
Real-Timeness Improvement of CAN-based

Industrial Networks Based on Criticality Level

Ismail Ghodsollahee

Dependable Distributed Embedded

 Systems (DDEmS) Laboratory,

Department of Computer Engineering,

Ferdowsi University of Mashhad,

Mashhad, Iran.

esmailelahee@gmail.com

Yasser Sedaghat*

Dependable Distributed Embedded

 Systems (DDEmS) Laboratory,

Department of Computer Engineering,

Ferdowsi University of Mashhad,

Mashhad, Iran.

y_sedaghat@um.ac.ir

Received: 12 August 2021 - Accepted: 25 October 2021

Abstract—Although applying new Internet-based communication technologies on industrial physical processes made

great improvements in factory automation, there are still many challenges to meet the response time and reliability

requirements of industrial communications. These challenges resulted from strict real-time requirements of industrial

control system communications which are performed in harsh environments. The controller area network (CAN)

communication protocol is commonly employed to deal with these challenges. However, in this protocol, even message

retransmission requests of a faulty node can lead to timing failures. In this paper, to control the behavior of nodes,

message retransmission is performed based on the criticality level of message reception. The proposed method, called

MRMC+, improves the real-time behavior of a CAN bus in terms of response time by an average of 36.32% and 18.02%,

respectively, compared to the standard CAN and WCTER-based approaches.

Keywords: Controller Area Network; Reliability; Real-Timeness; Criticality Level; Consumed Bandwidth Reduction.

Article type: Research Article

© The Author(s).

Publisher: ICT Research Institute

* Corresponding Author

I. INTRODUCTION

Following the collapse of financial systems, many
countries have focused on recovering their industries
and improving the efficiency of industrial processes
employing information and communication
technologies (ICT). China, for example, has introduced
the “Made in China 2025” strategy to establish a high-
level industrial internet dialogue between the Chinese
and German governments to accelerate the industrial
process between the two countries [1].

The concept of the industrial Internet was first
presented in 2012 [2]. Industrial Internet or Industrial
Internet of things (IIoT) focuses on the Internet
technologies application in industrial networks [3].
Industrial networks are a combination of distributed
computer and embedded system networks utilized in
automation and control systems [4]. The authors of
reference [5] describe industrial networks by an
industrial pyramid. As shown in Fig. 1, industrial
networks are classified into three levels including,
management, cell, and field levels.

Fig. 1. Industrial Pyramid [5]

The management level consists of typical IT
infrastructures, and the cell level consists of PLCs and
industrial computers. In these two levels, a large
amount of data is exchanged between network elements
without strict real-time requirements. In contrast, the
field-level includes closed-loop communications
between controllers, actuators, and sensors of the
physical process that require tight latency and high
reliability. At this level, Fieldbus communication
protocols are traditionally utilized. One of the Fieldbus
communication protocols employed in industrial
networks with a 20 % market share of the Fieldbus
networks is the CAN communication protocol [6].

The CAN communication protocol was designed in
the 1980s by Robert Bosch for intra-vehicular-
networks. This communication protocol is widely
employed in internal vehicular networks due to its low
implementation cost and its fault-tolerant behavior
against network errors [7]. Today, this communication
protocol is employed in industrial fields and IIoT in
addition to intra-vehicular-networks [8], [9].

As mentioned, IIoT systems are safety-critical [10]
and have error handling and strict real-time
requirements [11], [12]. Although the deterministic
nature and fault-tolerant behavior of CAN
communication protocol meet the industrial field-level
requirements, it can increase the worst-case response
time (WCRT) of the IIoT systems due to its error
handling mechanisms. Since high WCRT violates the
real-time requirements of the safety-critical systems

[13], in this paper, the MRMC+ method is presented to
improve the error handling mechanism of CAN.

The CAN communication protocol considers an
error-handling mechanism to handle five types of
errors, including Bit errors, Stuff errors, Cyclic
Redundancy Check (CRC) errors, Form errors, and
Acknowledgement errors. Among these errors, the
CRC errors and Acknowledgement errors are
dependent on the receiver node computations. CRC
errors are diagnosed by detecting the inconsistency of
the received and computed CRC in the receiver nodes.
Any receiver node that does not diagnose this
inconsistency, sends reception acknowledgment to the
sender node through transmitting the dominant bit in
the ACK slot that previously leaves recessive by the
sender node. As shown in Fig. 2, the ACK field consists
of the ACK slot and ACK diameter. If the ACK slot is
not changed to dominant, incorrect message
transmission is detected by sender node about all
receiver nodes. In this case, the sender node detects
acknowledgment error and retransmit the
unacknowledged frame.

Fig. 2. CAN ACK field format

Although the error-handling mechanism in the CAN
communication protocol notifies the sender node about
the error that occurred during message transmission, the
sender node will not be aware of which nodes received
the message incorrectly. The sender node, in response
to the occurred error, retransmits its message.
Retransmissions are performed even if a non-critical
node detects an error. For example, in Fig. 3, although
node N1 wants to transmit its message, a faulty node
prevents message propagation and propagates error
flags. In this situation, node N3 with critical tasks
couldn't receive its desired frame, and node N1
retransmits its message after error frame propagation.
As can be seen, due to an erroneous node with non-
critical tasks, node N3 violates its critical tasks
deadlines.

In this paper, to deal with the destructive behavior
of faulty nodes, the MRMC+ method is presented,
which is an extension of our previous paper [14]. In this
method, receiving nodes propagate the error based on
the critical level of the message reception.

Fig. 3. Tasks with different criticality levels

Volume 13- Number 4 – 2021 (8 -17)

9

II. RELATED WORK

Industrial networks are safety-critical systems based
on deterministic bus technology. Meeting the exact
real-time requirements of these networks is a growing
necessity [15]. As a field-level industrial
communication protocol, many real-time improvement
methods [16-31] have been proposed for the CAN
communication protocol. These methods can be
classified as shown in Fig. 4. According to this
classification, these methods can be divided into three
categories including, hardware-based, software-based,
and hybrid.

Hardware-based methods include net guardian
methods [16–18] and topology change methods [19–
21]. Network Guardian (NG) is commonly employed to
prevent babbling idiot failures caused by faulty nodes
[16–18]. Boster and Burn [16] present a bus guardian
(BG) for event-trigger networks. This BG utilizes the
node’s message transmission times to compute the
node’s future propagation windows. Employing these
windows avoids faulty nodes from transmission on the
communication bus. Similarly, in [17], a simple bus
guardian for the FlexCAN network is introduced. The
FlexCAN is a CAN protocol extension that focuses on
hardware redundancy. This BG employs propagation
intervals of nodes, diagnoses offending nodes, and
utilizes an OR Gate to control the message propagation
ability of the nodes. Although utilization of the NG
prevents the high bandwidth overhead caused by faulty
nodes, the level of babbling that NG prevents the node
from sending a message to the network is the same for
all frames. For this reason, an analysis of the Guardian-
based approach is presented in [18]. In this approach,
the message retransmission number is determined
based on the criticality level of the messages.

In addition to NG methods that prevent high traffic
consumption due to faulty nodes, other hardware-based
methods [19-21] prevent fault propagation from one
subnet to the others by changing the linear topology of
the CAN network. In [19], by changing the topology of
the CAN network, the RedCAN method is presented.
The RedCAN method pairs several bus sections into a
broadcast bus. In RedCAN, after detecting physical
defects in one sector to prevent fault propagation, other
nodes disconnect this sector and employ a redundant
link. These sections enable RedCAN to prevent fault
propagation after detecting physical defects in the
broadcasting bus by disconnecting the connected node
to the faulty sector and employing a redundant link.

Also, Barranco and Proenza [20] propose an active
star topology, called CANcentrate. In CANcentrate,
central hub prevents fault propagation. Although
CANcentrate prevents communication network failure,
its active star topology hub represents a single point of
failure. As a result, they present replicated active star
topology called ReCANcentrate, which is based on the
hardware redundancy of the hub. In this method, each
hub similar to the CANcentrate has mechanisms to
detect faulty links and isolate them. Moreover, these
hubs monitor each other through a dedicated link [21].

Fig. 4. Classification of Methods for Real-Timeness

Improvement of CAN Network

In contrast to hardware-based methods, software-
based real-timeness improvement methods [22-30]
focus mainly on bit stuffing, data reduction (DR), and
scheduling. In DR methods [22-29], the data is
compressed through software algorithms before
sending. These pre-transmission compression methods
reduce bandwidth consumption and improve CAN
network real-timeness. In DR methods, the similarity of
the data of feature messages with specific IDs to their
previous message is considered the main factor in the
consumed bandwidth reduction. In [22], a simple DR
method is presented, which is based on the detection of
repeated bytes in consecutive frames. In this method,
the compressed frame first byte is assigned to the data
compression byte (DCB). Each bit of this byte indicates
the replication of the corresponding byte in a
consecutive frame.

Moreover, Ramtekand and Mahmud [23] improve
compression ratio by presenting an adaptive DR (ADR)
method. In the ADR method, since the DCB reduces the
free bandwidth in the absence of replication between
two consecutive frames, the sending of DCB is based
on the possibility of reduction through the replication
detection between two consecutive frames. Authors of
reference [24], to improve the ADR method, introduce
the Improved Adaptive DR (IADR) method. In this
method, they consider three-level for each signal
including, sending entire signals, sending signal
differences, and not sending the signal. In this method,
if the first bit of the compressed message is zero, it
indicates that all signals are sent in their original form,
and if this bit is one, each message signal is either sent
in differential form or never sent.

 In the IADR method, the first bit of compressed
message is considered to dedicate compressed message
from non-compressed ones, and also a byte to specify
the compression status of different signals in the
compressed message. Such overheads can increase the
comprised message length over the original message.
For this reason, the authors of references [25] present

C
A

N
 N

et
w

o
rk

 R
ea

l-
ti

m
en

es
s

Im
p

ro
v

em
en

t
T

ec
h

n
iq

u
es

Hardware-Based

Net Guardian

Topology
Changing

RedCAN

CANcentrate

ReCANcentrate

Hybrid

Redundancy Based DUCER

Scheduling-Based TTC-SC6

Software-Based

DR Techniques

ADR

IADR

EDR

BFC

ECANDC

ICANDR

Minimizing
Stuffing-bit

WCTER Based

Volume 13- Number 4 – 2021 (8 -17)

10

the enhanced DR method. In this method, the
compressed message length is measured before
transmission. If the Compressed message length is
longer than the original message itself, the original
message is propagated.

In the Enhanced DR method, one-byte compression
status indication increases compressed messages
length, and compressed message length comparison
before sanding decreases compression performance. In
[26], the boundary of fifteen (BFC) method is presented
to deal with these challenges. In this method, the
compression overhead is reduced by placing the
compression status bit before each signal and dividing
signals into the boundary of fifteen and non-BFC, the
compression performance increases. Two consecutive
signals with a difference of fewer than 15 bits are in the
BFC category. These signals are sent in compressed
format because the compression overhead of these
signals does not increase the length of compressed
messages over original ones.

In the BFC method, signal compression is limited to
the signal differences in Range +15 bits. Since this
limitation affects the performance data reduction, Wu
and Chung present the efficient CAN DR (ECANDR)
method [27]. This method is based on compression area
selection and signal rearrangement algorithms. In this
method, each compressed signal is presented
employing 9 bits. The most significant 8 bit is assigned
to the difference value, and the remained bit represents
the sign of the difference value. In this method, each '1'
on the 8-bit header indicates that the corresponding
signal is transmitted in differential form. Moreover, in
reference [28], the improved CAN DR (ICANDR)
method is proposed to improve the compression ratio of
the ECANDR method. In the ICANDR method, instead
of signal differences, the exclusive-or of two
consecutive signals is transmitted. In addition, if all
header bits are zero, they are not sent. In the ICANDR
method, a rearrangement algorithm is employed that
each combination of signal arrangement leads to
different compression efficiency. Since in the
ICANDR, this issue is not addressed, the authors of
reference [29] present a multi-data arrangement
method. In this method, the arrangement of signals is
computed based on their magnitude and frequency.

In addition to DR methods, others improve the real-
timeness by minimizing stuffing-bits. In CAN
communication protocol, stuffing bits are employed to
keep all nodes synchronized. Stuffing bits in the CAN
are injected after five consecutive bits with the same
polarity with opposite polarity. Although these stuffing
bits synchronize all CAN nodes, in the worst case can
generate 22% overhead [30]. For this reason, authors of
reference [30] propose an XOR-based stuffing-bit
minimization mechanism. In this mechanism first an
XOR mask is initialized to “1010…”, then one is
assigned to the 1 + [𝑙𝑜𝑔2𝑚] most significant bits and
zero is assigned to the [𝑙𝑜𝑔2𝑚] bits of the XOR mask
to prevent priority inversion.

Another category of real-time improvement
methods is hybrid methods [7], [31]. In [7], the dual
CRC error correction (DUCER) method is presented. In
this method, in addition to using the hardware
redundancy of the communication bus, the software

error correction is prevented to prevent an erroneous
message from retransmission. Error correction in
DUCER is performed by comparing residual
polynomials resulting from the division of the receiving
message polynomials by the CRC generator
polynomials. Moreover, in [31], a hybrid real-time
improvement method named TTC-SC6 is proposed. In
this method, in addition to hardware topology changing
by applying star topology, a shared clock algorithm is
presented that ensures faults on one link cannot affect
the rest of the network. Furthermore, in our previous
research paper [14], a hybrid method named MRMC
was proposed that improve the real-timeness of the
CAN Network through controlling the message
retransmission based on the criticality of message
reception. In this way, if the reception of an ongoing
message is not critical for the faulty part of the network,
the rest of the network accepts it as a correct one.

A comparison of the mentioned real-timeness
improvement methods is shown in Table I. In this table,
to evaluate real-timeness improvement compared to the
standard CAN, parameters like response time, latency,
transmission rate and bus load are considered. As can
be seen in this table, data reduction methods [22-23, 25-
27] improve the real-timeness of the CAN network in
terms of latency. However, since fault occurrences are
not considered in these methods, a faulty node can make
these methods inefficient. Although hardware methods
[17] and [19] prevent such destructive behavior, they
only cover the destructive behavior of transmitter
nodes. As a result, a faulty receiving node can violate
the real-timeness improvement of these methods.

TABLE I. COMPARISON OF CAN REAL-TIMENESS IMPROVEMENT
METHODS

Methods Benchmark

Tool

Evaluation

Parameters

Improvement

Percentage

FlexCAN

[17]

SAE Response

Time

13.7

RedCAN

[19]

RedCAN

Simulation

Response

Time

9.5

DR [22] - latency 5.7

ADR [23] - latency 7.5

EDR [25] - latency 8.25

ECANDR

[27]

- Transmittion

rate

22

BFC [26] - Bus Load 25

MRMC

[14]

NetCarBench Response

Time

20.82

III. PROPOSED METHOD

In our previous paper [14], MRMC-CAN method is
presented, in which nodes transmit error flags based on
the criticality of message reception. Although in this
method non-critical message receptions can’t interfere
with critical message receptions, as in this method
criticality level is not considered, low-critical tasks can
lead to deadline violation of high-critical ones. To deal
with these challenges in this paper MRMC+ method, an
extended version of our previous research work [14], is
presented. In the MRMC+ method, three different
criticality levels including, non-critical, low-critical,
and high-critical, are considered for message
receptions.

Similar to MRMC-CAN, in MRMC+ receiver
nodes should decide about error flag propagation. This

Volume 13- Number 4 – 2021 (8 -17)

11

controlled error frame propagation makes it possible to
retransmit a message just if it is critical and reduces the
worst-case response time of the whole system. To give
receiver nodes the control ability of their error frame
propagation in each node, a list of high-critical and low-
critical identifiers is defined. Receiver nodes based on
these identifiers make decisions to transmit an error flag
or not. This mentioned process is possible until no
errors happen in the ID field of a transmitted frame.
Therefore to make receiver nodes sure about the
received ID, the ID field of the standard CAN
communication protocol is changed as to Fig. 5. As
seen in Fig. 5, the ID field of the MRMC+ method is
broken into two sub-fields, including a reduced
identifier (RID) and a CRC of RID (RID-CRC). The
receiver node can use this newly defined ID field to
verify the ID by comparing the received RID-CRC with
the computed one.

To control the node’s error frame transmission
behavior, in addition to standard CAN modules three
more modules named error frame transmission
permission (EFTP), error flag counter (EFC), and
criticality level detection (CLD) modules are
considered. The EFTP Module is responsible for
blocking error frames resulting from non-critical
message receptions. The MRMC+ method control
message retransmission by counting the number of
consecutive error flags propagated for a specific ID and
comparing it with a predefined error flag propagation
threshold for this ID. The CLD module determines
these thresholds by predefined criticality tables in each
node. The proposed MRMC+ method block diagram is
shown in Fig. 6. In MRMC+, the CLD module detects
criticality levels of message receptions by comparing
received message ID with a predefined critical ID
(CID) list. An example of this list is shown in Table II.
In this table, critical message reception IDs and their
criticality level are defined. The response time
improvement of the MRMC+ method over the MRMC-
CAN is originated from considering the level of
message reception criticality.

Fig. 5. MRMC+ ID Format

Fig. 6. Block Diagram of MRMC+

TABLE II. EXAMPLE OF THE CRITICAL ID LIST

Critical IDs Levels of

Criticality

Allowed Number of Error

Flag Transmission (ANEFT)

738 High -

248 Low 2

… … …

The CLD module first checks the CRC of the
received message ID. Then, if the received CRC-RID is
equal to the calculated one, it compares the received ID
with the predefined critical ID list. If the received ID
matches the CID list, the CLD module sets the
criticality signal to high. Additionally, if this incoming
message has a high critical reception level, this module
sets the criticality level signal to high. The
implementation of this module is shown in Fig. 7.

In the critical ID list of MRMC+, for low-priority
messages, the allowed number of error frame
transmission is defined. This feature enables the
MRMC+ method to perform better behavior controlling
of the receiving nodes. This feature in the block
diagram of the proposed method, received by the EPC
module. This module in each receiving node compares
the allowed number of error frame transmissions for a
received message ID and the current number of
transmitted error flags. Then based on this comparison,
it sets EF_THD signal to high if the current number of
transmitted error flags exceeds the allowed number of
error frames transmission.

After determining the critical level of the received
message and detecting the exceedance of the current
number of transmitted error flags from the allowed
threshold, the transmission of the error flag is controlled
by the ETP module. The implementation of this module
is shown in Fig. 8. This module controls the error
propagation of receiver nodes by disconnecting
receiving nodes from the communication bus. In short,
this node allows the receiver node to propagate the error
frame in two ways:

1) If the received message has a high priority, it
provides unlimited propagation possibility of
the error frame for the receiving node;

2) If the received message has a low priority and
the current number of transmitted error frames
by the node exceeds the allowable limit or not,
it allows the node to propagate the error frame.

Disconnecting an erroneous node that has received
a non-critical message can be problematic. Because
after 11 consecutive recessive bits, this node detects the

Volume 13- Number 4 – 2021 (8 -17)

12

communication is idle and wants to start a new
transmission. To deal with this challenge, in the
MRMC+ method, a silent interval is considered in
which this node should not send a message.

Fig. 7. Implementation of Criticality Level Detection

Fig. 8. Implementation of ETP Module

To further clarify the proposed method, consider the
topology of Fig. 3 again assuming that, all nodes are
equipped with the MRMC+ module. According to Fig.
9, if N1 sends a message on the network, N2 receives
this message incorrectly due to its faulty
communication link. Since the received message ID is
not in the critical ID list of this node, MRMC+ modules
prevent the node from sending an error frame. As a
result, N3, for which receiving this message is critical,
receives this message without error recovery and
message retransmission latency. Moreover, as seen in
this figure, a silence interval is considered for N2 that
MRMC+ modules prevent this node from transmission
until an ongoing message is successfully transmitted.

Fig. 9. Silence Interval

IV. IMPLEMENTATION AND EVALUATION

In this section, the implementation and evaluation
of the proposed method are introduced separately. First,
the fault injection is explained, then the benchmark
method will be presented, and finally, three different
case studies are evaluated.

A. Fault Injection

In this paper, the independent fault injection (IFI)
method [32] is employed for performing fault injection.
In IFI, faults are injected uniquely into each node using
multiplexers. The multiplexer’s utilization makes it
possible to inject faults into the received and
transmitted frames between CAN controllers and CAN
transceivers of nodes. In our evaluations, since the
proposed method seeks to control the behavior of the
receiving nodes, the IFI method is modified like Fig.
10. As seen in this figure, the faults are injected only in
the receiving path of nodes. The implementation of the
modified IFI fault injection for the three nodes is shown
in Fig. 10. As can be seen in this figure, 74HC153 and
STM32F103C8T6 chips are employed to implement
the IFI Controller and multiplexers.

B. Benchmark Messageset

Typically, response time evaluation is performed by
utilizing a benchmark message set. In this paper, the
NetCARBench tool [33] is employed to generate this
kind of message set. This benchmark generates a set of
benchmark messages based on user configuration of
bandwidth, network load, and nodes number. The
generated benchmark message set includes IDs,
payloads, and periodicities of all nodes messages. Since
the priority of receiving the message is not considered
in NetCARBench, this tool is modified. A sample of the
benchmark message generated for the three nodes is
shown in Table III.

Volume 13- Number 4 – 2021 (8 -17)

13

Fig. 10. Modified IFI Fault Injector

TABLE III. THE BENCHMARK MESSAGE SET

Node 1

ID

p
a

ylo
a
d

P
erio

d

D
ea

d
lin

e

Criticality Level of Reception for nodes

2 3

Criticality ANEFT Criticality ANEFT

251 8 20 20 High ∞ Non 0

538 4 100 5 Low 1 Non 0

242 4 20 5 High ∞ Non 0

Node 2

ID

p
a

ylo
a
d

P
erio

d

D
ea

d
lin

e

Criticality Level of Reception for nodes

1 3

Criticality ANEFT Criticality ANEFT

737 8 20 30 High ∞ Non 0

386 8 50 5 Low 2 Non 0

248 4 100 10 High ∞ Non 0

Node 3

ID
D

p
a

ylo
a
d

P
erio

d

D
ea

d
lin

e

Criticality Level of Reception for nodes

1 2

Criticality ANEFT Criticality ANEFT

715 8 50 25 Non 0 Non 0

C. Testbed Setup

The schematic of the test board is shown in Fig. 11.
As can be seen in this figure, for each node, the
MRMC+ module, multiplexer, and transceiver are
considered. Moreover, a logic analyzer is employed to
monitor the behavior of the nodes. The implementation
of the test board is shown in Fig. 12. The utilized
components of this implementation are presented in
Table IV.

Fig. 11. Schematic of Testbed

Fig. 12. Implementation of Testbed

TABLE IV. COMPONENT OF TESTBED

Component Specification Employed as

STM32F407 Arm Cortex M4 CAN Nodes

STM32F103 Arm Cortex M3 IFI Controller

STM32F030 Arm Cortex M0 MRMC+ Module

SN65HVD23

5

Transceiver CAN Transceiver

74HC153 Multiplexer Multiplexer

D. Case Studies

In this section, three case studies are analyzed to
illustrate the real-time improvement of the MRMC+
method. In the first case study, IC faults are just injected
into Node 3. As seen in Table III, Node 3 doesn't have
any critical message reception. In this case, as shown in
Fig. 13, MRMC+ and MRMC methods compared to
standard CAN and WCTER-based approaches improve
response time by an average of 38.60% and 20.85%,
respectively.

In the second case study, faults are injected into
node 2, which has mixed-criticality in the message
reception. As shown in Fig. 14, the evaluation results of
this case study show that the MRMC+ method
improves WCRT by an average of 34.05%, 15.20%,
and 10.39%, respectively, compared to the standard
CAN, WCTER-based, and MRMC methods.

Fig. 13. Implementation of Testbed

5.5

7.5

9.5

11.5

13.5

15.5

0 1 2 3 4 5 6 7 8

R
es

p
o

n
se

 T
im

e(
m

s)

Number of Injected Faults
MRMC+ MRMC WCTER STANDARD CAN

Volume 13- Number 4 – 2021 (8 -17)

14

Moreover, based on the evaluations made in these
two case studies, the proposed method improves the
real-timeness behaviors of a CAN bus in terms of
response time by an average of 36.32% and 18.02%,
respectively, compared to the standard CAN and
WCTER-based approaches.

In the third case study, we evaluate the overhead of
MRMC+ in the case of Device, ROM, and RAM usage.
In the case of hardware implementation, the proposed
method is implemented on Xilinx Spartan 6. The device
utilization of hardware implementation is shown in
Table V. Moreover, ROM and RAM usage of software-
based MRMC+ is presented in Table VI.

Fig. 14. Implementation of Testbed

TABLE V. AREA OVERHEAD OF MRMC-CAN MODULES FOR

6SLX9TQG144

Number of

Gates

Overheads (%)

Basic CAN Controller 20643 -

MRMC 111 0.5

MRMC+ 184 0.8

TABLE VI. MRMC ROM, RAM USAGE FOR STM32F030F4

MRMC MRMC+

RAM Usage 0.7 % 2.3 %

ROM Usage 30.7 % 34.7 %

V. CONCLUSION AND FUTURE WORKS

Although many real-time improvement methods
have been proposed for the CAN network so far, none
of these methods consider the importance of receiving
the message. As a result, in this paper, the MRMC +
method is presented, which controls the error flag
transmission based on the criticality of the message
reception. However, the MRMC+ method improves the
response time of the CAN network by an average of
36.32%, does not address the determination of the
appropriate number of error flag transmissions for low
criticality messages reception. In future research, we
will further improve real-timeness by determining the
appropriate number of error flags transmission for low-
priority messages reception.

REFERENCES

[1] I. V. Jorge Posada, Carlos Toro, Inigo Barandiaran, David
Oyarzun, Didier Stricker, Raffaele de Amicis, Eduardo B.
Pinto, Peter Eisert, Jurgen Dollner, “Visual Computing as a
Key Enabling Technology for Industrie 4.0 and Industrial
Internet,” IEEE Comput. Graph. Appl., vol.vol.35, no. No02,
pp. 26–40, 2015.

[2] P. C. Evans and M. Annunziata, “Industrial Internet: pushing
the boundaries of minds and machines,” 2012[Online].
Available:www.ge.com/docs/chapters/Industrial_Internet.pdf

[3] R. Sousa, P. Pedreiras, and P. Goncalves, “Enabling IIoT IP
backboneswith real-time guarantees,” inProc. IEEE 20th Conf.
Emerg. Technol.Factory Autom., Luxembourg, Sep. 2015, pp.
1–6.

[4] M. Hankel and B. Rexroth, "The reference architectural model
industrie 4.0 (rami 4.0)", ZVEI, vol. 2, no. 2, pp. 4, 2015.

[5] D. Cavalcanti, J. Perez-Ramirez, M. M. Rashid, J. Fang, M.
Galeev and K. B. Stanton, "Extending Accurate Time
Distribution and Timeliness Capabilities Over the Air to
Enable Future Wireless Industrial Automation Systems," in
Proceedings of the IEEE, vol. 107, no. 6, pp. 1132-1152, June
2019, doi: 10.1109/JPROC.2019.2903414.

[6] M. Vuković, D. Mazzei, S. Chessa and G. Fantoni, "Digital
Twins in Industrial IoT: a survey of the state of the art and of
relevant standards," 2021 IEEE International Conference on
Communications Workshops (ICC Workshops), 2021, pp. 1-6,
doi: 10.1109/ICCWorkshops50388.2021.9473889.

[7] L. Zhang, F. Yang, and Y. Lei, “Tree-based intermittent
connection fault diagnosis for controller area network,” IEEE
Trans. Veh. Technol., vol. 68, no. 9, pp. 9151–9161, Sep. 2019.

[8] H. Kimm and M. Jarrell, “Controller area network for fault
tolerant small satellite system design,” in 2014 IEEE 23rd
International Symposium on Industrial Electronics (ISIE).
IEEE, 2014, pp. 81–86.

[9] X. Jiang, M. Lora, and S. Chattopadhyay, "An Experimental
Analysis of Security Vulnerabilities in Industrial IoT Devices,"
ACM Transactions on Internet Technology, 2020.

[10] J. Y. Guido Marchetto, Riccardo Sisto and A. Ksentini,
“Formally verified latency-aware vnf placement in industrial
internet of things,” in 14th IEEE International Workshop on
Factory Communication Systems (WFCS), Imperia, Italy,
2018.

[11] S. Saadaoui, A. Khalil, M. Tabaa1, M. Chehaitly, F. Monteiro
and A. Dandache, “Improved many to one architecture based
on discrete wavelet packet transform for industrial IoT
applications using channel coding,” Springer, Journal of
Ambient Intelligence and Humanized Computing, vol. 11, no.
12, Dec. 2020.

[12] B. Chen and J. Wan, "Emerging trends of ml-based intelligent
services for industrial internet of things (iiot)", In Proc. 2019
IEEE Computing, Communications and IoT Applications
(ComComAp), 2019.

[13] H. Kong, J. Cheng, K. Narayanan and J. Hu, "DUCER: a Fast
and Lightweight Error Correction Scheme for In-Vehicle
Network Communication", 2018 IEEE International
Conference on Vehicular Electronics and Safety (ICVES),
2018.

[14] I. Ghodsollahee and Y. Sedaghat, "MRMC-CAN: A Method to
Improve Real-Timeness and Response Time of CAN," 2021
5th International Conference on Internet of Things and
Applications (IoT), 2021, pp. 1-8, doi:
10.1109/IoT52625.2021.9469716.

[15] R. Zhohov, D. Minovski, P. Johansson, and K. Andersson,
“Real-time performance evaluation of LTE for IIoT,”
inProc. IEEE 43rd Conf.Local Comput. Netw. (LCN), 2018,
pp. 623–631.

[16] I. Broster and A. Burns, "An analysable bus-guardian for
event-triggered communication", Proc. 24th IEEE Real-Time
Systems Symp. (RTSS'03), pp. 410-419, 2003.

5.5

7.5

9.5

11.5

13.5

15.5

0 1 2 3 4 5 6 7 8

R
es

p
o

n
se

 T
im

e
(m

s)

Number of Injected Faults
MRMC+ MRMC WCTER STANDARD CAN

Volume 13- Number 4 – 2021 (8 -17)

15

[17] G. Buja, J. R. Pimentel and A. Zuccollo, "Overcoming
babbling-idiot failures in CAN networks: A simple and
effective bus guardian solution for the FlexCAN architecture",
IEEE Trans. Ind. Informat., vol. 3, no. 3, pp. 225-233, Aug.
2007.

[18] A. Burns and R.I. Davis, "Mixed criticality on controller area
network", In Proc. Euromicro Conference on Real-Time
Systems (ECRTS), pp. 125-134, 2013.

[19] H. Sivencrona, T. Olsson, R. Johansson and J. Torin,
"RedCAN/sup TM/: simulations of two fault recovery
algorithms for CAN," 10th IEEE Pacific Rim International
Symposium on Dependable Computing, 2004. Proceedings.,
2004, pp. 302-311

[20] M. Barranco, J. Proenza, G. Rodriguez-Navas and L. Almeida,
"An active star topology for improving fault confinement in
CAN networks", IEEE Trans. Ind. Electron., vol. 2, no. 2, pp.
78-85, May 2006.

[21] M. Barranco, L. Almeida and J. Proenza, "ReCANcentrate: A
Replicated Star Topology for CAN Networks", Proc. 10th
IEEE Int'l Conf. Emerging Technologies and Factory
Automation (ETFA 05), pp. 469-476, 2005.

[22] S. Misbahuddin, S. M. Mahmud and N. Al-Holou,
"Development and performance analysis of a data-reduction
algorithm for automotive multiplexing", IEEE Trans. Veh.
Technol., vol. 50, no. 1, pp. 162-169, Jan. 2001.

[23] P. R. Ramteke, S.M. Mahmud, "An Adaptive Data-Reduction
Protocol for the future In-Vehicle Networks," Soc. Automotive
Eng., SAE Paper 2005-01-1540, 2005.

[24] R. Miucic and S. M. Mahmud. “An improved adaptive data
reduction protocol for in-vehicle networks”. In SAE, editor, In-
Vehicle Software & Hardware Systems, number 2006-01-1327
in Transactions Journal of Passenger Cars: Electronic and
Electrical Systems, pages pp. 650-658. SAE, April 2006. SAE
2006 World Congress & Exhibition.

[25] Radovan Miucic, S. M. Mahmud, Zeljko Popovic, "An
Enhanced Data-Reduction Algorithm for Event-Triggered
Networks," IEEE Transactions on vehicular Technology, Vol.
58, No.6, pp. 2663-2678, July, 2009.

[26] S. Kelkar and R. Kamal, "Boundary of Fifteen Compression
algorithm for Controller Area Network based automotive
applications," 2014 International Conference on Circuits,
Systems, Communication and Information Technology
Applications (CSCITA), 2014, pp. 162-167, doi:
10.1109/CSCITA.2014.6839253.

[27] Y. Wu and J. Chung, "Efficient controller area network data
compression for automobile applications", Frontiers of Info.
Technol. & Electro. Eng., vol. 16, no. 1, pp. 70-78, Jan. 2015.

[28] Y.-J. Wu and J.-G. Chung, "An improved controller area
network data-reduction algorithm for in-vehicle networks",
IEICE Trans. Fundamentals, vol. E100-A, no. 2, pp. 346-352,
Feb 2017.

[29] Y.-J. Kim, Y Zou,Y.-E. Kim, and J.-G. Chung, " Multi-Level
Data Arrangement Algorithm for CAN Data Compression",
Springer, International Journal of Automotive Technology,
vol. 21, no. 6, pp. 1527-1537, 2020.

[30] K. Park, M. Kang, and D. Shin, "Mechanism for Minimizing
Stuffing-bit in CAN Messages," The 33rd Annual Conference
of the IEEE Industrial Electronics Society (IECON'07), pp.
735-737, Nov. 2007.

[31] A. Muhammad, D. Ayavoo and M. J. Pont, "A Novel Shared-
Clock Scheduling Protocol for Fault-Confinement in CAN-
based Distributed Systems", IEEE 5th International
Conference on System of Systems Engineering, 2015.

[32] G. Rodriguez-Navas, J. Jimenez and J. Proenza, "An
architecture for physical injection of complex fault scenarios in
CAN networks", Proc. IEEE Emerging Technol. Factory
Autom., vol. 2, pp. 125-127, 2003.

[33] C. Braun, L. Havet, and N. Navet, "NETCARBENCH: a
benchmark for techniques and tools used in the design of
automotive communication systems", in 7th IFAC

International Conference on Fieldbuses and Networks in
Industrial and Embedded Systems, 2007, pp. 321-328,
Available at http://www.netcarbench.org.

Volume 13- Number 4 – 2021 (8 -17)

16

http://www.netcarbench.org/

Ismail Ghodsollahee received the

M.Sc. degree in Computer

Engineering from Ferdowsi

University of Mashhad, Mashhad,

Iran, in 2021. His main research

area includes Real-Time Systems,

Embedded Network, and Fault-

Tolerant Design.

Yasser Sedaghat received the

M.Sc. and Ph.D. degrees in

Computer Engineering from

Sharif University of Technology,

Tehran, Iran, in 2006 and 2011,

respectively. He is an Assistant

Professor with the Department of

Computer Engineering, Ferdowsi

University of Mashhad (FUM), Mashhad, Iran. He has

established and has been one of the chairs of the

Dependable Distributed Embedded Systems (DDEmS)

Laboratory, FUM, since 2012. His current research

interests include Dependable Embedded Systems and

Networks, Reliable Software Design, Embedded

Operating Systems, and FPGA-based Designs.

Volume 13- Number 4 – 2021 (8 -17)

17

