
Energy Efficient Distributed Anomaly

Detection using Semi-Supervised Models in

IoT

Mostafa Shabani

Department of Computer Engineering and

Information Technology

Shiraz University of Technology

Shiraz, Iran

mostafashabanigh@gmail.com

Omid Bushehrian*

Department of Computer Engineering and

Information Technology

Shiraz University of Technology

Shiraz, Iran

bushehrian@sutech.ac.ir

Received: 10 August 2023 – Revised: 16 October February 2023 - Accepted: 25 December 2023

Abstract—Utilizing IoT technologies for monitoring large-scale smart facilities such as power, water and gas distribution

networks has been the subject of many studies recently. The aim is to detect anomalous events in the network due to

elements’ failure, bad designs, attacks or abuses of the network and alert the network operators in a timely manner. As

the centralized cloud-based approaches are impractical in time-critical and real-time anomaly detection applications

due to 1) high sensor-to-cloud transmission latency 2) high communication cost and 3) high energy consumption at the

sensor nodes, the distributed anomaly detection methods based on Deep Neural Networks (DNN) have been applied in

past studies vastly. In these methods, in order to detect anomalies in real-time, copies of the anomaly detection model

are placed at the sensor nodes (rather than placing one at the cloud node) reducing the sensor-to-cloud transmissions

significantly. Nevertheless, new normal samples collected at the sensor nodes still need to be transmitted to the cloud

node at predefined intervals to re-train the distributed anomaly detection DNNs. In order to minimize these sensor-to-

cloud transmissions during the retraining process, in this paper, two well-known lossless coding algorithms: Huffman

Coding and Arithmetic Coding were studied and it was observed that the Huffman and Arithmetic Coding were able

to reduce the transmission traffic up to 50% and 75% respectively using two IoT benchmark datasets of pipeline

measurements. Besides, the Huffman Coding shown to be computationally feasible on resource limited sensors and

resulted in up to 10% saving in energy consumption on each sensor resulting in longer network longevity. Moreover,

the experimental results showed that the auto-encoder DNN could outperform the one-class SVM in the iterative

distributed anomaly detection method.

Keyword: distributed anomaly detection, auto-encoder, SVM, coding algorithm, IoT.

Article type: Research Article

© The Author(s).

Publisher: ICT Research Institute

* Corresponding Author

https://orcid.org/0009-0002-7244-2388
https://orcid.org/0000-0001-9912-4326

I. INTRODUCTION

 Utilizing the IoT technologies for monitoring the

large-scale smart city facilities such as intelligent

transportation systems, utility distribution networks

(power, water and gas distribution networks), waste

collection and sewage collection networks has been the

subject of many studies recently [1-3]. The aim is to

detect anomalous events and incidents such as faulty

elements, bad designs, attacks or abuses of the network

and alert the operators in a timely manner. For

monitoring the smart cities’ infrastructures such as

pipelines, these facilities are equipped with IoT devices

and wireless sensors in order to measure local metrics

as the raw data and process and transmit them to the

edge of the network and subsequently to the cloud for

further analysis [2]. Unexpected and unusual events in

the environment such as element failures, attacks or

abuses may cause measurements that lie far from the

normal pattern of data and are called anomalies [4]. In

other words, anomalies are unusual observations that

differ from the majority of the data and anomaly

detection is the process of identifying and reporting

anomalous patterns [2]. There are three approaches in

anomaly detection: (1) supervised; which requires

labelled dataset; labels are either ‘normal’ or

‘abnormal’ (2) Unsupervised; in which labels are not

needed and statistical methods are applied to spot

outlying parts of data as anomalies and (3) Semi-

supervised; where training data needs to be labelled,

however only the normal data is used for the training

[2]. Auto-encoder neural networks and one-class

Support Vector Machines(SVM) are used in this

approach [5]. Semi-supervised methods have shown

very promising results in IoT applications and we have

used them in this study as well.

 With respect to the computation infrastructure, the

anomaly detection task could be performed either at the

cloud node (centralized architecture) or at the IoT

sensors (distributed architecture). The former, in which

the anomaly detection model is placed at the cloud

node, involves high sensor-to-cloud transmission

latency which is not acceptable particularly in time-

critical and real-time IoT applications. Moreover, due

to continuous transmission of sensor measurements to

the cloud over the wide area network, the cloud-based

model incurs high communication costs. In contrast, in

the distributed architecture, the copies of Deep Neural

Network (DNN) anomaly detection model are placed

at the IoT sensors, to reduce the transmission costs and

also to achieve desirable response time in anomaly

detection process. However, there are two important

challenges in the distributed anomaly detection models

that needs to be addressed: (1) Training the anomaly

detection model with the normal data could not be done

on the sensor nodes due to the limited computational

capacity on sensors and (2) the initial training dataset

is very small and limited. To address the first

challenge, the training process is performed on the

cloud node and the model parameters are provided to

the sensor nodes; however as mentioned in the second

challenge, due to limited number of normal samples at

the beginning, this process is repeated as new normal

samples are detected by the model copies at sensors

[5]. In this iterative training process, the new normal

data samples collected at the sensors are transmitted to

the cloud node to be used for the next training round.

Here, the third challenge arises: (3) minimizing the

incurred cost of transmitting the normal data samples

from sensors to the cloud node for retraining purpose.

This challenge is addressed in this paper. It is notable

that the distributed and iterative anomaly detection

model explained above is superior to the cloud-based

model as it significantly lowers the anomaly detection

latency due to the local DNNs replicated over the IoT

sensors. As the DNN is trained at the cloud-node and

not at the sensors, no extra operational and

maintenance cost is needed in the distributed model.

Moreover this model reduces the overall sensor-to-

cloud transmission costs due to the fact that only the

normal measurements are sent to the cloud at retraining

intervals.

 Two further reducing the sensor-to-cloud

transmissions, in this paper the effect of applying two

well-known lossless coding algorithms: Huffman

Coding (HC) and Arithmetic Coding (AC) [6] on

minimizing the communication traffic between sensors

and cloud node are studied and an energy efficient

distributed anomaly detection model is proposed. The

contributions of this paper are summarized as follows:

 Augmenting the previous distributed anomaly

detection models by adding a coding module

to achieve energy efficiency.

 Comparing two well-known coding schemes

based on their communication and

computation costs in the context of IoT

applications in processing the pipeline

sensory measurements.

 Analyzing the impact of deploying two

coding-schemes on the sensors from the

energy consumption point of view.

 Studying the effect of two important semi-

supervised learning models: auto-encoder

DNN and one-class SVM on the overall

accuracy of the distributed anomaly detection

model.

 Conducting extensive experiments using two

real-world IoT datasets in the area of gas

industry.

 The rest of this paper is organized as follows:

section II presents the related works; the proposed

model and coding schemes are explained in section III;

the evaluation method, the experimental results and a

discussion on the results are presented in section IV;

and finally section V concludes the paper.

II. RELATED WORKS

 The previous studies in the area of anomaly

detection in IoT systems are categorized into

unsupervised, supervised and semi-supervised

methods [2, 7]: In [8] an unsupervised and scale-able

K Nearest Neighbor (KNN) based method for anomaly

detection in WSN was proposed to protect the network

from faults and attacks. In this study, to cope with the

lazy learning problem of the conventional KNN

Volume 16- Number 1 – 2024 (11 -19)

12

algorithms a new hyper-grid based KNN method was

presented to be used in online anomaly detection

process. In [9] a distributed anomaly detection

algorithm based on isolation forests is proposed for

WSNs. Here a global detector model is built using the

local detectors propagated by the neighboring sensors.

This method applies the lightweight statistical isolation

trees to detect anomalies rather than non-linear

powerful methods such as neural networks. In [10] the

application of hierarchical anomaly detection in

detecting anomalous incidents in water distribution

networks (WDN) has been studied. First, by using an

unsupervised ellipsoidal clustering algorithm the

model of sensory data is created and subsequently the

outlying clusters are detected using a distance-based

method. The performance of the algorithms is very

dependent on the selected window size of the

clustering algorithm that should be chosen carefully.

Moreover, no energy saving mechanism has been

presented in this study.

 With respect to the supervised anomaly detection

methods, in [11] a supervised time-series anomaly

detection method based on Long Short Term Memory

(LSTM) neural network has been proposed. LSTM

networks are a variant of Recurrent Neural Networks

(RNN) that are very effective in predicting future

values based on past history of the data and hence they

are useful in anomaly detection in the time-series data

such as Vehicular Traffic Flow data. LSTM models are

known as effective replacement for semi-supervised

models such as auto-encoders in detecting anomalies.

They are trained with time-series of normal

measurements and then are used to detect outlying

patterns. However, energy efficient transmission of

normal subsequences to the cloud node to be used for

training next models still remains a challenge. In [12]

a Federated Learning (FR) based model is proposed to

create a neural network anomaly detection model. In

FR, each edge node creates its own local neural

network model representing the local patterns of data

and then transmits the model parameters to the server

node to be aggregated with the parameters received

from other edge nodes in order to create a combined

model. The newly created consolidated model then is

transferred back to the edge nodes for the next round.

The downside of applying FR in the IoT systems is the

incurred computational cost of training the neural

network on the resource-limited IoT sensors.

 In semi-supervised anomaly detection methods,

opposed to the supervised methods, a model is trained

using only the normal data samples and then is used to

spot outlying samples. Regarding the semi-supervised

anomaly detection category, in [13] a one-class

Support Vector Machine (SVM) is proposed to detect

outliers. Here a hyper-ellipsoid with minimum

effective radius is fit around the normal data. In [14] to

attain a real-time, accurate and also lightweight

anomaly detection mechanism in WSNs, an online

distributed method based on ellipsoidal one-class SVM

has been proposed. They also considered the spatial-

temporal correlations of data and keep their model

updated to reflect the changes in the normal behavior

of data over time. While one-class SVM is a means to

detect anomalies, in previous studies no comparison

has been conducted with other semi-supervised models

such as auto-encoders. In [5] an iterative and

distributed anomaly detection method using auto-

encoder is presented. The initial auto-encoder model is

built at the cloud node using a small number of training

normal data samples. This initial model then is

transmitted to the sensor nodes to be used for anomaly

detection in the first round. The newly detected

anomalous and normal data at the sensor nodes then are

transmitted back to the cloud to be added to the

previous dataset. At the next round the cloud node re-

train the model using the new (larger) dataset and the

above mentioned process repeats at the successive

rounds. The advantage of this method is that the

training overhead is not posed on the sensors and is

done at the cloud node, however, transmitting the data

samples from sensors to the cloud node poses high

communication cost on the sensor nodes. In [15] to

cope with the noisy training data and also capturing the

spatial-temporal correlations in the normal data a deep

learning-based anomaly detection algorithm was

proposed. By applying a proper regularization method

in a deep convolutional auto-encoder model, the first

challenge is addressed. To address the second

challenge a combination of linear and non-linear time-

series prediction models has been applied. Although

the model has shown promising results, it was not

designed to be executed on a distributed computational

infrastructure.
 Following the previous studies in the area of semi-
supervised anomaly detection, in this paper the
distributed iterative methods using auto-encoders
presented previously are augmented by adding a coding
module to the sensor side in order to reduce the
communication cost between sensors and the cloud
node. In addition to the energy efficiency, we also
compared the performance of auto-encoder models
with one-class SVM in this framework when working
on datasets of pipeline measurements in Gas Industry.
A comparison between previous studies is presented in
Table 1.

TABLE I. COMPARATIVE STUDY OF RELATED WORKS

Paper Approach method Objective

main

Differences

with this

study

[8] Un-supervised
Hyper-grid

KNN

Addressing
the lazy

learning

problem of

KNN

Non-iterative

learning

scheme

[9] Un-supervised Isolation Forest

Lightweight

statistical
method

No energy

saving
mechanism

[10] Un-supervised
Hyper-

ellipsoidal

clustering

Scale-able

outlier

detection
method

No energy
saving

mechanism

[11] supervised
LSTM neural

networks

measuring

the distance
of predicted

values from

the actual
values in

the time-

series

No energy
saving

mechanism

Volume 16- Number 1 – 2024 (11 -19)

13

[12] supervised
Federated

Learning

Anomaly

detection

while

keeping the
privacy of

IoT data

No energy
saving

mechanism,

High
computation

cost of

training phase
on sensor

nodes

[13]
and

[14]

Semi-supervised One-class SVM

Online,

accurate
and

lightweight

method

Non-iterative
learning

scheme ,No

comparative
study with

auto-encoders

[5] Semi-supervised Auto-encoder

Iterative

model of
learning

No energy

saving
mechanism

[15] Semi-supervised

Deep

convolutional

auto-encoder

model

to cope with

the noisy
training

data,

capturing

the spatial-

temporal

correlations
in the

normal data

Not designed

for distributed

computing

III. ENERGY EFFICIENT DISTRIBUTED ANOMALY

DETECTION

In this section first, the two important coding
schemes are explained and subsequently the enhanced
energy efficient iterative learning framework for IoT
environments is presented in details.

A. Coding Schemes

Two important lossless coding schemes namely

Huffman Coding (HC) and Arithmetic Coding (AC) [6]

were studied in this paper. The former creates codes for

symbols in the text based on the symbol frequencies.

The idea is to have shorter codes for the symbols with

higher occurrence in the text and vice versa. The

concept of HC is illustrated in Fig.1 left where the input

text “test” is coded with binary “101001” using a

particular prefix tree called Huffman Tree. The HC

algorithm first creates the tree where the leaves of the

tree hold the symbols and any path from the root to a

leaf determines the code for the respective symbol. The

tree is created such that the symbols with lower

frequencies are placed in deeper leaves and vice versa.

In contrast to the HC that builds the code table first and

then replaces the symbols in the text with the respective

codes from the code table, in AC the entire source text

is assigned a code arrived at by a rather complicated

process. Methods in AC vary but they all have specific

things in common: the source text is assigned a sub-

interval from [0,1) that represents the source text.

Afterwards, a fraction r in that sub-interval is chosen as

the source code. Fraction r could be either decimal or

binary. The larger the calculated sub-interval is, the

fewer decimal places fraction r will have resulting in

shorter code for the source text. Due to many

multiplications of fractional numbers needed when

coding the long source texts in AC, implementing AC

in practice requires that a precision parameter P be

provided to the algorithm. This precision parameter

determines the max number of digits in the generated

fractional code. Different implementations of AC vary

in how to choose r and P. The concept of AC is

illustrated in Fig. 1 right where the text “test” is coded

with binary expansion “0.0101101”. As shown in this

figure (step by step from top to bottom), the symbol

frequencies are used to partition the range [0,1) and to

assign a sub-interval to each symbol whose length is

proportional to its frequency. Afterwards, the whole

text is scanned symbol by symbol from left to right and

a sub-interval in the current interval is chosen

corresponding to the current symbol. Finally we arrive

at the sub-interval [0.01011, 0.010111] representing the

whole text. Note that in the final sub-interval the

boundaries are binary fractional numbers. A

representative number within the final sub-interval is

chosen as the code.

B. Proposed Model

The proposed model is based on the iterative

distributed anomaly detection model presented in [5]

that works as follows: An anomaly detection model is

trained at the cloud node with available normal dataset.

The objective is to train the auto-encoder model to

reconstruct the normal data samples (model of the

normal data). Copies of this model then are distributed

among sensor nodes. Sensor nodes apply their model to

discriminate between normal and anomalous

measurements over predefined intervals. New normal

data collected at the sensor nodes are transmitted to the

cloud node to be added to the normal dataset. The

process repeats from step 1. We have augmented the

abovementioned model by adding a coding module to

be used at step 3. The main function of the coding

module is to compress the normal data so that the

sensor-to-cloud transmissions at step 3 are lowered as

much as possible. By reducing the transmission

volume, not only is the communication costs reduced

drastically but also the energy consumption at the

sensor nodes is saved. Two important lossless coding

algorithms: Huffman Coding (HC) and Arithmetic

Coding (AC) were studied in this paper from the

compression rate and computation cost perspectives

(the results are reported in the Evaluation section). The

architecture of the distributed anomaly detection with

coding module is illustrated in Fig. 2. We also studied

the effect of replacing the auto-encoder with one-class

SVM as the anomaly detector models. As shown in

Fig.2 right, the communication between sensors and the

cloud node which involves both model parameters

(published by the cloud node) and the normal data

samples (published by the sensor nodes) takes place via

a message broker over MQTT protocol which is usual

in IoT applications. As presented in [5] (where auto-

encoder is applied as the anomaly detector model), to

discriminate between normal and anomalous data

vectors at sensor s, vector x(s) is input to the auto-

encoder to obtain output vector x̂(s). Then the

deviation rx(s) is computed:
𝑟𝑥(s) = 𝑥(𝑠) − 𝑥(𝑠) (1)

The label of x(s) is determined based on the distance
between rx(s) and the mean of r(s) values for the normal
data vectors:

Volume 16- Number 1 – 2024 (11 -19)

14

𝐿𝑎𝑏𝑒𝑙𝑥(𝑠) = {
𝑁𝑜𝑟𝑚𝑎𝑙: | 𝑟𝑥(𝑠) − µ| ≤ 𝑝𝜎
𝐴𝑛𝑜𝑚𝑎𝑙𝑦: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

Figure 1. The coding schemes: (left) HC and (right) AC

Figure 2. The distributed anomaly detection Architecture

Where μ and σ are the mean and mean deviation of
r(s) values for all normal data vectors respectively and
ρ is a constant parameter. The values of μ and σ are
computed by the cloud node in successive intervals.
The pseudo-code of the sensor and cloud algorithms are
listed below in Listing 1 and 2 respectively.
 The cloud node iteratively updates the auto-encoder
model with newly obtained normal samples from the
sensors. Sensors receive the updated model to be used
for next anomaly detection step. In the case of one-class
SVM, the hyper-sphere fitting method which is a

special form of the hyper-ellipsoidal method has been
applied [13][14].

Figure 3. The sensor procedure

t

1

e

01
s

00

Code=101001

Text: test

Symbol Frequency: t:50%, e:25%, s:25%

t e s
0 1

0 0.1

0.01 0.011

0.01011 0.011

0.1

0.01 0.011

0.01011

0.010111

e

s

t

(0.01011, 0.010111) => Code= 0.0101101

Huffman Code Arithmetic Code

(Data1

Data2

…

)

Abnormal Data

Vectors

Normal Data

Vectors Auto-encoder
- one Class

SVM

 Cloud

Sensor Data

Broker(MQTT Protocol)

Compressed

Normal Data

Vectors

Samples, Model Parameters

Samples, Model Parameters

Coding Module Sensor
Sensor

Sensor

Transmission

over WAN

While True:

Obtain sensor readings x(s)
Use auto-encoder to obtain x̂(s)

Calculate residual r(s) = x − x̂;
Label data vector x;

Compress and send x(s) and r(s) to the cloud;
Update model parameters (W, b, μ, σ) received from cloud;

Volume 16- Number 1 – 2024 (11 -19)

15

Figure 4. The cloud procedure

 In the hyper-ellipsoidal method (the general
problem) a hyper-ellipsoid with minimum effective
radius is fit around the majority of data vectors centered
at the origin. This is formulated as an optimization
problem as follows [13]:

Minimize: L(R, ξi) = 𝑅2 +
1

𝑣𝑛
∑ ξi𝑛

𝑖=1 (3)

Subject to: 𝑥𝑖 ∑ 𝑥𝑖
𝑇 ≤ 𝑅2 + ξi , ξi ≥ 0, i = 1. . n −1

Where n is the number of sample vectors in dataset,
xi is the ith sample vector, R is the effective radius of the
hyper-ellipsoid, ξi is the slack factor allowing xi to
reside outside the hyper-ellipsoid for a given R, v is the
regularization parameter in range (0,1) and ∑-1 is the
inverse of the samples’ covariance matrix. By replacing
the covariance matrix ∑ with the unit matrix, the
problem is reduced to the hyper-sphere based scheme.
By solving this minimization problem, the effective
minimum value for R will be obtained for which the
resulting hyper-ellipsoid (or hyper-sphere) covers the
majority of samples. To decide for a given sample z, the
distance of z from the center of hyper-ellipsoid is
computed; if the distance is greater than R, z will be
classified as an anomalous sample.

IV. EVALUATION

The objective of the evaluation has been to study the
effect of applying HC and AC encoding algorithms in
reducing the transmission traffic between sensors and
the cloud node in the proposed architecture. Moreover,
the effect of replacing the auto-encoder with one-class
SVM as the anomaly detector model has been
evaluated. To do the experiments a test-bed consisting
of eight sensor nodes developed using Python
communicating over MQTT using the Mosquitto
broker [16] were used. To constrain the sensor node
resources (CPU and Memory) as well as having an
isolated runtime environment, each sensor was
executed as a Docker [17] container. The HC and AC
coding schemes were implemented using Numpy [18]
and Decimal [19] libraries. The auto-encoder model is
a fully connected neural network that uses Adam
optimizer, Mean Squared Error Loss function
(MSELoss) and Sigmoid activation function. For the
ECG5000 dataset, the auto-encoder model consists of 7
layers and 140 input-output dimensions, for Gas
dataset, which is a smaller dataset, auto-encoder model
has 5 layers with 16 input-output dimensions. The
learning rate of the model in both cases has been set to
0.0001. The one-class SVM model was implemented
using the sklearn.svm.OneClassSVM python class [20].
This implementation of one-class SVM allowed us to
make the classification either by means of the standard
threshold or a customized threshold. To obtain the best

accuracy we chose to use the customized threshold
which is controlled by a percentile hyper-parameter s.

A. DataSets

In order to do the experiments two datasets were
used: (1) ECG5000 dataset [21] consisting of 140
attributes and 5000 samples collected during 20 hours
of sensory measurements and (2) a dataset consisting
measurements from Gas pipelines obtained from [22].
Both datasets contain normal and anomalous samples.
The normal samples were used to train the auto-encoder
or one-class SVM models.

B. Results

 As explained earlier, the distributed anomaly
detection model works iteratively and in each iteration,
sensors perform the anomaly detection process using
the model obtained from the previous iteration from the
cloud node. Afterwards, the sensors apply their current
model to discriminate between normal and abnormal
data and transmit the normal data to the cloud node for
the next iteration training. The cloud node adds the new
detected normal samples (by the sensor nodes) to its
training dataset. However due to the fact that the
accuracy of the detection is not perfect at sensors,
particularly at the initial iterations, there are always
some anomalous samples labeled as normal in this
training dataset. Initially 2% of the normal samples are
used to train the first model. This initial model then is
re-trained gradually with more samples form the sensor
nodes. Over the successive intervals, at each interval
4% of the data (normal and anomaly) are fed into the
models at sensors to detect anomalies and hence the size
of the cloud training dataset over the iterations is
increased. In order to compare the accuracy of the auto-
encoder and the one-class SVM, first we executed each
model several times with different threshold values: p
for the auto-encoder and s for the one-class SVM as
explained in section III. The threshold value that
resulted in the highest average F1-Score over iterations
for each model (one-class SVM or auto-encoder) and
each dataset was selected for further
comparisons(s=72%,p=0.9). Here, F1-score is the
average of Normal and Anomaly classes F1-scores. The
comparison of average F1-score of auto-encoder and
one-class SVM in two datasets over successive
iterations is presented in Fig.3. It was observed that for
the larger dataset (ECG5000) the auto-encoder model
obviously outperformed the one-class SVM. In contrast
to the deep neural network auto-encoder, the one-class
SVM was unable to learn the complex patterns of
normal data samples in a large dataset like ECG5000.
Moreover, not only could not the one-class SVM
outperform the auto-encoder in the large dataset, but
also its trend of F1-score values over successive
iterations was not increasing opposed to the auto-
encoder model(in both datasets). The failure of one-
class SVM in reaching higher detection accuracy as the
number of training samples increase in the cloud, makes
this model an improper choice for the iterative learning
framework explained in this paper where few normal
samples are available at early iterations. In the Gas
dataset, the F1-score values of the one-class SVM is
higher, however the trend is still not increasing. This
deficiency of the one-class SVM in gradual anomaly
detection is observed in Fig.4 where the ratios of

While True:

Receive x(s) from all sensor nodes;

Store x(s) in the training dataset;

If all sensor nodes data are received:
Retrain auto-encoder with the updated training dataset;

Recalculate μ, σ;

Send updated parameters (W, b, μ, σ) to all sensors;

Volume 16- Number 1 – 2024 (11 -19)

16

collected normal samples in the cloud node over
iterations are depicted for the Gas dataset. As expected,
this ratio had an obvious increasing trend when using
the auto-encoder model; whereas the trend for the one-
class SVM is not increasing and even it is the reverse.
Regarding the reduction in the transmission traffic, the
number of published characters over MQTT was
compared for three methods namely, HC, AC and the
baseline method and the results are shown in Fig. 5.

Figure 5. The F1-Score (Average of Normal and Anomaly

classes) of auto-encoder and SVM models in two datasets.

Figure 6. The percentage of normal data samples at the cloud

node over successive iterations: auto-encoder (top) and one-class

SVM(bottom).

The compression rate is also shown in Fig. 6. The
AC encoding method outperformed the HC and the
baseline algorithms in reducing the transmission traffic
between sensor nodes and the cloud node and it showed

a higher compression rate when applying on the sensory
measurements in both datasets. As the frequency of
symbols in the transmitted text is almost uniform in
successive intervals, the compression rate of HC was
steady as shown in Fig. 6.

Figure 7. The number of published characters in successive

intervals for two coding schemes in two datasets

Figure 8. The compression rate in successive intervals for two

coding schemes in two datasets

In order to compare the computation cost of AC and
HC coding algorithms when used on sensors, they were
executed within resource-limited containers for
different input lengths. The results are shown in Fig. 7-
top. As shown in this figure, the AC scheme had much
higher computation cost in terms of the compression
time due to its more complex algorithm as explained in
section III. In contrast, the HC scheme scaled very well
by increasing the input text length when working on the

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F
1

-S
co

re
(%

)

Iteration

ECG5000 Dataset

SVM AE

30

50

70

90

110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F
1

-S
co

re
(%

)

Iteration

Gas Dataset

SVM AE

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S
am

p
le

 r
at

io

Iteration

Gas Dataset: AE

Normal Anomaly

0%

50%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S
am

p
le

 r
at

io

Iteration

Gas Dataset: SVM

Normal Anomaly

0

4000

8000

12000

16000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d
at

a
le

n
g
h

t

Iteration

ECG5000 Dataset

___AC ___HC ___Baseline

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d
at

a
le

n
g
th

Iteration

Gas Dataset

___AC ___HC ___Baseline

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

co
m

p
re

ss
io

n
 r

at
e

Iteration

ECG5000 Dataset

___AC ___HC ___Baseline

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

co
m

p
re

ss
io

n
 r

at
e

Iteration

Gas Dataset

___AC ___HC ___Baseline

Volume 16- Number 1 – 2024 (11 -19)

17

sensory data. To compare the total energy consumption
of the baseline and HC methods, the Cooja [23]
simulator was used. Sensors of type “sky mote” were
used to collect the energy consumption during the
simulation time. The results are shown in Fig. 7-bottom.
Due to limitations of the Cooja simulator implementing
the AC method was not possible. Although we already
knew that the computation cost of AC method is much
higher than HC (see Fig. 7-top) and AC is not a proper
coding scheme to be used on resource-limited sensors.
Hence only the HC and baseline schemes were
compared. As shown in this figure, by using the HC
method, sensors could save energy compared to the
baseline method due to much lower data transmission
volume and little computation overhead posed by HC
scheme. The amount of saving in energy rises for longer
sequences of sensory measurements.

Figure 9. The comparison of: (top) the computation cost of the

encoding schemes and (bottom) HC coding scheme and the
Baseline methods in terms of the total energy consumption in

sensors.

C. Discussion

Due to the larger training dataset at the cloud node

in later iterations, the auto-encoder model is trained

with more normal samples and hence not only does the

accuracy of the model increase over time but also the

proportion of normal samples at the cloud dataset

increases due to the enhanced ability of the model in

discriminating normal and anomalies. However this

behavior was not observed when using the one-class

SVM. The accuracy of one-class SVM was not rising

with more samples as it seems that the hyper-sphere

which is fit around the majority of samples remains the

same in successive iterations even if new patterns of

normal data emerge. This deficiency of the one-class

SVM makes it improper choice for iterative learning

frameworks. Moreover due to the fact that deep neural

network auto-encoder model takes advantage of non-

linearity and more complex structure compared to the

one-class SVM it could outperform the one-class SVM

in the larger dataset. It was observed (see Fig. 5 and Fig.

6) that the AC coding method outperformed the HC and

the baseline algorithms in reducing the transmission

traffic between sensor nodes and the cloud node due to

its more complex coding algorithm. Despite the higher

compression rate of the AC method, it showed poor

performance in terms of execution time as shown in Fig.

7-left due to its higher algorithm time complexity

compared to the HC coding when used on resource-

constrained sensors. By using the HC method on

sensors, not only could it reduce the communication

cost up to 50% but also it caused saving in the sensor

consumed energy (as shown in Fig. 7-right) due to less

utilization of the sensor communication interface.

V. CONCLUSIONS

As the centralized cloud-based approaches are

impractical in time-critical anomaly detection IoT

applications due to large sensor-to-cloud transmission

latencies, high communication costs and high energy

consumption at the sensor nodes, the distributed

anomaly detection methods based on DNNs are used

as a replacement. In this paper the effectiveness of

applying two well-known lossless coding algorithms,

namely Huffman Coding (HC) and Arithmetic Coding

(AC) in data transmission over IoT infrastructures was

studied within the distributed and iterative anomaly

detection framework. By using auto-encoder DNNs on

two standard benchmarks, the experimental results

showed that HC coding scheme not only reduces the

size of published messaged up to 50% but also poses

negligible computation cost on the sensors and hence

could result in up to 10% energy saving when

implemented on sensors compared to the baseline

method. By replacing the auto-encoder model with one-

class SVM in the iterative framework, the training

process in the cloud was faster but a drop in the

prediction F1-score particularly in larger datasets was

observed. Moreover the one-class SVM was unable to

learn more from samples collected in later iterations. As

the future work, we aim to study the energy-

effectiveness and accuracy of applying the federated

learning in place of the centralized learning model over

the Edge computing infrastructure.

ACKNOWLEDGMENT

This research was supported by Fars Province Gas
Company.

REFERENCES

[1] A.S. Syed, D. Sierra-Sosa, A. Kumar, A. Elmaghraby, "IoT in

smart cities: a survey of technologies, practices and
challenges", Smart Cities, 2021. 4(2): p. 429-475.

[2] V. Hodge and J. Austin, "A survey of outlier detection
methodologies", Artificial intelligence review, 2004. 22(2): p.
85-126.

[3] E. Theodoridis, G. Mylonas and I. Chatzigiannakis,
"Developing an iot smart city framework", in IISA 2013, 2013.
IEEE.

[4] A. A. Cook, G. Mısırlı and Z. Fan, "Anomaly Detection for IoT
Time-Series Data: A Survey," in IEEE Internet of Things
Journal, vol. 7, no. 7, pp. 6481-6494, July 2020, doi:
10.1109/JIOT.2019.2958185.

0

10

20

30

40

50

60

70

0 1500 3000 4500 6000 7500 9000

co
m

p
re

ss
io

n
 t

im
e

(s
ec

)

Characters

HC AC

0

100000

200000

300000

400000

500000

600000

0 5 10 15 20 25 30 35 40 45 50

en
er

g
y
(m

il
i-

w
at

ts
)

Iteration

HC Baseline

Volume 16- Number 1 – 2024 (11 -19)

18

[5] T. Luo and S. G. Nagarajan, "Distributed Anomaly Detection
Using Autoencoder Neural Networks in WSN for IoT," 2018
IEEE International Conference on Communications (ICC),
Kansas City, MO, USA, 2018, pp. 1-6, doi:
10.1109/ICC.2018.8422402.

[6] P.D. Johnson Jr, G.A. Harris and D.C. Hankerson, Introduction
to information theory and data compression, 2003: Chapman
and Hall/CRC.

[7] A. Ayadi, O. Ghorbel, A. M. Obeid and M. Abid, "Outlier
detection approaches for wireless sensor networks: A survey",
Computer Networks, 2017. 129: p. 319-333.

[8] M. Xie, J. Hu, S. Han and H. -H. Chen, "Scalable Hypergrid k-
NN-Based Online Anomaly Detection in Wireless Sensor
Networks," in IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 8, pp. 1661-1670, Aug. 2013, doi:
10.1109/TPDS.2012.261.

[9] ZG. Ding, DJ. Du and MR. Fei, "An isolation principle based
distributed anomaly detection method in wireless sensor
networks", Int. J. Autom. Comput. 12, 402–412, 2015,
https://doi.org/10.1007/s11633-014-0847-9.

[10] S. Mirzaie, M.R. AvazAghaei and O. Bushehrian, "Anomaly
Detection in Non-Stationary Water Distribution Grids Using
Fog Computing Architecture", International Journal of
Information and Communication Technology Research, 2021,
13(3): p. 12-23.

[11] W. Jia, R. M. Shukla and S. Sengupta, "Anomaly Detection
using Supervised Learning and Multiple Statistical Methods,"
2019 18th IEEE International Conference On Machine
Learning And Applications (ICMLA), Boca Raton, FL, USA,
2019, pp. 1291-1297, doi: 10.1109/ICMLA.2019.00211.

[12] S. Kim, H. Cai, C. Hua, P. Gu, W. Xu and J. Park,
"Collaborative Anomaly Detection for Internet of Things based
on Federated Learning," 2020 IEEE/CIC International
Conference on Communications in China (ICCC), Chongqing,
China, 2020, pp. 623-628, doi:
10.1109/ICCC49849.2020.9238913.

[13] S. Rajasegarar, C. Leckie and M. Palaniswami, "CESVM:
Centered Hyperellipsoidal Support Vector Machine Based
Anomaly Detection," 2008 IEEE International Conference on
Communications, Beijing, China, 2008, pp. 1610-1614, doi:
10.1109/ICC.2008.311.

[14] Y. Zhang, N. Meratnia, and P.J. Havinga, "Distributed online
outlier detection in wireless sensor networks using ellipsoidal
support vector machine", Ad hoc networks, 2013. 11(3): p.
1062-1074.

[15] Y. Zhang, Y. Chen, J. Wang, Z. Pan, "Unsupervised deep
anomaly detection for multi-sensor time-series signals",
https://doi.org/10.48550/arXiv.2017.12626 , 2021.

[16] Mosquitto Broker. [cited 2022 June 1, 2022]; Available from:
https://mosquitto.org/.

[17] Docker. [cited 2022 22 Aug]; Available from:
https://www.docker.com/.

[18] Numpy python library. [cited 2022 jul 25]; Available from:
https://github.com/numpy/numpy.

[19] Decimal fixed point and floating point arithmetic. [cited 2022
jul 25]; Available from:
https://docs.python.org/3/library/decimal.html.

[20] L. Buitinck et al. "API design for machine learning software:
experiences from the scikit-learn project",
https://doi.org/10.48550/arXiv.1309.0238, 2013.

[21] Y. Chen , E.K. "ECG5000" Dataset. n.d. June 1, 2022];
Available from:
http://www.timeseriesclassification.com/description.php?Data
set=ECG5000.

[22] Pressure Sensors towards Pipeline Leakage Detection Dataset.
[cited 2022 9 Aug]; Available from:
https://zenodo.org/record/4769101#.YxNSQ3ZBwon.

[23] Cooja Simulator, Available from:
https://anrg.usc.edu/contiki/index.php/Cooja_Simulator

Mostafa Shabani received

his B.Sc. degree in Computer

Science from Shamsipour

Technical and Vocational

College, Tehran, Iran, in

2018, and M.Sc. degree in

Computer Network

Engineering from Shiraz

University of Technology,

Shiraz, Iran, in 2023. His

research interests are IoT, Anomaly Detection and

Machine Learning.

Omid Bushehrian received

his B.Sc. in Software

Engineering from

Amirkabir University of

Technology (Tehran poly-

techniques) in 2001. He

received his M.Sc. and

Ph.D. degrees from Iran

University of Science and

Technology (IUST) in Software Engineering in 2003

and 2008 respectively. He is currently an Associate

Professor at Shiraz University of Technology working

on different areas related to the Distributed Computing.

His research interests include IoT, Application

Migration to Cloud, Distributed and Large Scale

Systems. He also has been working in telecom

companies since 2008 as a Software Project Manager

and Consultant.

Volume 16- Number 1 – 2024 (11 -19)

19

https://mosquitto.org/
https://www.docker.com/
https://github.com/numpy/numpy
https://docs.python.org/3/library/decimal.html
http://www.timeseriesclassification.com/description.php?Dataset=ECG5000
http://www.timeseriesclassification.com/description.php?Dataset=ECG5000
https://zenodo.org/record/4769101#.YxNSQ3ZBwon

