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Abstract—Although applying new Internet-based communication technologies on industrial physical processes made 

great improvements in factory automation, there are still many challenges to meet the response time and reliability 

requirements of industrial communications. These challenges resulted from strict real-time requirements of industrial 

control system communications which are performed in harsh environments. The controller area network (CAN) 

communication protocol is commonly employed to deal with these challenges. However, in this protocol, even message 

retransmission requests of a faulty node can lead to timing failures. In this paper, to control the behavior of nodes, 

message retransmission is performed based on the criticality level of message reception. The proposed method, called 

MRMC+, improves the real-time behavior of a CAN bus in terms of response time by an average of 36.32% and 18.02%, 

respectively, compared to the standard CAN and WCTER-based approaches. 
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I. INTRODUCTION  

Following the collapse of financial systems, many 
countries have focused on recovering their industries 
and improving the efficiency of industrial processes 
employing information and communication 
technologies (ICT). China, for example, has introduced 
the “Made in China 2025” strategy to establish a high-
level industrial internet dialogue between the Chinese 
and German governments to accelerate the industrial 
process between the two countries [1].  

The concept of the industrial Internet was first 
presented in 2012 [2]. Industrial Internet or Industrial 
Internet of things (IIoT) focuses on the Internet 
technologies application in industrial networks [3]. 
Industrial networks are a combination of distributed 
computer and embedded system networks utilized in 
automation and control systems [4]. The authors of 
reference [5] describe industrial networks by an 
industrial pyramid. As shown in Fig. 1, industrial 
networks are classified into three levels including, 
management, cell, and field levels. 

 

Fig.  1. Industrial Pyramid [5] 

The management level consists of typical IT 
infrastructures, and the cell level consists of PLCs and 
industrial computers. In these two levels, a large 
amount of data is exchanged between network elements 
without strict real-time requirements. In contrast, the 
field-level includes closed-loop communications 
between controllers, actuators, and sensors of the 
physical process that require tight latency and high 
reliability. At this level, Fieldbus communication 
protocols are traditionally utilized. One of the Fieldbus 
communication protocols employed in industrial 
networks with a 20 % market share of the Fieldbus 
networks is the CAN communication protocol [6].  

The CAN communication protocol was designed in 
the 1980s by Robert Bosch for intra-vehicular-
networks. This communication protocol is widely 
employed in internal vehicular networks due to its low 
implementation cost and its fault-tolerant behavior 
against network errors [7]. Today, this communication 
protocol is employed in industrial fields and IIoT in 
addition to intra-vehicular-networks [8], [9].  

As mentioned, IIoT systems are safety-critical [10] 
and have error handling and strict real-time 
requirements [11], [12]. Although the deterministic 
nature and fault-tolerant behavior of CAN 
communication protocol meet the industrial field-level 
requirements, it can increase the worst-case response 
time (WCRT) of the IIoT systems due to its error 
handling mechanisms. Since high WCRT violates the 
real-time requirements of the safety-critical systems  

[13], in this paper, the MRMC+ method is presented to 
improve the error handling mechanism of CAN.  

The CAN communication protocol considers an 
error-handling mechanism to handle five types of 
errors, including Bit errors, Stuff errors, Cyclic 
Redundancy Check (CRC) errors, Form errors, and 
Acknowledgement errors. Among these errors, the 
CRC errors and Acknowledgement errors are 
dependent on the receiver node computations. CRC 
errors are diagnosed by detecting the inconsistency of 
the received and computed CRC in the receiver nodes. 
Any receiver node that does not diagnose this 
inconsistency, sends reception acknowledgment to the 
sender node through transmitting the dominant bit in 
the ACK slot that previously leaves recessive by the 
sender node. As shown in Fig. 2, the ACK field consists 
of the ACK slot and ACK diameter. If the ACK slot is 
not changed to dominant, incorrect message 
transmission is detected by sender node about all 
receiver nodes. In this case, the sender node detects 
acknowledgment error and retransmit the 
unacknowledged frame. 

 

Fig.  2. CAN ACK field format 

Although the error-handling mechanism in the CAN 
communication protocol notifies the sender node about 
the error that occurred during message transmission, the 
sender node will not be aware of which nodes received 
the message incorrectly. The sender node, in response 
to the occurred error, retransmits its message. 
Retransmissions are performed even if a non-critical 
node detects an error. For example, in Fig. 3, although 
node N1 wants to transmit its message, a faulty node 
prevents message propagation and propagates error 
flags. In this situation, node N3 with critical tasks 
couldn't receive its desired frame, and node N1 
retransmits its message after error frame propagation. 
As can be seen, due to an erroneous node with non-
critical tasks, node N3 violates its critical tasks 
deadlines.  

In this paper, to deal with the destructive behavior 
of faulty nodes, the MRMC+ method is presented, 
which is an extension of our previous paper [14]. In this 
method, receiving nodes propagate the error based on 
the critical level of the message reception. 

 

Fig.  3. Tasks with different criticality levels 
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II. RELATED WORK 

Industrial networks are safety-critical systems based 
on deterministic bus technology. Meeting the exact 
real-time requirements of these networks is a growing 
necessity [15]. As a field-level industrial 
communication protocol, many real-time improvement 
methods [16-31] have been proposed for the CAN 
communication protocol. These methods can be 
classified as shown in Fig. 4. According to this 
classification, these methods can be divided into three 
categories including, hardware-based, software-based, 
and hybrid. 

Hardware-based methods include net guardian 
methods [16–18] and topology change methods [19–
21]. Network Guardian (NG) is commonly employed to 
prevent babbling idiot failures caused by faulty nodes 
[16–18]. Boster and Burn [16] present a bus guardian 
(BG) for event-trigger networks. This BG utilizes the 
node’s message transmission times to compute the 
node’s future propagation windows. Employing these 
windows avoids faulty nodes from transmission on the 
communication bus. Similarly, in [17], a simple bus 
guardian for the FlexCAN network is introduced. The 
FlexCAN is a CAN protocol extension that focuses on 
hardware redundancy. This BG employs propagation 
intervals of nodes, diagnoses offending nodes, and 
utilizes an OR Gate to control the message propagation 
ability of the nodes. Although utilization of the NG 
prevents the high bandwidth overhead caused by faulty 
nodes, the level of babbling that NG prevents the node 
from sending a message to the network is the same for 
all frames. For this reason, an analysis of the Guardian-
based approach is presented in [18]. In this approach, 
the message retransmission number is determined 
based on the criticality level of the messages. 

In addition to NG methods that prevent high traffic 
consumption due to faulty nodes, other hardware-based 
methods [19-21] prevent fault propagation from one 
subnet to the others by changing the linear topology of 
the CAN network. In [19], by changing the topology of 
the CAN network, the RedCAN method is presented. 
The RedCAN method pairs several bus sections into a 
broadcast bus. In RedCAN, after detecting physical 
defects in one sector to prevent fault propagation, other 
nodes disconnect this sector and employ a redundant 
link. These sections enable RedCAN to prevent fault 
propagation after detecting physical defects in the 
broadcasting bus by disconnecting the connected node 
to the faulty sector and employing a redundant link.   

Also, Barranco and Proenza [20] propose an active 
star topology, called CANcentrate. In CANcentrate, 
central hub prevents fault propagation. Although 
CANcentrate prevents communication network failure, 
its active star topology hub represents a single point of 
failure. As a result, they present replicated active star 
topology called ReCANcentrate, which is based on the 
hardware redundancy of the hub. In this method, each 
hub similar to the CANcentrate has mechanisms to 
detect faulty links and isolate them. Moreover, these 
hubs monitor each other through a dedicated link [21]. 

 

Fig.  4. Classification of Methods for Real-Timeness 

Improvement of CAN Network 

In contrast to hardware-based methods, software-
based real-timeness improvement methods [22-30] 
focus mainly on bit stuffing, data reduction (DR), and 
scheduling. In DR methods [22-29], the data is 
compressed through software algorithms before 
sending. These pre-transmission compression methods 
reduce bandwidth consumption and improve CAN 
network real-timeness. In DR methods, the similarity of 
the data of feature messages with specific IDs to their 
previous message is considered the main factor in the 
consumed bandwidth reduction. In [22], a simple DR 
method is presented, which is based on the detection of 
repeated bytes in consecutive frames. In this method, 
the compressed frame first byte is assigned to the data 
compression byte (DCB). Each bit of this byte indicates 
the replication of the corresponding byte in a 
consecutive frame.  

Moreover, Ramtekand and Mahmud [23] improve 
compression ratio by presenting an adaptive DR (ADR) 
method. In the ADR method, since the DCB reduces the 
free bandwidth in the absence of replication between 
two consecutive frames, the sending of DCB is based 
on the possibility of reduction through the replication 
detection between two consecutive frames. Authors of 
reference [24], to improve the ADR method, introduce 
the Improved Adaptive DR (IADR) method. In this 
method, they consider three-level for each signal 
including, sending entire signals, sending signal 
differences, and not sending the signal.  In this method, 
if the first bit of the compressed message is zero, it 
indicates that all signals are sent in their original form, 
and if this bit is one, each message signal is either sent 
in differential form or never sent. 

 In the IADR method, the first bit of compressed 
message is considered to dedicate compressed message 
from non-compressed ones, and also a byte to specify 
the compression status of different signals in the 
compressed message. Such overheads can increase the 
comprised message length over the original message. 
For this reason, the authors of references [25] present 
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the enhanced DR method. In this method, the 
compressed message length is measured before 
transmission. If the Compressed message length is 
longer than the original message itself, the original 
message is propagated. 

In the Enhanced DR method, one-byte compression 
status indication increases compressed messages 
length, and compressed message length comparison 
before sanding decreases compression performance.  In 
[26], the boundary of fifteen (BFC) method is presented 
to deal with these challenges. In this method, the 
compression overhead is reduced by placing the 
compression status bit before each signal and dividing 
signals into the boundary of fifteen and non-BFC, the 
compression performance increases. Two consecutive 
signals with a difference of fewer than 15 bits are in the 
BFC category. These signals are sent in compressed 
format because the compression overhead of these 
signals does not increase the length of compressed 
messages over original ones.  

In the BFC method, signal compression is limited to 
the signal differences in Range +15 bits. Since this 
limitation affects the performance data reduction, Wu 
and Chung present the efficient CAN DR (ECANDR) 
method [27]. This method is based on compression area 
selection and signal rearrangement algorithms. In this 
method, each compressed signal is presented 
employing 9 bits. The most significant 8 bit is assigned 
to the difference value, and the remained bit represents 
the sign of the difference value. In this method, each '1' 
on the 8-bit header indicates that the corresponding 
signal is transmitted in differential form. Moreover, in 
reference [28], the improved CAN DR (ICANDR) 
method is proposed to improve the compression ratio of 
the ECANDR method. In the ICANDR method, instead 
of signal differences, the exclusive-or of two 
consecutive signals is transmitted. In addition, if all 
header bits are zero, they are not sent. In the ICANDR 
method, a rearrangement algorithm is employed that 
each combination of signal arrangement leads to 
different compression efficiency. Since in the 
ICANDR, this issue is not addressed, the authors of 
reference [29] present a multi-data arrangement 
method. In this method, the arrangement of signals is 
computed based on their magnitude and frequency. 

In addition to DR methods, others improve the real-
timeness by minimizing stuffing-bits. In CAN 
communication protocol, stuffing bits are employed to 
keep all nodes synchronized. Stuffing bits in the CAN 
are injected after five consecutive bits with the same 
polarity with opposite polarity. Although these stuffing 
bits synchronize all CAN nodes, in the worst case can 
generate 22% overhead [30]. For this reason, authors of 
reference [30] propose an XOR-based stuffing-bit 
minimization mechanism. In this mechanism first an 
XOR mask is initialized to “1010…”, then one is 
assigned to the 1 + [𝑙𝑜𝑔2𝑚] most significant bits and 
zero is assigned to the [𝑙𝑜𝑔2𝑚] bits of the XOR mask 
to prevent priority inversion. 

Another category of real-time improvement 
methods is hybrid methods [7], [31]. In [7], the dual 
CRC error correction (DUCER) method is presented. In 
this method, in addition to using the hardware 
redundancy of the communication bus, the software 

error correction is prevented to prevent an erroneous 
message from retransmission. Error correction in 
DUCER is performed by comparing residual 
polynomials resulting from the division of the receiving 
message polynomials by the CRC generator 
polynomials. Moreover, in [31], a hybrid real-time 
improvement method named TTC-SC6 is proposed. In 
this method, in addition to hardware topology changing 
by applying star topology, a shared clock algorithm is 
presented that ensures faults on one link cannot affect 
the rest of the network. Furthermore, in our previous 
research paper [14], a hybrid method named MRMC 
was proposed that improve the real-timeness of the 
CAN Network through controlling the message 
retransmission based on the criticality of message 
reception. In this way, if the reception of an ongoing 
message is not critical for the faulty part of the network, 
the rest of the network accepts it as a correct one.  

A comparison of the mentioned real-timeness 
improvement methods is shown in Table I. In this table, 
to evaluate real-timeness improvement compared to the 
standard CAN, parameters like response time, latency, 
transmission rate and bus load are considered. As can 
be seen in this table, data reduction methods [22-23, 25-
27] improve the real-timeness of the CAN network in 
terms of latency. However, since fault occurrences are 
not considered in these methods, a faulty node can make 
these methods inefficient. Although hardware methods 
[17] and [19] prevent such destructive behavior, they 
only cover the destructive behavior of transmitter 
nodes. As a result, a faulty receiving node can violate 
the real-timeness improvement of these methods.  

TABLE I. COMPARISON OF CAN REAL-TIMENESS IMPROVEMENT 
METHODS 

Methods Benchmark 

Tool 

Evaluation 

Parameters 

Improvement 

Percentage 

FlexCAN 

[17] 

SAE Response 

Time 

13.7 

RedCAN 

[19] 

RedCAN 

Simulation  

Response 

Time 

9.5 

DR [22] - latency 5.7 

ADR [23] - latency 7.5 

EDR [25] - latency 8.25 

ECANDR 

[27] 

- Transmittion 

rate 

22 

BFC [26] - Bus Load 25 

MRMC 

[14] 

NetCarBench Response 

Time 

20.82 

 

III. PROPOSED METHOD 

In our previous paper [14], MRMC-CAN method is 
presented, in which nodes transmit error flags based on 
the criticality of message reception. Although in this 
method non-critical message receptions can’t interfere 
with critical message receptions, as in this method 
criticality level is not considered, low-critical tasks can 
lead to deadline violation of high-critical ones. To deal 
with these challenges in this paper MRMC+ method, an 
extended version of our previous research work [14], is 
presented. In the MRMC+ method, three different 
criticality levels including, non-critical, low-critical, 
and high-critical, are considered for message 
receptions.  

Similar to MRMC-CAN, in MRMC+ receiver 
nodes should decide about error flag propagation. This 
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controlled error frame propagation makes it possible to 
retransmit a message just if it is critical and reduces the 
worst-case response time of the whole system. To give 
receiver nodes the control ability of their error frame 
propagation in each node, a list of high-critical and low-
critical identifiers is defined. Receiver nodes based on 
these identifiers make decisions to transmit an error flag 
or not. This mentioned process is possible until no 
errors happen in the ID field of a transmitted frame.  
Therefore to make receiver nodes sure about the 
received ID, the ID field of the standard CAN 
communication protocol is changed as to Fig. 5. As 
seen in Fig. 5, the ID field of the MRMC+ method is 
broken into two sub-fields, including a reduced 
identifier (RID) and a CRC of RID (RID-CRC). The 
receiver node can use this newly defined ID field to 
verify the ID by comparing the received RID-CRC with 
the computed one. 

To control the node’s error frame transmission 
behavior, in addition to standard CAN modules three 
more modules named error frame transmission 
permission (EFTP), error flag counter (EFC), and 
criticality level detection (CLD) modules are 
considered. The EFTP Module is responsible for 
blocking error frames resulting from non-critical 
message receptions. The MRMC+ method control 
message retransmission by counting the number of 
consecutive error flags propagated for a specific ID and 
comparing it with a predefined error flag propagation 
threshold for this ID. The CLD module determines 
these thresholds by predefined criticality tables in each 
node. The proposed MRMC+ method block diagram is 
shown in Fig. 6. In MRMC+, the CLD module detects 
criticality levels of message receptions by comparing 
received message ID with a predefined critical ID 
(CID) list. An example of this list is shown in Table II. 
In this table, critical message reception IDs and their 
criticality level are defined. The response time 
improvement of the MRMC+ method over the MRMC-
CAN is originated from considering the level of 
message reception criticality.  

 

Fig.  5. MRMC+ ID Format 

 

 

Fig.  6. Block Diagram of MRMC+ 

TABLE II. EXAMPLE OF THE CRITICAL ID LIST 

Critical IDs Levels of 

Criticality 

Allowed Number of Error 

Flag Transmission (ANEFT) 

738 High - 

248 Low 2 

… … … 

 

The CLD module first checks the CRC of the 
received message ID. Then, if the received CRC-RID is 
equal to the calculated one, it compares the received ID 
with the predefined critical ID list. If the received ID 
matches the CID list, the CLD module sets the 
criticality signal to high. Additionally, if this incoming 
message has a high critical reception level, this module 
sets the criticality level signal to high. The 
implementation of this module is shown in Fig. 7. 

In the critical ID list of MRMC+, for low-priority 
messages, the allowed number of error frame 
transmission is defined. This feature enables the 
MRMC+ method to perform better behavior controlling 
of the receiving nodes. This feature in the block 
diagram of the proposed method, received by the EPC 
module. This module in each receiving node compares 
the allowed number of error frame transmissions for a 
received message ID and the current number of 
transmitted error flags. Then  based on this comparison, 
it sets EF_THD signal to high if the current number of 
transmitted error flags exceeds the allowed number of 
error frames transmission. 

After determining the critical level of the received 
message and detecting the exceedance of the current 
number of transmitted error flags from the allowed 
threshold, the transmission of the error flag is controlled 
by the ETP module. The implementation of this module 
is shown in Fig. 8. This module controls the error 
propagation of receiver nodes by disconnecting 
receiving nodes from the communication bus. In short, 
this node allows the receiver node to propagate the error 
frame in two ways: 

1) If the received message has a high priority, it 
provides unlimited propagation possibility of 
the error frame for the receiving node; 

2) If the received message has a low priority and 
the current number of transmitted error frames 
by the node exceeds the allowable limit or not, 
it allows the node to propagate the error frame. 

Disconnecting an erroneous node that has received 
a non-critical message can be problematic. Because 
after 11 consecutive recessive bits, this node detects the 
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communication is idle and wants to start a new 
transmission. To deal with this challenge, in the 
MRMC+ method, a silent interval is considered in 
which this node should not send a message. 

 

Fig.  7. Implementation of Criticality Level Detection 

 

 

Fig.  8. Implementation of ETP Module 

To further clarify the proposed method, consider the 
topology of Fig. 3 again assuming that, all nodes are 
equipped with the MRMC+ module. According to Fig. 
9, if N1 sends a message on the network, N2 receives 
this message incorrectly due to its faulty 
communication link. Since the received message ID is 
not in the critical ID list of this node, MRMC+ modules 
prevent the node from sending an error frame. As a 
result, N3, for which receiving this message is critical, 
receives this message without error recovery and 
message retransmission latency. Moreover, as seen in 
this figure, a silence interval is considered for N2 that 
MRMC+ modules prevent this node from transmission 
until an ongoing message is successfully transmitted.  

 

Fig.  9. Silence Interval 

IV. IMPLEMENTATION AND EVALUATION 

In this section, the implementation and evaluation 
of the proposed method are introduced separately. First, 
the fault injection is explained, then the benchmark 
method will be presented, and finally, three different 
case studies are evaluated. 

A. Fault Injection 

In this paper, the independent fault injection (IFI) 
method [32] is employed for performing fault injection. 
In IFI, faults are injected uniquely into each node using 
multiplexers. The multiplexer’s utilization makes it 
possible to inject faults into the received and 
transmitted frames between CAN controllers and CAN 
transceivers of nodes. In our evaluations, since the 
proposed method seeks to control the behavior of the 
receiving nodes, the IFI method is modified like Fig. 
10. As seen in this figure, the faults are injected only in 
the receiving path of nodes. The implementation of the 
modified IFI fault injection for the three nodes is shown 
in Fig. 10. As can be seen in this figure, 74HC153 and 
STM32F103C8T6 chips are employed to implement 
the IFI Controller and multiplexers.  

B. Benchmark Messageset 

Typically, response time evaluation is performed by 
utilizing a benchmark message set. In this paper, the 
NetCARBench tool [33] is employed to generate this 
kind of message set. This benchmark generates a set of 
benchmark messages based on user configuration of 
bandwidth, network load, and nodes number. The 
generated benchmark message set includes IDs, 
payloads, and periodicities of all nodes messages. Since 
the priority of receiving the message is not considered 
in NetCARBench, this tool is modified. A sample of the 
benchmark message generated for the three nodes is 
shown in Table III. 
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Fig.  10.  Modified IFI Fault Injector  

TABLE III. THE BENCHMARK MESSAGE SET 

Node 1 

ID
 

p
a

ylo
a
d
 

P
erio

d
 

D
ea

d
lin

e 

Criticality Level of Reception for nodes 

2 3 

Criticality ANEFT Criticality ANEFT 

251 8 20 20 High ∞ Non  0 

538 4 100 5 Low 1 Non  0 

242 4 20 5 High ∞ Non  0 

Node 2 

ID
 

p
a

ylo
a
d
 

P
erio

d
 

D
ea

d
lin

e 

Criticality Level of Reception for nodes 

1 3 

Criticality ANEFT Criticality ANEFT 

737 8 20 30 High ∞ Non 0 

386 8 50 5 Low 2 Non 0 

248 4 100 10 High ∞ Non 0 

Node 3 

ID
D

 

p
a

ylo
a
d

 

P
erio

d
 

D
ea

d
lin

e 

Criticality Level of Reception for nodes 

1 2 

Criticality ANEFT Criticality ANEFT 

715 8 50 25 Non 0 Non 0 

C. Testbed Setup 

The schematic of the test board is shown in Fig. 11. 
As can be seen in this figure, for each node, the 
MRMC+ module, multiplexer, and transceiver are 
considered. Moreover, a logic analyzer is employed to 
monitor the behavior of the nodes. The implementation 
of the test board is shown in Fig. 12. The utilized 
components of this implementation are presented in 
Table IV.  

 

Fig.  11.  Schematic of Testbed 

 
Fig.  12. Implementation of Testbed 

TABLE IV. COMPONENT OF TESTBED 

Component Specification Employed as 

STM32F407 Arm Cortex M4 CAN Nodes 

STM32F103 Arm Cortex M3 IFI Controller 

STM32F030 Arm Cortex M0 MRMC+ Module 

SN65HVD23

5 

Transceiver CAN Transceiver 

74HC153 Multiplexer Multiplexer 

 

D. Case Studies 

In this section, three case studies are analyzed to 
illustrate the real-time improvement of the MRMC+ 
method. In the first case study, IC faults are just injected 
into Node 3. As seen in Table III, Node 3 doesn't have 
any critical message reception. In this case, as shown in 
Fig. 13, MRMC+ and MRMC methods compared to 
standard CAN and WCTER-based approaches improve 
response time by an average of 38.60% and 20.85%, 
respectively.  

In the second case study, faults are injected into 
node 2, which has mixed-criticality in the message 
reception. As shown in Fig. 14, the evaluation results of 
this case study show that the MRMC+ method 
improves WCRT by an average of 34.05%, 15.20%, 
and 10.39%, respectively, compared to the standard 
CAN, WCTER-based, and MRMC methods. 

 

Fig.  13. Implementation of Testbed 
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Moreover, based on the evaluations made in these 
two case studies, the proposed method improves the 
real-timeness behaviors of a CAN bus in terms of 
response time by an average of 36.32% and 18.02%, 
respectively, compared to the standard CAN and 
WCTER-based approaches. 

In the third case study, we evaluate the overhead of 
MRMC+ in the case of Device, ROM, and RAM usage. 
In the case of hardware implementation, the proposed 
method is implemented on Xilinx Spartan 6. The device 
utilization of hardware implementation is shown in 
Table V. Moreover, ROM and RAM usage of software-
based MRMC+ is presented in Table VI. 

 

Fig.  14. Implementation of Testbed 

 

TABLE V. AREA OVERHEAD OF MRMC-CAN MODULES FOR 

6SLX9TQG144 

 
Number of 

Gates 

Overheads (%) 

Basic CAN Controller 20643 - 

MRMC 111 0.5 

MRMC+ 184 0.8 

 
TABLE VI.  MRMC ROM, RAM USAGE FOR STM32F030F4 

 
MRMC MRMC+ 

RAM Usage 0.7 % 2.3 % 

ROM Usage 30.7 % 34.7 % 

 

V. CONCLUSION AND FUTURE WORKS 

Although many real-time improvement methods 
have been proposed for the CAN network so far, none 
of these methods consider the importance of receiving 
the message. As a result, in this paper, the MRMC + 
method is presented, which controls the error flag 
transmission based on the criticality of the message 
reception. However, the MRMC+ method improves the 
response time of the CAN network by an average of 
36.32%, does not address the determination of the 
appropriate number of error flag transmissions for low 
criticality messages reception. In future research, we 
will further improve real-timeness by determining the 
appropriate number of error flags transmission for low-
priority messages reception. 
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