipelines obtained from [22]. 
Both datasets contain normal and anomalous samples. 
The normal samples were used to train the auto-encoder 
or one-class SVM models.   

B. Results 

 As explained earlier, the distributed anomaly 
detection model works iteratively and in each iteration, 
sensors perform the anomaly detection process using 
the model obtained from the previous iteration from the 
cloud node. Afterwards, the sensors apply their current 
model to discriminate between normal and abnormal 
data and transmit the normal data to the cloud node for 
the next iteration training. The cloud node adds the new 
detected normal samples (by the sensor nodes) to its 
training dataset. However due to the fact that the 
accuracy of the detection is not perfect at sensors, 
particularly at the initial iterations, there are always 
some anomalous samples labeled as normal in this 
training dataset. Initially 2% of the normal samples are 
used to train the first model. This initial model then is 
re-trained gradually with more samples form the sensor 
nodes. Over the successive intervals, at each interval 
4% of the data (normal and anomaly) are fed into the 
models at sensors to detect anomalies and hence the size 
of the cloud training dataset over the iterations is 
increased. In order to compare the accuracy of the auto-
encoder and the one-class SVM, first we executed each 
model several times with different threshold values: p 
for the auto-encoder and s for the one-class SVM as 
explained in section III. The threshold value that 
resulted in the highest average F1-Score over iterations 
for each model (one-class SVM or auto-encoder) and 
each dataset was selected for further 
comparisons(s=72%,p=0.9). Here, F1-score is the 
average of Normal and Anomaly classes F1-scores. The 
comparison of average F1-score of auto-encoder and 
one-class SVM in two datasets over successive 
iterations is presented in Fig.3. It was observed that for 
the larger dataset (ECG5000) the auto-encoder model 
obviously outperformed the one-class SVM. In contrast 
to the deep neural network auto-encoder, the one-class 
SVM was unable to learn the complex patterns of 
normal data samples in a large dataset like ECG5000. 
Moreover, not only could not the one-class SVM 
outperform the auto-encoder in the large dataset, but 
also its trend of F1-score values over successive 
iterations was not increasing opposed to the auto-
encoder model(in both datasets). The failure of one-
class SVM in reaching higher detection accuracy as the 
number of training samples increase in the cloud, makes 
this model an improper choice for the iterative learning 
framework explained in this paper where few normal 
samples are available at early iterations. In the Gas 
dataset, the F1-score values of the one-class SVM is 
higher, however the trend is still not increasing. This 
deficiency of the one-class SVM in gradual anomaly 
detection is observed in Fig.4 where the ratios of 

While True: 

Receive x(s) from all sensor nodes; 

Store x(s) in the training dataset; 

If all sensor nodes data are received: 
Retrain auto-encoder with the updated training dataset; 

Recalculate μ, σ; 

Send updated parameters (W, b, μ, σ) to all sensors; 
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collected normal samples in the cloud node over 
iterations are depicted for the Gas dataset. As expected, 
this ratio had an obvious increasing trend when using 
the auto-encoder model; whereas the trend for the one-
class SVM is not increasing and even it is the reverse. 
Regarding the reduction in the transmission traffic, the 
number of published characters over MQTT was 
compared for three methods namely, HC, AC and the 
baseline method and the results are shown in Fig. 5. 

 

 
Figure 5.  The F1-Score (Average of Normal and Anomaly 

classes) of auto-encoder and SVM models in two datasets. 

 

 
Figure 6.  The percentage of normal data samples at the cloud 

node over successive iterations: auto-encoder (top) and one-class 

SVM(bottom). 

The compression rate is also shown in Fig. 6. The 
AC encoding method outperformed the HC and the 
baseline algorithms in reducing the transmission traffic 
between sensor nodes and the cloud node and it showed 

a higher compression rate when applying on the sensory 
measurements in both datasets. As the frequency of 
symbols in the transmitted text is almost uniform in 
successive intervals, the compression rate of HC was 
steady as shown in Fig. 6. 

 

 
 

Figure 7.  The number of published characters in successive 

intervals for two coding schemes in two datasets 

 

 

 
Figure 8.  The compression rate in successive intervals for two 

coding schemes in two datasets 

In order to compare the computation cost of AC and 
HC coding algorithms when used on sensors, they were 
executed within resource-limited containers for 
different input lengths. The results are shown in Fig. 7-
top. As shown in this figure, the AC scheme had much 
higher computation cost in terms of the compression 
time due to its more complex algorithm as explained in 
section III. In contrast, the HC scheme scaled very well 
by increasing the input text length when working on the 
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sensory data. To compare the total energy consumption 
of the baseline and HC methods, the Cooja [23] 
simulator was used. Sensors of type “sky mote” were 
used to collect the energy consumption during the 
simulation time. The results are shown in Fig. 7-bottom. 
Due to limitations of the Cooja simulator implementing 
the AC method was not possible. Although we already 
knew that the computation cost of AC method is much 
higher than HC (see Fig. 7-top) and AC is not a proper 
coding scheme to be used on resource-limited sensors. 
Hence only the HC and baseline schemes were 
compared. As shown in this figure, by using the HC 
method, sensors could save energy compared to the 
baseline method due to much lower data transmission 
volume and little computation overhead posed by HC 
scheme. The amount of saving in energy rises for longer 
sequences of sensory measurements. 

 

 
Figure 9.  The comparison of: (top) the computation cost of the 

encoding schemes and (bottom) HC coding scheme and the 
Baseline methods in terms of the total energy consumption in 

sensors. 

C. Discussion 

Due to the larger training dataset at the cloud node 

in later iterations, the auto-encoder model is trained 

with more normal samples and hence not only does the 

accuracy of the model increase over time but also the 

proportion of normal samples at the cloud dataset 

increases due to the enhanced ability of the model in 

discriminating normal and anomalies. However this 

behavior was not observed when using the one-class 

SVM. The accuracy of one-class SVM was not rising 

with more samples as it seems that the hyper-sphere 

which is fit around the majority of samples remains the 

same in successive iterations even if new patterns of 

normal data emerge. This deficiency of the one-class 

SVM makes it improper choice for iterative learning 

frameworks. Moreover due to the fact that deep neural 

network auto-encoder model takes advantage of non-

linearity and more complex structure compared to the 

one-class SVM it could outperform the one-class SVM 

in the larger dataset. It was observed (see Fig. 5 and Fig. 

6) that the AC coding method outperformed the HC and 

the baseline algorithms in reducing the transmission 

traffic between sensor nodes and the cloud node due to 

its more complex coding algorithm. Despite the higher 

compression rate of the AC method, it showed poor 

performance in terms of execution time as shown in Fig. 

7-left due to its higher algorithm time complexity 

compared to the HC coding when used on resource-

constrained sensors. By using the HC method on 

sensors, not only could it reduce the communication 

cost up to 50% but also it caused saving in the sensor 

consumed energy (as shown in Fig. 7-right) due to less 

utilization of the sensor communication interface. 

V. CONCLUSIONS 

As the centralized cloud-based approaches are 

impractical in time-critical anomaly detection IoT 

applications due to large sensor-to-cloud transmission 

latencies, high communication costs and high energy 

consumption at the sensor nodes, the distributed 

anomaly detection methods based on DNNs are used 

as a replacement. In this paper the effectiveness of 

applying two well-known lossless coding algorithms, 

namely Huffman Coding (HC) and Arithmetic Coding 

(AC) in data transmission over IoT infrastructures was 

studied within the distributed and iterative anomaly 

detection framework. By using auto-encoder DNNs on 

two standard benchmarks, the experimental results 

showed that HC coding scheme not only reduces the 

size of published messaged up to 50% but also poses 

negligible computation cost on the sensors and hence 

could result in up to 10% energy saving when 

implemented on sensors compared to the baseline 

method. By replacing the auto-encoder model with one-

class SVM in the iterative framework, the training 

process in the cloud was faster but a drop in the 

prediction F1-score particularly in larger datasets was 

observed. Moreover the one-class SVM was unable to 

learn more from samples collected in later iterations. As 

the future work, we aim to study the energy-

effectiveness and accuracy of applying the federated 

learning in place of the centralized learning model over 

the Edge computing infrastructure. 
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