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Abstract- Determining the best way of learning and acquiring knowledge, especially in intelligent tutoring systems has 

drawn researchers' attention during past years. Studies conducted on E-learning systems and strategies proposed to 

improve the quality of these systems, indicate that the main learning resources for students in an educational 

environment are provided by two crucial factors. The first is the teacher who can basically influence students’ success 

through demonstrating her ability and skills, and the second is interaction among students. In this article, a new 

modeling approach is presented for improving learning/teaching models as well as interaction among learners, from 

which the most benefit can be derived by learners. The proposed model uses the learning automata for modeling the 

teacher and her behavior in such a way that she can also learn and teach better at the same time, thus improves her 

teaching skills. The model also uses cellular learning automata in order to model behavior of the learners as well as 

interactions between the learners for knowledge acquisition. The results indicate that in addition to teacher’s skills, 

the interaction/communication among learners can significantly improve the quality and speed of learning as 

compared with previous methods. 

 

Keywords: tutorial like system, interactions, learning automata, cellular learning automata 

 

 

I. INTRODUCTION  

Intelligent tutoring systems (ITS) are novel 

metaphors for educational paradigms that employ AI 

techniques to enhance learners’ knowledge 

acquisition and internalization process, and improve 

teachers’ teaching abilities, simultaneously [1,2]. In 

general, these systems concern with three main 

factors, including domain model, student model, and 

educational model, where the main focus lies on the 

student model. It is noteworthy that in a few studies, 

user interface is considered as the fourth factor [3,4]. 

Domain model is a control center that encompasses 

the entire domain knowledge, which generates 

instruction content and evaluates student’s 

performance [5]. Whereas student model represents 

the student's behavior, attitude and state [6]. 

Educational model specifies how the student should 

be taught [7]. Self [6] defined these three factors as 



the tripartite architecture for an ITS: the what 

(domain model), the who (student model), and the 

how (tutoring model). 

The applications of machine learning 

techniques in ITS systems have been investigated in a 

number of studies which suggest such techniques can 

improve teaching and learning quality. These 

techniques can be utilized in different parts of ITS 

such as background knowledge [8]. Beck et al. used 

machine learning to improve tutoring strategy [9]. 

Sision and Shimura suggested that analogical 

learning is more appropriate for learning-level 

analysis, whereas reinforcement learning is more 

appropriate for tutoring [10]. Reinforcement learning 

as a semi-supervised machine learning approach can 

be used to train an agent to comply with the 

student’s needs [6]. Frasson et al. designed the main 

ITS components (student model, domain knowledge 

and the tutoring model) in form of intelligent 

agents[11]. Sision and Legaspi utilized reinforcement 

learning to model the learning process [12]. Baffes 

and Mooney implemented ASSERT which exploits 

reinforcement learning and domain knowledge for 

student modeling to find the errors that the new 

students may make [13]. Lelouche devised a series of 

interactive elements to model the learning process in 

intelligent educational systems [14]. Finally, Hesham 

and Oommen [15, 16, 17] and Wang and Jiang, Hoa 

Ge et al. used learning automata to model the 

students’ learning process as well as the interactions 

between them [18, 19]. Mostly, computer-aided 

tutorial systems present the educational material 

indiscriminately and do not consider the learner’s 

scientific and educational background. Thus, in such 

systems, the tutorial methods do not suit the learner's 

needs and interests due to the lack of learner's mental 

and behavioral models. According to a well-

established theory in education, learners follow their 

self-customized learning pattern through the learning 

process [15].  Thus, a practical ITS must be able to 

adapt the learners’ needs and provide them with 

customized educational material. This capabilities can 

be embedded to the tutorial systems only by applying 

AI techniques. 

Learners and teachers are the main entities 

that play important roles in training system Teachers 

are the main source of knowledge acquisition for 

students, and the teachers’ skills profoundly influence 

the students’ success rate. Thus, constructing proper 

teacher models can positively influence the success 

rate of an educational system. The teacher model 

represents the decision making mechanism utilized as 

teaching strategies and tries to optimally transfer the 

educational material to the students. In this paper, we 

propose a learning model for the teacher, so that s/he 

can adapt to the students’ learning model. Using 

MetaLA model proposed by Oommen and Hashem 

teacher can distinguish each student’s model type [16, 

17]. This structure can recognize the student’s mental 

model during learning process. The teacher exploits 

this model to learn how to help each student and 

concurrently guides the students toward their best 

learning performance using a penalty-reward 

paradigm. Thus, through this learning-while-teaching 

process, the teacher can increase the students’ 

learning efficiency significantly. Furthermore, 

Interactions among students are another source of 

learning in real-life educational environments. 

Although traditional educational paradigms assume 

that the students learning highly depends on teachers, 

in reality, they also adjust their learning curve based 

on the interactions among them. We generalize the 

traditional paradigm to let the student to learn from a 

so-called classroom of students learning at different 

rates and abilities. One of the main objectives of the 

proposed system in this study is to introduce a new 

method based on the cellular learning automata to 

model the interaction among students in a tutorial like 

system. In this model a student is a member of a 

classroom of students, in which s/he learns from the 

teacher and obtains information from other students. 

In our system, a student simulator is used to mimic 

the behavior of real-life students during the learning 

process. Students are divided into three categories 

based on their mental model including slow, normal 

and fast learners. This classification is in accordance 

with the real educational systems. In this model, each 

student is considered as a learning automaton within a 

cell. The interactions among students are modeled as 

the interactions among different learning automata 

(i.e. neighbouring cells), and the student-teacher 

interaction is simulated as the interaction learning 

automata with their environment. This models aims to 

accelerate the learning process and enhance the 

overall quality of the students’ learning. 

The paper is organized as follows: .in Section II 
presents an overview on cellular learning automata. 
The concept of tutorial-like systems is thoroughly 
discussed in section III. Our proposed intelligent 
tutorial-like system is elaborated on in section IV. 
Section V presents the experimental results and 
evaluations. Finally, section VI concludes the paper. 

II. CELLULAR LEARNING AUTOMATA 

Research in Learning automata started with 

Tsetlin who introduced the use of deterministic and 

stochastic automata operating in a random 

environment as learning model [20]. The term 

“Learning Automata” was first publicized in the 

survey paper by Narendra and Thathachar [21]. The 



goal of LA is to ‘determine the optimal action out of a 

set of allowable actions”. These automata are mostly 

used in the systems with incomplete environmental 

information [22, 23]. An automaton can select an 

action among a set of actions as its output. Once the 

action is selected and executed, it is evaluated by the 

environment and the corresponding feedback is sent 

to the learning automata either as a positive feedback 

signal (i.e. in case the action was done properly) or a 

negative one (i.e. in case the action was done 

improperly). The value of this signal determines 

which actions should be chosen in the following 

steps. This process makes the automata to gradually 

converge to the most appropriate action regarding the 

environmental criteria. The closed-loop interaction 

between a stochastic automaton and the random 

environment is shown in Figure 1.  

The machine acts randomly in the 

probabilistic environment, and updates the 

probabilities of action selection based on the inputs 

received from the environment. The learning 

automata are classified into two classes including 

variable structure automata (VSSA), fixed structure 

automata (FSSA) [21]. A VSSA  is defined as a  a 

quadruple M=<α,β,p,T> in which α={α1,α2 ,…, αn } 

represents the action set of the automaton, β={β1,β2 , 

…, βr} is the input set, p={p1,p2 , …, pr} represents the 

action probability set, and finally 

p(n+1)=T[α(n),β(n),p(n)] represents the learning 

algorithm [21, 24]. 

The automaton selects an action αi regarding 

the action probability set p, and performs it within the 

environment. Then, the automaton updates its action 

probability set using equation (1) for favorable 

responses, and equation (2) for unfavorable responses 

based on the received reinforcement signal from the 

environment. 

 

 

 

 

 

 
 

 

 

 
 

 

Fig.1 Closed-loop interaction between a learning automaton and 

environment 
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Where pi(t) is the probability of selecting 

action αi at time t. a and b are reward and penalty 

parameters, respectively. In the case of LR-P learning 

algorithm the reward and penalty parameters are set 

equal. LRεP algorithm sets the reward parameter 

significantly smaller than penalty parameter, and in 

LR-I learning algorithm, the penalty parameter is set to 

zero. On the other hand, for fixed structure stochastic 

automata (FSSA), their transitions are determined by 

state transition probabilities that are fixed with time. 

The FSSA suffers from slow convergence speed in 

comparison with VSSA.  

Pursuit automata are new models of learning 

automata that estimates the optimal action was 

introduced by Thathachar and Sastry [24, 25]. In their 

novel approach, the updating algorithm improves its 

convergence results by using the history to maintain 

an estimate of the probability of each action being 

rewarded, in what is called the estimate vector. While 

in nonestimator algorithms the probability vector is 

updated based on the environment’s response, in an 

estimator algorithm the update is based on both the 

environment’s response and the estimate vector. Thus, 

it is easy to observe cases where an action is rewarded 

while the probability of choosing another action is 

increased [15]. The main advantage of the Pursuit 

automata over other types is their high speed of 

learning process.  

Cellular automata introduced by Von 

Neumann are mathematical models for defining 

systems that consist of a large number of simple 

identical components with local interactions [26]. The 

combination of cellular automata and learning 

automata results in cellular learning automata (CLA) 

which is superior to cellular automata due to its 

learning ability and also is superior to single learning 

automaton due to its distributed processing ability 

which is provided by employing a set of interacting 

learning automata.  

CLA is a mathematical model for simulating 

dynamical complex systems that include large number 

of simple components. These simple components 

have learning capabilities and act together to produce 

complex behavioral patterns.  In other words, a CLA 

is a cellular automaton in which a learning automaton 

is assigned to its every cell [27]. The learning 

automaton residing inside each cell determine the 

state of the cell on the basis of its action probability 

set. The active rule in CLA and the actions selected 

by the neighbouring cells determine the reinforcement 

signal to the learning automata residing in that cell. 

The neighbouring learning automata of any cell 

constitute its local environment. The state of the cell 

is determined by the action probability set of the 

learning automaton residing in that cell. The initial 

value of the state may be set based on the past 

experience or randomly. After initializing the states, 

Random environment 

Learning automata 

β(n) 

Automata’s 

action 
Environment’s 

response 

α(n) 



the reinforcement signal to each learning automaton is 

determined by the CLA rule. Then, each learning 

automaton updates its action probability set based on 

the reinforcement signal and the chosen action. This 

process continues until the desired result is obtained. 

A sample structure of a CLA is depicted in Figure 2 

[27, 28]. 

Formally, a d−dimensional cellular learning 

automata can be defined as A = (Zd, Φ, A, N, F), 

where: Zd  is a lattice of d−tuple of integer numbers, 

Φ is a finite set of states, A is the set of learning 

automatons each of which is assigned to each cell of 

the cellular automata, N={X1,X 2, … , Xm}  is a finite 

subset of Zd called neighbourhood vector where m 

represents the number of neighbouring cells and Xi ∈ 

Zd and finally F is a set of action functions each of 

which determines the next action of each automaton. 

The neighbourhood vector determines the relative 

position of the neighbouring cells from any given cell 

u in the lattice Zd. The neighbours of a particular cell 

u are set of cells Which are located in a 

neighbourhood radius r. We assume that there exists a 

neighbourhood function N(u) mapping a cell u to the 

set of its neighbours.  

A number of applications for cellular learning 

automata have been developed recently such as 

modeling of commerce networks, fixed channel 

assignment in cellular networks, image processing, 

and VLSI placement [26]. 

III. TUTORIAL-LIKE SYSTEM 

Tutorial-like systems are special educational 

systems that involve artificial intelligence techniques 

and methods to represent the knowledge, as well as to 

conduct the learning interaction. These systems 

represent a student’s state through the learning 

process. In these systems, the student can learn and be 

tested without the presence of a real person. Even 

students can be replaced by a simulated student that 

mimics a real-life student. The teacher attempts to 

provide the training materials to a set of student 

simulators. 

 

 

 
 

Fig. 2 A sample structure of cellular learning automata 
(Meybodi and Beigy 2004) 

 

 Moreover, the students are allowed to share 

their information with each other, so that they can 

learn from each other which is more realistic than the 

traditional learning paradigms. In our model, 

components of the tutorial-like system follow a 

scholastic model. The students obtain knowledge 

through multiple choices questions. These questions 

include several items with different confidence level. 

The student gradually learns to choose the answer 

with the highest confidence [15]. 

Tutorial-like systems have some similarities 

with the well-established tutorial systems. They both 

model the teacher, the student, and the domain 

knowledge. However, they have some main 

differences as well. These differences include 

different teacher type, none-real students, uncertain 

course material, and testing versus evaluation [15]. 

The first difference is different teacher type. In 

tutorial systems, the teacher is assumed to have 

perfect information regarding the material to be 

taught. Also, the knowledge of teaching and 

communicating the domain material and interactions 

with students is embedded into the teacher model. 

The teacher in our Tutorial-like system possesses 

different features. First, the teacher in our model is 

uncertain of the teaching material. Second, the teacher 

does not initially possess any knowledge of “how to 

teach” the domain subject. Rather, the teacher himself 

is involved in a learning process, and s/he learns what 

teaching material has to be presented to a particular 

student. To do so, the teacher follows the Socratic 

learning model by teaching the material using 

questions that are presented to the students. Then, s/he 

uses the feedback from the students and their 

corresponding learning automata to suggest new 

teaching materials. Although omitting the how-to-

teach knowledge from the teacher takes away the 

bread-and-butter premise of the teaching process in a 

tutorial system, in a tutorial-like system, it allows the 

system to be modeled without excessive 

complications and renders the modeling of knowledge 

less burdensome.  

The second difference is that a tutorial 

system is used by real students, whereas in our 

tutorial-like system, there is no need for real students. 

Thus, the system can be used by either a student 

simulator which mimics the behaviors and actions of 

real students using the system, or an artificial entity 

such as a software component that needs to learn 

specific domain knowledge. The third difference 

arises from uncertain course material. Unlike the 

traditional tutorial systems in which the domain 

knowledge is well-defined, in our tutorial-like system, 

the domain-knowledge of teaching material has some 

degree of uncertainty. The teaching material contains 



some questions with the corresponding probability 

which associates to the certainty of correct answers to 

the questions. Finally, the last difference is testing 

versus evaluation. Sanders (2008) differentiated 

between the concepts of teaching evaluation and 

teaching testing. The teaching evaluation is defined as 

an interpretive process in which the teacher 

determines the students’ performance and their needs. 

In a tutorial system, an evaluation is required to 

measure the student’s performance online. In our 

tutorial-like system, the student acquires knowledge 

using a Socratic model, where s/he gains knowledge 

from answering questions without having any prior 

knowledge about the subject material. In our model, 

the testing is based on the performance of the set of 

student simulators. 

IV. INTELLIGENT TUTORIAL-LIKE SYSTEM 

Our proposed model attempts to improve the 

learning in tutorial-like systems using hybrid 

techniques, so that slow and normal learners can 

improve their learning abilities and approach the 

abilities of fast learners. In this way, the learners’ 

learning efficiency is increased collectively regardless 

of the group they belong to (i.e. slow, normal, or fast). 

Similar to the model proposed in (Hashem and 

Oommen April. 2010, 2013), our proposed model 

consists of several learning automata connected 

indirectly to one another. It improves the learning 

process in three directions. First, the teacher finds the 

best penalty-reward vector by simultaneous learning 

and teaching (i.e. teacher’s learning scheme). Second, 

the teacher helps learners to identify their mistakes 

and correct them by testing learners during teaching 

(i.e. teacher’s test scheme). Third, learners use their 

classmates’ knowledge to improve their own by 

communicating with them through CLA. Structure of 

the proposed model is illustrated in figure 3. 

As shown in Figure 3, the model represents the 

structure of interconnection, which can be viewed as 

being composed of two levels: a lower level 

automaton, which is the student LA, and a higher 

level automaton (i.e., the meta-LA) which attempts to 

characterize the learning model of the students (or 

student simulators), While the latter uses the tutorial-

like system and consists of following items: 

 Learn teacher: by learning while teaching, 

the teacher can learn and teach better at the 

same time, thus improves her teaching skills. 

 Teacher’s test: by testing learners during 

teaching the teacher helps learners to identify 

their mistakes and correct them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.3 Structure of proposed model 

 
 

In some research works, it is mentioned that 

in tutorial-like systems, regardless of the students’ 

different mental models, all of the students are 

subjected to a uniform education strategy and exposed 

to the same penalty-reward method [15]. On the other 

hand, using the method proposed by Hashem and 

Oommen the teacher can identify the student’s 

learning trend (i.e. slow, normal, fast) and decide a 

proper penalty-reward vector regarding the learner’s 

behavior to guide her through the learning process. In 

this study, we utilized MetaLA to model the students’ 

behavior which recognizes the student’s learning 

trend in time intervals, and enables the teacher to 

assign different penalty-reward vectors for each 

student [15, 16]. 
 

 

A. Environment Learning Algorithm (teacher’s 

learning) 

The first step in this algorithm is to extract the 
student’ trend from the student simulator using Once 
the students’ learning trend is determined during a 
specific time interval, the environment learning 
algorithm tweaks the penalty-reward vector until the 
best vector is assigned to each student regarding her 
learning abilities. In this algorithm, the probability 
vector is modified in both linear and nonlinear manner 
using equations (3) and (4), respectively.  






 studentnormal for  

 student slowfor   

N

S




        (3) 

α(n) β(n) 

iChange C 

Teacher,s  

test 

Learn 

Teacher 

MetaLA (student 

modeler) 

  

Env. For 

MetaLA 

LAS 
(students) 

Environment 

(teacher) 

Observe 

α(n) β(n) 



ljn

X

nCXnC

nCnC

toSubject

DmXX

jl

jl

m


















,    

0)(

)()()(

)()(

: 

    ,10      )(





        

Where one action αl continues to have the minimum 
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The purpose of our proposed model is to increase 
the students’ collective learning efficiency regardless 
of their different learning abilities. In this way, 
students with slow and normal learning abilities get 
closer to the abilities of fast students. 

B. Teacher’s Test 

We can consider another learning mechanism for 

students through which they can detect and correct 

their mistakes, improve their learning abilities, and 

increase their learning speed. This mechanism is 

performed by teacher who, periodically test the 

students to familiarize them with their mistakes and 

the corrections. Tests play an important role in the 

learning process by evaluating the students’ 

knowledge and detecting their mistakes.  A proper 

way to model a test is to study each student’s (i.e. 

automaton) behavior during various time periods and 

identify their mistakes (i.e. wrong knowledge). This 

process can be modeled using (5). 
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Where W refers to the wrong action, B refers to the 

best action, Ni is the number of times that the action is 

selected within the time period, and Pi is the number 

of penalties per action in each period. In other words, 

the maximum penalty per action selection is assigned 

to the wrong knowledge or incorrect behavior and 

thus the probability of selecting that action is reduced. 

On the other hand, the probability of selecting the best 

action is increased proportionally. This process is 

depicted in (6). 
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Where i is the index of wrong action and j is the index 

of best action. 

 

C. Tutorial-Like System Based on Cellular 

Learning Automata 

In this research, we simulate the tutorial-like 

system using CLA. We employed a student simulator 

to mimic real-life behavior of the students during their 

learning process. As aforementioned, each student is 

considered as a learning automaton in a cell. The 

interactions between students are simulated through 

the interactions among different learning automata 

(i.e. neighbouring cells). These interactions can 

accelerate the individual and collective learning 

process. Structure of this model is illustrated in figure 

4. 

In the simulations, we applied the majority-

minority rule for neighbourhood effect [29]. This rule 

states that if the cell selects action αi and at least five 

of its neighbours select the same action, the selected 

action is likely to be the correct one. In this case, the 

neighbour’s response is considered as a favorable 

response. On the other hand, if less than five 

neighbours select the same action, the neighbours’ 

response is considered as undesirable response. We 

integrate the neighbours’ responses with 

environmental factors in a model shown in Table 1. In 

this table, the neighbourhood rule presents the 

responses of the neighbours (i.e. zero in case of 

favorable response and one in case of undesirable 

response). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  structure of Tutorial-like System Based on Cellular Learning 

Automata. 

 

Table.1 Model for integration neighbourhood and environmental 

factors 

Result of αi 
Environmental 

factors 

Neighborhood 

rule 

Reward Reward Neighbor=0 

Reward=0.2   penalty=0.8 Penalty Neighbor=0  

Reward=0.85  penalty=0.15 Reward Neighbor=1 

Penalty Penalty Neighbor=1 
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D. Modeling a Students 

In this system, each student’s model 

indicates the behavior, state of the mind, and 

knowledge acquisition approach of that student. 

We selected a slow VSSA to represent slow 

students, a VSSA to model normal students, and 

finally an estimator automata (Pursuit) to 

simulate fast students. In addition, all actions and 

overall performance of the student are recorded 

online. 

 

V. EXPERIMENTAL RESULTS 

In order to evaluate the proposed system, we 

implemented a prototype simulation of the student-

classroom interaction system. We defined nine 

students in our simulations so that we can compare 

our results with the system proposed in [15]. In the 

system proposed in [15], the students only learn from 

the teacher and do not have interaction abilities. Thus, 

the cellular automaton employed in simulation 

consisted of   nine cells with a learning automaton 

assigned to each cell regarding the type of the student 

(i.e. whether he is a slow, normal or fast learner).  In 

order to simulate the fast-learning students, the 

student simulator used a pursuit PLRI scheme with λ ϵ 

[0.0041, 0.0127] (based on proposed model in [15]). 

In this scheme, each LA updates its action probability 

vector if it obtains a reward. To simulate the normal-

learning students, VSSA with the LRI scheme and λ ϵ 

[0.0182, 0.0192] was utilized. Finally, a VSSA model 

with LRI scheme and λ ϵ [0.0142, 0.0152] was 

exploited to simulate the slow-learning students. 

The evaluation is based on 75 samples of simulations 

performed on the proposed system. The teaching 

materials are represented by two different 

environments: two four-action environment (E4,A and 

E4,B) and two ten-action environments (E10,A and 

E10,B). Both of these environments are widely used 

benchmarks for evaluating learning automata [15]. 

We define a threshold, T, as the convergence 

criterion. As soon as the as probability of selecting an 

action exceeds the threshold value, we stop the 

algorithm. In our simulations, we set the threshold to 

0.99 which can result in a high accuracy. The value of 

λ set for the mentioned environments is shown in 

Table 2. Furthermore, the reward probabilities of 

these environments are set to: 

 E4,A ={0.7,0.5,0.3,0.2}, E4,B ={0.1,0.45, 0.84, 0.76},  

E10,A ={0.7, 0.5, 0.3, 0.2, 0.4, 0.5, 0.4, 0.3, 0.5, 0.2}, 

E10,B ={0.1, 0.45, 0.84, 0.76, 0.2, 0.4, 0.6, 0.7, 0.5, 

0.3}. 

 

 

 

Table.2  The λ of the student simulators LA 

Student type 
 

E4,A E4,B E10,A E10,B 

Fast-learning student 0.0127 0.0041 0.0127 0.0041 

Normal-learning student 0.0192 0.0182 0.0192 0.0182 

Slow-learning student 0.0142 0.0152 0.0142 0.0152 

 

A. Environment Learning Algorithm (teacher 

learning) 

1) Simulation Based on the Linear 

Algorithm 

The simulation results obtained for the linear 

method are shown in Table 3. As shown, the proposed 

method leads to a significant improvement in the 

proficiency level of the slow and normal students 

compared to the method where all students are treated 

similarly. By assigning the optimal penalty-reward 

vector to each student, the algorithm approximates the 

behavior of fast-learning students which in turn, 

reduces the needed number of iterations for 

convergence. For example, it is shown that the 

number of iterations for normal-learning and slow-

learning students in EA,4 is decreased from  996 and 

1382 to 656 and 760, respectively.  As another 

example, in EB,10 which is considered as a difficult 

environment due to the large number selected actions 

and close penalty probability vector, it is observed 

that the number of iterations for normal students for 

achieving convergence is reduced from 2114 to 1843, 

and similarly, for slow students it is decreased from 

2859 to 2134. Considering that the number of 

iterations for obtaining convergence for fast students 

is 1655, we find that when the teacher learns how to 

deal with students, the students’ learning process will 

improve. 
 

2) Simulation based on the nonLinear 

Algorithm 

Moreover, we simulated the system with 

nonlinear algorithm whose results are depicted in 

Table 4. Same to the linear algorithm, it is shown that 

the slow and normal students’ learning abilities are 

improved considerably, and they have managed to 

approximate the learning trends of fast students. 

Comparing the results from linear and nonlinear 

algorithms leads to the conclusion that the nonlinear 

algorithms can find the optimal penalty-reward vector 

for each student within fewer iterations due to its 

ability in modifying the probability vector with more 

accuracy than the linear technique.   

The improvements of students learning 

process in both proposed model and model introduced 

in are shown in Figure 5 [15]. It is shown that the 



proposed model improves the learning abilities of 

slow and normal students considerably, Furthermore, 

it is shown that the learning speed of the slow and 

normal students closely tracks the learning speed of 

the fast students. 

 

 

 

 
 

Fig. 5 The rate of students learning in the reference model (a) compared with the proposed model (b).

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.3 Convergence of linear algorithm and comparison with presented model in [15]. 

 

 

Fast student 

(λ: 0.004 - 0.0127) 
Normal student 

(λ: 0.0182 - 0.0192) 

Slow student 

(λ: 0.0142 - 0.0152) 

# of Iteration to converge 

Env. 
# of 

Actions 
Old model 

[15] 
λ 

Old model 

[15] 

proposed 

model 

Old model 

[15] 

proposed 

model 

EA 4 572 λ S=0.01, λ N=0.007 996 656 1382 760 

EB 4 1482 λ S=0.002, λ N=0.001 2201 1669 2633 1673 

EA 10 686 λ S=0.009, λ N=0.004 1297 852 1804 1137 

EB 10 1655 λ S=0.002, λ N=0.001 2114 1843 2859 2134 

Reward probabilities for  4-action environment are : 

EA,4: 0.7  0.5 0.3  0.2         EB,4: 0.1  0.45  0.84  0.76 

Reward probabilities for  10- action environment are: 

EA,10: 0.7  0.5  0.3  0.2  0.4  0.5  0.4  0.3  0.5  0.2       EB,10: 0.1   0.45  0.84  0.76  0.2  0.4  0.6  0.7  0.5  0.3 
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(x-axis: Iteration ,  y-axis: Threshold) 
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Table.4 Convergence of nonlinear algorithm and comparison with presented model in [15] 

 

 

Fast student 

(λ: 0.004 - 0.0127) 
Normal student 

(λ: 0.0182 - 0.0192) 

Slow student 

(λ: 0.0142 - 0.0152) 

# of Iteration to converge 

Env. 
# of 

Actions 
Old model 

[15] 
λ 

Old model 

[15] 

proposed 

model 

Old model 

[15] 

proposed 

model 

EA 4 572 λ S=0.01, λ N=0.007 996 588 1382 1011 

EB 4 1482 λ S=0.002, λ N=0.001 2201 1639 2633 1645 

EA 10 686 λ S=0.009, λ N=0.004 1297 805 1804 1041 

EB 10 1655 λ S=0.002, λ N=0.001 2114 1733 2859 1838 

Reward probabilities for  4-action environment are : 

EA,4: 0.7  0.5 0.3  0.2         EB,4: 0.1  0.45  0.84  0.76 

Reward probabilities for  10- action environment are: 

EA,10: 0.7  0.5  0.3  0.2  0.4  0.5  0.4  0.3  0.5  0.2       EB,10: 0.1   0.45  0.84  0.76  0.2  0.4  0.6  0.7  0.5  0.3 

 

Table.5 Convergence of teacher’s test model and comparison with presented model in [15] 

 

 

Fast student 

(λ: 0.004 - 0.0127) 
Normal student 

(λ: 0.0182 - 0.0192) 

Slow student 

(λ: 0.0142 - 0.0152) 

# of Iteration to converge 

Env. 
# of 

Actions 
Old model 

[15] 

proposed 

model 

Old model 

[15] 

proposed 

model 

Old model 

[15] 

proposed 

model 

EA 4 572 522 996 713 1382 1187 

EB 4 1482 1371 2201 1301 2633 1657 

EA 10 686 630 1297 1042 1804 1434 

EB 10 1655 1502 2114 1474 2859 1842 

Reward probabilities for  4-action environment are : 

EA,4: 0.7  0.5 0.3  0.2         EB,4: 0.1  0.45  0.84  0.76 

Reward probabilities for  10- action environment are: 

EA,10: 0.7  0.5  0.3  0.2  0.4  0.5  0.4  0.3  0.5  0.2   EB,10: 0.1   0.45  0.84  0.76  0.2  0.4  0.6  0.7  0.5  0.3 

 

 

3) Teacher’s Test 

Results indicated in Table 5 indicate that test 

design can help different students to converge faster 

towards their learning goal. For example, in EA,4, the 

number of iterations required for the convergence of 

slow-learning students is reduced from 1382 to 1187, 

which indicates that  the tests can help students learn 

from their mistakes and stop repeating them. As 

another example, in EA,4 and EA,10 , the number of 

iterations required for convergence of normal students  

is reduced from 996 to 713, and from 1297 to 1042, 

respectively. Similarly, the number of iterations 

required for convergence of normal students in EB,4 

and EB,10 is reduced from 2201 to 1301, and from 

2114 to 1474, respectively. 

 

4) Student Interaction with Cellular 

Learning Automata 

Diversity of students with different learning 

abilities in an educational environment, according to 

different knowledge level of the learners and their 

interactions, the benefits related to each learner or a 

group of learners is different from each other. For 

example, when the number of fast learners is more 

than the number of slow learners in the learning 

group, there is a high probability that the slow learner 

interacts with faster individuals. Thus, he will have a 

significant progress in his relevant process of learning 

providing the interactions he has with smarter 

students and vice versa. 



The results of simulating this theory are presented in 

table 6. The experimental results show that the 

knowledge of the slow student has a significant 

progress in the proposed model compared to the 

model of the students only interacted with his teacher 

and only learnt from him. Moreover, the number of 

iterations required to reach to convergence was 

decreased. For example, in the four-action E 4,A 

environment, the number of iterations needed  for the  

slow-learning student  LA to converge decreased to 

1110 from 1382. This indicates the effective 

relationship of the slow student with his other 

classmates because here three slow students 

communicated with six other students who had 

superior knowledge and learn faster than the three 

slow ones. Also, the learning process of the fast 

student has slowed down. This deterioration in the 

learning process of the fast student is due to the fact 

that there are 3 fast students and 6 normal and slow 

students in this experiment. Therefore, when the fast 

student seeks help for improvement, he may find 

eight other students two of whom are in the same 

knowledge as himself and six others knowledge are 

lower than him including three normal students and 

three slow learner students. In other words, there are 

no genius help for the fast student in this group, so it 

is clear that his learning process slows down in this 

case. For normal students, the interaction with their 

other fast and slow learner students can be beneficial. 

For example, in the four and ten-action E4,A and E10,A 

environments, the number of iterations needed  for 

convergence has decreased from 996 to 696 and from 

1297 to 1059. On the other hand, in the four and ten-

action E4,B and E10,B environments, the number of 

iterations needed for convergence has decreased from 

2201 to 1286 and from 2114 to 1419. The results of 

this simulation suggest that the difference between 

iterations as well as the rate of improvement for slow 

students is more than normal students. This is due to 

the fact that there are two superior groups of students 

for slow students whose knowledge are higher than 

slow students (to get help from in order to improve in 

their learning process). However, there are one 

superior group and one lower group of students for 

the normal students. Therefore, while this interaction 

may improve learning status of the normal student, 

oscillations between these two groups will slow down 

at some points. Furthermore, the results shown in the 

table 5 and 3 indicate that the convergence time in 

E4,B and E10,B  environments is greater than of E4,A and 

E10,A  environments. This reflects the fact that the set 

of EB environments was more difficult because of the 

proximity of the underlying penalty/reward 

probabilities. 

Also, the results showed that the ten-action 

environments were more difficult than the four-action 

environments. The iterations required for the LA 

convergence increased from the four-action 

environments to the ten-action Environments. The 

rates of learning for a slow, normal and fast student 

are shown in Figure 6. 

 

Table.6 Convergence of proposed model and comparison with presented model in [15]. 

 

Fast student 

(λ: 0.004 - 0.0127) 
Normal student 

(λ: 0.0182 - 0.0192) 

Slow student 

(λ: 0.0142 - 0.0152) 

# of Iteration to converge 

Env. 
# of 

Actions 
Old model 

[15] 

proposed 

model 

Old model 

[15] 

proposed 

model 

Old model 

[15] 

proposed 

model  

EA 4 572 662 996 696 1382 1110 

EB 4 1482 1564 2201 1286 2633 1442 

EA 10 686 704 1297 1059 1804 1424 

EB 10 1655 1642 2114 1419 2859 1479 

Reward probabilities for  4-action environment are : 

EA,4: 0.7  0.5 0.3  0.2         EB,4: 0.1  0.45  0.84  0.76 

Reward probabilities for  10- action environment are: 

EA,10: 0.7  0.5  0.3  0.2  0.4  0.5  0.4  0.3  0.5  0.2   EB,10: 0.1   0.45  0.84  0.76  0.2  0.4  0.6  0.7  0.5  0.3 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

Fig. 6 Rate of Learning for Students. (x-axis: Iteration ,  y-axis: Threshold) 

 

1. CONCLUSION 

Considering the studies conducted on 

electronic tutorial systems and the strategies presented 

for improving their quality, we can conclude that 

interactions play a crucial role in these systems. In 

addition to being influenced by the teacher, learners 

in a tutorial environment learn by interacting with 

other learners. Moreover, studying educational trends 

in people’s real life shows that the way learners are 

treated plays an important role in their academic 

progress. In this article, a new approach was 

presented for modeling tutorial-like systems and 

improving the student modeling method. We 

managed to design a teacher model with the ability to 

learn while teaching how to approach the learners and 

guide them through the learning process towards 

faster learning.  Also, through testing the learners 

during their learning period, the method helped them 

to identify and correct their mistakes. In addition, the 

students’ interactions through cellular learning 

automata were simulated. As is shown in the results, 

the proposed model is a suitable mechanism for 

executing the learning process, thus providing 

maximal benefits for learners in general. As for our 

future work, we will try to address the experimental 

problems listed in previous section. 
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