
A Novel Approach for Learning Improvement

in Interactive Classroom Environments using

Learning Automata

Hajar Hajary

Department of Computer Science and Research

Branch Islamic Azad University

Tehran, Iran

 Hajar_Hajary@yahoo.com

Ali Ahmadi

(Corresponding Author)

Department of Computer Engineering, K.N. Toosi

University of Technology

 Tehran, Iran

 Ahmadi@kntu.ac.ir

Maryam Khani

Department of Computing

Macquarie University

North Ryde, NSW 2109, Sydney, Australia

 maryam.khani@hdr.mq.edu.au

Received: February 16, 2017 - Accepted: June 25, 2017

Abstract- Determining the best way of learning and acquiring knowledge, especially in intelligent tutoring systems has

drawn researchers' attention during past years. Studies conducted on E-learning systems and strategies proposed to

improve the quality of these systems, indicate that the main learning resources for students in an educational

environment are provided by two crucial factors. The first is the teacher who can basically influence students’ success

through demonstrating her ability and skills, and the second is interaction among students. In this article, a new

modeling approach is presented for improving learning/teaching models as well as interaction among learners, from

which the most benefit can be derived by learners. The proposed model uses the learning automata for modeling the

teacher and her behavior in such a way that she can also learn and teach better at the same time, thus improves her

teaching skills. The model also uses cellular learning automata in order to model behavior of the learners as well as

interactions between the learners for knowledge acquisition. The results indicate that in addition to teacher’s skills,

the interaction/communication among learners can significantly improve the quality and speed of learning as

compared with previous methods.

Keywords: tutorial like system, interactions, learning automata, cellular learning automata

I. INTRODUCTION

Intelligent tutoring systems (ITS) are novel

metaphors for educational paradigms that employ AI

techniques to enhance learners’ knowledge

acquisition and internalization process, and improve

teachers’ teaching abilities, simultaneously [1,2]. In

general, these systems concern with three main

factors, including domain model, student model, and

educational model, where the main focus lies on the

student model. It is noteworthy that in a few studies,

user interface is considered as the fourth factor [3,4].

Domain model is a control center that encompasses

the entire domain knowledge, which generates

instruction content and evaluates student’s

performance [5]. Whereas student model represents

the student's behavior, attitude and state [6].

Educational model specifies how the student should

be taught [7]. Self [6] defined these three factors as

the tripartite architecture for an ITS: the what

(domain model), the who (student model), and the

how (tutoring model).

The applications of machine learning

techniques in ITS systems have been investigated in a

number of studies which suggest such techniques can

improve teaching and learning quality. These

techniques can be utilized in different parts of ITS

such as background knowledge [8]. Beck et al. used

machine learning to improve tutoring strategy [9].

Sision and Shimura suggested that analogical

learning is more appropriate for learning-level

analysis, whereas reinforcement learning is more

appropriate for tutoring [10]. Reinforcement learning

as a semi-supervised machine learning approach can

be used to train an agent to comply with the

student’s needs [6]. Frasson et al. designed the main

ITS components (student model, domain knowledge

and the tutoring model) in form of intelligent

agents[11]. Sision and Legaspi utilized reinforcement

learning to model the learning process [12]. Baffes

and Mooney implemented ASSERT which exploits

reinforcement learning and domain knowledge for

student modeling to find the errors that the new

students may make [13]. Lelouche devised a series of

interactive elements to model the learning process in

intelligent educational systems [14]. Finally, Hesham

and Oommen [15, 16, 17] and Wang and Jiang, Hoa

Ge et al. used learning automata to model the

students’ learning process as well as the interactions

between them [18, 19]. Mostly, computer-aided

tutorial systems present the educational material

indiscriminately and do not consider the learner’s

scientific and educational background. Thus, in such

systems, the tutorial methods do not suit the learner's

needs and interests due to the lack of learner's mental

and behavioral models. According to a well-

established theory in education, learners follow their

self-customized learning pattern through the learning

process [15]. Thus, a practical ITS must be able to

adapt the learners’ needs and provide them with

customized educational material. This capabilities can

be embedded to the tutorial systems only by applying

AI techniques.

Learners and teachers are the main entities

that play important roles in training system Teachers

are the main source of knowledge acquisition for

students, and the teachers’ skills profoundly influence

the students’ success rate. Thus, constructing proper

teacher models can positively influence the success

rate of an educational system. The teacher model

represents the decision making mechanism utilized as

teaching strategies and tries to optimally transfer the

educational material to the students. In this paper, we

propose a learning model for the teacher, so that s/he

can adapt to the students’ learning model. Using

MetaLA model proposed by Oommen and Hashem

teacher can distinguish each student’s model type [16,

17]. This structure can recognize the student’s mental

model during learning process. The teacher exploits

this model to learn how to help each student and

concurrently guides the students toward their best

learning performance using a penalty-reward

paradigm. Thus, through this learning-while-teaching

process, the teacher can increase the students’

learning efficiency significantly. Furthermore,

Interactions among students are another source of

learning in real-life educational environments.

Although traditional educational paradigms assume

that the students learning highly depends on teachers,

in reality, they also adjust their learning curve based

on the interactions among them. We generalize the

traditional paradigm to let the student to learn from a

so-called classroom of students learning at different

rates and abilities. One of the main objectives of the

proposed system in this study is to introduce a new

method based on the cellular learning automata to

model the interaction among students in a tutorial like

system. In this model a student is a member of a

classroom of students, in which s/he learns from the

teacher and obtains information from other students.

In our system, a student simulator is used to mimic

the behavior of real-life students during the learning

process. Students are divided into three categories

based on their mental model including slow, normal

and fast learners. This classification is in accordance

with the real educational systems. In this model, each

student is considered as a learning automaton within a

cell. The interactions among students are modeled as

the interactions among different learning automata

(i.e. neighbouring cells), and the student-teacher

interaction is simulated as the interaction learning

automata with their environment. This models aims to

accelerate the learning process and enhance the

overall quality of the students’ learning.

The paper is organized as follows: .in Section II
presents an overview on cellular learning automata.
The concept of tutorial-like systems is thoroughly
discussed in section III. Our proposed intelligent
tutorial-like system is elaborated on in section IV.
Section V presents the experimental results and
evaluations. Finally, section VI concludes the paper.

II. CELLULAR LEARNING AUTOMATA

Research in Learning automata started with

Tsetlin who introduced the use of deterministic and

stochastic automata operating in a random

environment as learning model [20]. The term

“Learning Automata” was first publicized in the

survey paper by Narendra and Thathachar [21]. The

goal of LA is to ‘determine the optimal action out of a

set of allowable actions”. These automata are mostly

used in the systems with incomplete environmental

information [22, 23]. An automaton can select an

action among a set of actions as its output. Once the

action is selected and executed, it is evaluated by the

environment and the corresponding feedback is sent

to the learning automata either as a positive feedback

signal (i.e. in case the action was done properly) or a

negative one (i.e. in case the action was done

improperly). The value of this signal determines

which actions should be chosen in the following

steps. This process makes the automata to gradually

converge to the most appropriate action regarding the

environmental criteria. The closed-loop interaction

between a stochastic automaton and the random

environment is shown in Figure 1.

The machine acts randomly in the

probabilistic environment, and updates the

probabilities of action selection based on the inputs

received from the environment. The learning

automata are classified into two classes including

variable structure automata (VSSA), fixed structure

automata (FSSA) [21]. A VSSA is defined as a a

quadruple M=<α,β,p,T> in which α={α1,α2 ,…, αn }

represents the action set of the automaton, β={β1,β2 ,

…, βr} is the input set, p={p1,p2 , …, pr} represents the

action probability set, and finally

p(n+1)=T[α(n),β(n),p(n)] represents the learning

algorithm [21, 24].

The automaton selects an action αi regarding

the action probability set p, and performs it within the

environment. Then, the automaton updates its action

probability set using equation (1) for favorable

responses, and equation (2) for unfavorable responses

based on the received reinforcement signal from the

environment.

Fig.1 Closed-loop interaction between a learning automaton and

environment











ij tpatptp

tpatptp

jjj

iii

)(.)()1(

))(1.()()1(
 (1)
















ij tpb
r

b
tp

tpbtp

ij

ji

)()1(
1

)1(

)()1()1(

 (2)

Where pi(t) is the probability of selecting

action αi at time t. a and b are reward and penalty

parameters, respectively. In the case of LR-P learning

algorithm the reward and penalty parameters are set

equal. LRεP algorithm sets the reward parameter

significantly smaller than penalty parameter, and in

LR-I learning algorithm, the penalty parameter is set to

zero. On the other hand, for fixed structure stochastic

automata (FSSA), their transitions are determined by

state transition probabilities that are fixed with time.

The FSSA suffers from slow convergence speed in

comparison with VSSA.

Pursuit automata are new models of learning

automata that estimates the optimal action was

introduced by Thathachar and Sastry [24, 25]. In their

novel approach, the updating algorithm improves its

convergence results by using the history to maintain

an estimate of the probability of each action being

rewarded, in what is called the estimate vector. While

in nonestimator algorithms the probability vector is

updated based on the environment’s response, in an

estimator algorithm the update is based on both the

environment’s response and the estimate vector. Thus,

it is easy to observe cases where an action is rewarded

while the probability of choosing another action is

increased [15]. The main advantage of the Pursuit

automata over other types is their high speed of

learning process.

Cellular automata introduced by Von

Neumann are mathematical models for defining

systems that consist of a large number of simple

identical components with local interactions [26]. The

combination of cellular automata and learning

automata results in cellular learning automata (CLA)

which is superior to cellular automata due to its

learning ability and also is superior to single learning

automaton due to its distributed processing ability

which is provided by employing a set of interacting

learning automata.

CLA is a mathematical model for simulating

dynamical complex systems that include large number

of simple components. These simple components

have learning capabilities and act together to produce

complex behavioral patterns. In other words, a CLA

is a cellular automaton in which a learning automaton

is assigned to its every cell [27]. The learning

automaton residing inside each cell determine the

state of the cell on the basis of its action probability

set. The active rule in CLA and the actions selected

by the neighbouring cells determine the reinforcement

signal to the learning automata residing in that cell.

The neighbouring learning automata of any cell

constitute its local environment. The state of the cell

is determined by the action probability set of the

learning automaton residing in that cell. The initial

value of the state may be set based on the past

experience or randomly. After initializing the states,

Random environment

Learning automata

β(n)

Automata’s

action
Environment’s

response

α(n)

the reinforcement signal to each learning automaton is

determined by the CLA rule. Then, each learning

automaton updates its action probability set based on

the reinforcement signal and the chosen action. This

process continues until the desired result is obtained.

A sample structure of a CLA is depicted in Figure 2

[27, 28].

Formally, a d−dimensional cellular learning

automata can be defined as A = (Zd, Φ, A, N, F),

where: Zd is a lattice of d−tuple of integer numbers,

Φ is a finite set of states, A is the set of learning

automatons each of which is assigned to each cell of

the cellular automata, N={X1,X 2, … , Xm} is a finite

subset of Zd called neighbourhood vector where m

represents the number of neighbouring cells and Xi ∈

Zd and finally F is a set of action functions each of

which determines the next action of each automaton.

The neighbourhood vector determines the relative

position of the neighbouring cells from any given cell

u in the lattice Zd. The neighbours of a particular cell

u are set of cells Which are located in a

neighbourhood radius r. We assume that there exists a

neighbourhood function N(u) mapping a cell u to the

set of its neighbours.

A number of applications for cellular learning

automata have been developed recently such as

modeling of commerce networks, fixed channel

assignment in cellular networks, image processing,

and VLSI placement [26].

III. TUTORIAL-LIKE SYSTEM

Tutorial-like systems are special educational

systems that involve artificial intelligence techniques

and methods to represent the knowledge, as well as to

conduct the learning interaction. These systems

represent a student’s state through the learning

process. In these systems, the student can learn and be

tested without the presence of a real person. Even

students can be replaced by a simulated student that

mimics a real-life student. The teacher attempts to

provide the training materials to a set of student

simulators.

Fig. 2 A sample structure of cellular learning automata
(Meybodi and Beigy 2004)

 Moreover, the students are allowed to share

their information with each other, so that they can

learn from each other which is more realistic than the

traditional learning paradigms. In our model,

components of the tutorial-like system follow a

scholastic model. The students obtain knowledge

through multiple choices questions. These questions

include several items with different confidence level.

The student gradually learns to choose the answer

with the highest confidence [15].

Tutorial-like systems have some similarities

with the well-established tutorial systems. They both

model the teacher, the student, and the domain

knowledge. However, they have some main

differences as well. These differences include

different teacher type, none-real students, uncertain

course material, and testing versus evaluation [15].

The first difference is different teacher type. In

tutorial systems, the teacher is assumed to have

perfect information regarding the material to be

taught. Also, the knowledge of teaching and

communicating the domain material and interactions

with students is embedded into the teacher model.

The teacher in our Tutorial-like system possesses

different features. First, the teacher in our model is

uncertain of the teaching material. Second, the teacher

does not initially possess any knowledge of “how to

teach” the domain subject. Rather, the teacher himself

is involved in a learning process, and s/he learns what

teaching material has to be presented to a particular

student. To do so, the teacher follows the Socratic

learning model by teaching the material using

questions that are presented to the students. Then, s/he

uses the feedback from the students and their

corresponding learning automata to suggest new

teaching materials. Although omitting the how-to-

teach knowledge from the teacher takes away the

bread-and-butter premise of the teaching process in a

tutorial system, in a tutorial-like system, it allows the

system to be modeled without excessive

complications and renders the modeling of knowledge

less burdensome.

The second difference is that a tutorial

system is used by real students, whereas in our

tutorial-like system, there is no need for real students.

Thus, the system can be used by either a student

simulator which mimics the behaviors and actions of

real students using the system, or an artificial entity

such as a software component that needs to learn

specific domain knowledge. The third difference

arises from uncertain course material. Unlike the

traditional tutorial systems in which the domain

knowledge is well-defined, in our tutorial-like system,

the domain-knowledge of teaching material has some

degree of uncertainty. The teaching material contains

some questions with the corresponding probability

which associates to the certainty of correct answers to

the questions. Finally, the last difference is testing

versus evaluation. Sanders (2008) differentiated

between the concepts of teaching evaluation and

teaching testing. The teaching evaluation is defined as

an interpretive process in which the teacher

determines the students’ performance and their needs.

In a tutorial system, an evaluation is required to

measure the student’s performance online. In our

tutorial-like system, the student acquires knowledge

using a Socratic model, where s/he gains knowledge

from answering questions without having any prior

knowledge about the subject material. In our model,

the testing is based on the performance of the set of

student simulators.

IV. INTELLIGENT TUTORIAL-LIKE SYSTEM

Our proposed model attempts to improve the

learning in tutorial-like systems using hybrid

techniques, so that slow and normal learners can

improve their learning abilities and approach the

abilities of fast learners. In this way, the learners’

learning efficiency is increased collectively regardless

of the group they belong to (i.e. slow, normal, or fast).

Similar to the model proposed in (Hashem and

Oommen April. 2010, 2013), our proposed model

consists of several learning automata connected

indirectly to one another. It improves the learning

process in three directions. First, the teacher finds the

best penalty-reward vector by simultaneous learning

and teaching (i.e. teacher’s learning scheme). Second,

the teacher helps learners to identify their mistakes

and correct them by testing learners during teaching

(i.e. teacher’s test scheme). Third, learners use their

classmates’ knowledge to improve their own by

communicating with them through CLA. Structure of

the proposed model is illustrated in figure 3.

As shown in Figure 3, the model represents the

structure of interconnection, which can be viewed as

being composed of two levels: a lower level

automaton, which is the student LA, and a higher

level automaton (i.e., the meta-LA) which attempts to

characterize the learning model of the students (or

student simulators), While the latter uses the tutorial-

like system and consists of following items:

 Learn teacher: by learning while teaching,

the teacher can learn and teach better at the

same time, thus improves her teaching skills.

 Teacher’s test: by testing learners during

teaching the teacher helps learners to identify

their mistakes and correct them.

Fig.3 Structure of proposed model

In some research works, it is mentioned that

in tutorial-like systems, regardless of the students’

different mental models, all of the students are

subjected to a uniform education strategy and exposed

to the same penalty-reward method [15]. On the other

hand, using the method proposed by Hashem and

Oommen the teacher can identify the student’s

learning trend (i.e. slow, normal, fast) and decide a

proper penalty-reward vector regarding the learner’s

behavior to guide her through the learning process. In

this study, we utilized MetaLA to model the students’

behavior which recognizes the student’s learning

trend in time intervals, and enables the teacher to

assign different penalty-reward vectors for each

student [15, 16].

A. Environment Learning Algorithm (teacher’s

learning)

The first step in this algorithm is to extract the
student’ trend from the student simulator using Once
the students’ learning trend is determined during a
specific time interval, the environment learning
algorithm tweaks the penalty-reward vector until the
best vector is assigned to each student regarding her
learning abilities. In this algorithm, the probability
vector is modified in both linear and nonlinear manner
using equations (3) and (4), respectively.






 studentnormal for

 student slowfor

N

S




 (3)

α(n) β(n)

iChange C

Teacher,s

test

Learn

Teacher

MetaLA (student

modeler)

Env. For

MetaLA

LAS
(students)

Environment

(teacher)

Observe

α(n) β(n)

ljn

X

nCXnC

nCnC

toSubject

DmXX

jl

jl

m


















,

0)(

)()()(

)()(

:

 ,10)(





Where one action αl continues to have the minimum

penalty probability cl

The purpose of our proposed model is to increase
the students’ collective learning efficiency regardless
of their different learning abilities. In this way,
students with slow and normal learning abilities get
closer to the abilities of fast students.

B. Teacher’s Test

We can consider another learning mechanism for

students through which they can detect and correct

their mistakes, improve their learning abilities, and

increase their learning speed. This mechanism is

performed by teacher who, periodically test the

students to familiarize them with their mistakes and

the corrections. Tests play an important role in the

learning process by evaluating the students’

knowledge and detecting their mistakes. A proper

way to model a test is to study each student’s (i.e.

automaton) behavior during various time periods and

identify their mistakes (i.e. wrong knowledge). This

process can be modeled using (5).

ri
N

P
MinB

N

P
MaxW

i

i

i

i ...1),(),(

Where W refers to the wrong action, B refers to the

best action, Ni is the number of times that the action is

selected within the time period, and Pi is the number

of penalties per action in each period. In other words,

the maximum penalty per action selection is assigned

to the wrong knowledge or incorrect behavior and

thus the probability of selecting that action is reduced.

On the other hand, the probability of selecting the best

action is increased proportionally. This process is

depicted in (6).












)()()1(

)()1()1(

tjhptjptp

tiphtip

j
 (6)

Where i is the index of wrong action and j is the index

of best action.

C. Tutorial-Like System Based on Cellular

Learning Automata

In this research, we simulate the tutorial-like

system using CLA. We employed a student simulator

to mimic real-life behavior of the students during their

learning process. As aforementioned, each student is

considered as a learning automaton in a cell. The

interactions between students are simulated through

the interactions among different learning automata

(i.e. neighbouring cells). These interactions can

accelerate the individual and collective learning

process. Structure of this model is illustrated in figure

4.

In the simulations, we applied the majority-

minority rule for neighbourhood effect [29]. This rule

states that if the cell selects action αi and at least five

of its neighbours select the same action, the selected

action is likely to be the correct one. In this case, the

neighbour’s response is considered as a favorable

response. On the other hand, if less than five

neighbours select the same action, the neighbours’

response is considered as undesirable response. We

integrate the neighbours’ responses with

environmental factors in a model shown in Table 1. In

this table, the neighbourhood rule presents the

responses of the neighbours (i.e. zero in case of

favorable response and one in case of undesirable

response).

Fig.4 structure of Tutorial-like System Based on Cellular Learning

Automata.

Table.1 Model for integration neighbourhood and environmental

factors

Result of αi
Environmental

factors

Neighborhood

rule

Reward Reward Neighbor=0

Reward=0.2 penalty=0.8 Penalty Neighbor=0

Reward=0.85 penalty=0.15 Reward Neighbor=1

Penalty Penalty Neighbor=1

(4)

(5)
α (n)

α(n)

α(n)

LAs (Student)

β E- student (n)

β E-classmate’s (n)

LAs(classmate’s)

Environment

(Teacher)

β(n)

Proposed

consolidated model

D. Modeling a Students

In this system, each student’s model

indicates the behavior, state of the mind, and

knowledge acquisition approach of that student.

We selected a slow VSSA to represent slow

students, a VSSA to model normal students, and

finally an estimator automata (Pursuit) to

simulate fast students. In addition, all actions and

overall performance of the student are recorded

online.

V. EXPERIMENTAL RESULTS

In order to evaluate the proposed system, we

implemented a prototype simulation of the student-

classroom interaction system. We defined nine

students in our simulations so that we can compare

our results with the system proposed in [15]. In the

system proposed in [15], the students only learn from

the teacher and do not have interaction abilities. Thus,

the cellular automaton employed in simulation

consisted of nine cells with a learning automaton

assigned to each cell regarding the type of the student

(i.e. whether he is a slow, normal or fast learner). In

order to simulate the fast-learning students, the

student simulator used a pursuit PLRI scheme with λ ϵ

[0.0041, 0.0127] (based on proposed model in [15]).

In this scheme, each LA updates its action probability

vector if it obtains a reward. To simulate the normal-

learning students, VSSA with the LRI scheme and λ ϵ

[0.0182, 0.0192] was utilized. Finally, a VSSA model

with LRI scheme and λ ϵ [0.0142, 0.0152] was

exploited to simulate the slow-learning students.

The evaluation is based on 75 samples of simulations

performed on the proposed system. The teaching

materials are represented by two different

environments: two four-action environment (E4,A and

E4,B) and two ten-action environments (E10,A and

E10,B). Both of these environments are widely used

benchmarks for evaluating learning automata [15].

We define a threshold, T, as the convergence

criterion. As soon as the as probability of selecting an

action exceeds the threshold value, we stop the

algorithm. In our simulations, we set the threshold to

0.99 which can result in a high accuracy. The value of

λ set for the mentioned environments is shown in

Table 2. Furthermore, the reward probabilities of

these environments are set to:

 E4,A ={0.7,0.5,0.3,0.2}, E4,B ={0.1,0.45, 0.84, 0.76},

E10,A ={0.7, 0.5, 0.3, 0.2, 0.4, 0.5, 0.4, 0.3, 0.5, 0.2},

E10,B ={0.1, 0.45, 0.84, 0.76, 0.2, 0.4, 0.6, 0.7, 0.5,

0.3}.

Table.2 The λ of the student simulators LA

Student type

E4,A E4,B E10,A E10,B

Fast-learning student 0.0127 0.0041 0.0127 0.0041

Normal-learning student 0.0192 0.0182 0.0192 0.0182

Slow-learning student 0.0142 0.0152 0.0142 0.0152

A. Environment Learning Algorithm (teacher

learning)

1) Simulation Based on the Linear

Algorithm

The simulation results obtained for the linear

method are shown in Table 3. As shown, the proposed

method leads to a significant improvement in the

proficiency level of the slow and normal students

compared to the method where all students are treated

similarly. By assigning the optimal penalty-reward

vector to each student, the algorithm approximates the

behavior of fast-learning students which in turn,

reduces the needed number of iterations for

convergence. For example, it is shown that the

number of iterations for normal-learning and slow-

learning students in EA,4 is decreased from 996 and

1382 to 656 and 760, respectively. As another

example, in EB,10 which is considered as a difficult

environment due to the large number selected actions

and close penalty probability vector, it is observed

that the number of iterations for normal students for

achieving convergence is reduced from 2114 to 1843,

and similarly, for slow students it is decreased from

2859 to 2134. Considering that the number of

iterations for obtaining convergence for fast students

is 1655, we find that when the teacher learns how to

deal with students, the students’ learning process will

improve.

2) Simulation based on the nonLinear

Algorithm

Moreover, we simulated the system with

nonlinear algorithm whose results are depicted in

Table 4. Same to the linear algorithm, it is shown that

the slow and normal students’ learning abilities are

improved considerably, and they have managed to

approximate the learning trends of fast students.

Comparing the results from linear and nonlinear

algorithms leads to the conclusion that the nonlinear

algorithms can find the optimal penalty-reward vector

for each student within fewer iterations due to its

ability in modifying the probability vector with more

accuracy than the linear technique.

The improvements of students learning

process in both proposed model and model introduced

in are shown in Figure 5 [15]. It is shown that the

proposed model improves the learning abilities of

slow and normal students considerably, Furthermore,

it is shown that the learning speed of the slow and

normal students closely tracks the learning speed of

the fast students.

Fig. 5 The rate of students learning in the reference model (a) compared with the proposed model (b).

Table.3 Convergence of linear algorithm and comparison with presented model in [15].

Fast student

(λ: 0.004 - 0.0127)
Normal student

(λ: 0.0182 - 0.0192)

Slow student

(λ: 0.0142 - 0.0152)

of Iteration to converge

Env.
of

Actions
Old model

[15]
λ

Old model

[15]

proposed

model

Old model

[15]

proposed

model

EA 4 572 λ S=0.01, λ N=0.007 996 656 1382 760

EB 4 1482 λ S=0.002, λ N=0.001 2201 1669 2633 1673

EA 10 686 λ S=0.009, λ N=0.004 1297 852 1804 1137

EB 10 1655 λ S=0.002, λ N=0.001 2114 1843 2859 2134

Reward probabilities for 4-action environment are :

EA,4: 0.7 0.5 0.3 0.2 EB,4: 0.1 0.45 0.84 0.76

Reward probabilities for 10- action environment are:

EA,10: 0.7 0.5 0.3 0.2 0.4 0.5 0.4 0.3 0.5 0.2 EB,10: 0.1 0.45 0.84 0.76 0.2 0.4 0.6 0.7 0.5 0.3

Iteration Iteration

(x-axis: Iteration , y-axis: Threshold)

 ,

a b

Table.4 Convergence of nonlinear algorithm and comparison with presented model in [15]

Fast student

(λ: 0.004 - 0.0127)
Normal student

(λ: 0.0182 - 0.0192)

Slow student

(λ: 0.0142 - 0.0152)

of Iteration to converge

Env.
of

Actions
Old model

[15]
λ

Old model

[15]

proposed

model

Old model

[15]

proposed

model

EA 4 572 λ S=0.01, λ N=0.007 996 588 1382 1011

EB 4 1482 λ S=0.002, λ N=0.001 2201 1639 2633 1645

EA 10 686 λ S=0.009, λ N=0.004 1297 805 1804 1041

EB 10 1655 λ S=0.002, λ N=0.001 2114 1733 2859 1838

Reward probabilities for 4-action environment are :

EA,4: 0.7 0.5 0.3 0.2 EB,4: 0.1 0.45 0.84 0.76

Reward probabilities for 10- action environment are:

EA,10: 0.7 0.5 0.3 0.2 0.4 0.5 0.4 0.3 0.5 0.2 EB,10: 0.1 0.45 0.84 0.76 0.2 0.4 0.6 0.7 0.5 0.3

Table.5 Convergence of teacher’s test model and comparison with presented model in [15]

Fast student

(λ: 0.004 - 0.0127)
Normal student

(λ: 0.0182 - 0.0192)

Slow student

(λ: 0.0142 - 0.0152)

of Iteration to converge

Env.
of

Actions
Old model

[15]

proposed

model

Old model

[15]

proposed

model

Old model

[15]

proposed

model

EA 4 572 522 996 713 1382 1187

EB 4 1482 1371 2201 1301 2633 1657

EA 10 686 630 1297 1042 1804 1434

EB 10 1655 1502 2114 1474 2859 1842

Reward probabilities for 4-action environment are :

EA,4: 0.7 0.5 0.3 0.2 EB,4: 0.1 0.45 0.84 0.76

Reward probabilities for 10- action environment are:

EA,10: 0.7 0.5 0.3 0.2 0.4 0.5 0.4 0.3 0.5 0.2 EB,10: 0.1 0.45 0.84 0.76 0.2 0.4 0.6 0.7 0.5 0.3

3) Teacher’s Test

Results indicated in Table 5 indicate that test

design can help different students to converge faster

towards their learning goal. For example, in EA,4, the

number of iterations required for the convergence of

slow-learning students is reduced from 1382 to 1187,

which indicates that the tests can help students learn

from their mistakes and stop repeating them. As

another example, in EA,4 and EA,10 , the number of

iterations required for convergence of normal students

is reduced from 996 to 713, and from 1297 to 1042,

respectively. Similarly, the number of iterations

required for convergence of normal students in EB,4

and EB,10 is reduced from 2201 to 1301, and from

2114 to 1474, respectively.

4) Student Interaction with Cellular

Learning Automata

Diversity of students with different learning

abilities in an educational environment, according to

different knowledge level of the learners and their

interactions, the benefits related to each learner or a

group of learners is different from each other. For

example, when the number of fast learners is more

than the number of slow learners in the learning

group, there is a high probability that the slow learner

interacts with faster individuals. Thus, he will have a

significant progress in his relevant process of learning

providing the interactions he has with smarter

students and vice versa.

The results of simulating this theory are presented in

table 6. The experimental results show that the

knowledge of the slow student has a significant

progress in the proposed model compared to the

model of the students only interacted with his teacher

and only learnt from him. Moreover, the number of

iterations required to reach to convergence was

decreased. For example, in the four-action E 4,A

environment, the number of iterations needed for the

slow-learning student LA to converge decreased to

1110 from 1382. This indicates the effective

relationship of the slow student with his other

classmates because here three slow students

communicated with six other students who had

superior knowledge and learn faster than the three

slow ones. Also, the learning process of the fast

student has slowed down. This deterioration in the

learning process of the fast student is due to the fact

that there are 3 fast students and 6 normal and slow

students in this experiment. Therefore, when the fast

student seeks help for improvement, he may find

eight other students two of whom are in the same

knowledge as himself and six others knowledge are

lower than him including three normal students and

three slow learner students. In other words, there are

no genius help for the fast student in this group, so it

is clear that his learning process slows down in this

case. For normal students, the interaction with their

other fast and slow learner students can be beneficial.

For example, in the four and ten-action E4,A and E10,A

environments, the number of iterations needed for

convergence has decreased from 996 to 696 and from

1297 to 1059. On the other hand, in the four and ten-

action E4,B and E10,B environments, the number of

iterations needed for convergence has decreased from

2201 to 1286 and from 2114 to 1419. The results of

this simulation suggest that the difference between

iterations as well as the rate of improvement for slow

students is more than normal students. This is due to

the fact that there are two superior groups of students

for slow students whose knowledge are higher than

slow students (to get help from in order to improve in

their learning process). However, there are one

superior group and one lower group of students for

the normal students. Therefore, while this interaction

may improve learning status of the normal student,

oscillations between these two groups will slow down

at some points. Furthermore, the results shown in the

table 5 and 3 indicate that the convergence time in

E4,B and E10,B environments is greater than of E4,A and

E10,A environments. This reflects the fact that the set

of EB environments was more difficult because of the

proximity of the underlying penalty/reward

probabilities.

Also, the results showed that the ten-action

environments were more difficult than the four-action

environments. The iterations required for the LA

convergence increased from the four-action

environments to the ten-action Environments. The

rates of learning for a slow, normal and fast student

are shown in Figure 6.

Table.6 Convergence of proposed model and comparison with presented model in [15].

Fast student

(λ: 0.004 - 0.0127)
Normal student

(λ: 0.0182 - 0.0192)

Slow student

(λ: 0.0142 - 0.0152)

of Iteration to converge

Env.
of

Actions
Old model

[15]

proposed

model

Old model

[15]

proposed

model

Old model

[15]

proposed

model

EA 4 572 662 996 696 1382 1110

EB 4 1482 1564 2201 1286 2633 1442

EA 10 686 704 1297 1059 1804 1424

EB 10 1655 1642 2114 1419 2859 1479

Reward probabilities for 4-action environment are :

EA,4: 0.7 0.5 0.3 0.2 EB,4: 0.1 0.45 0.84 0.76

Reward probabilities for 10- action environment are:

EA,10: 0.7 0.5 0.3 0.2 0.4 0.5 0.4 0.3 0.5 0.2 EB,10: 0.1 0.45 0.84 0.76 0.2 0.4 0.6 0.7 0.5 0.3

Fig. 6 Rate of Learning for Students. (x-axis: Iteration , y-axis: Threshold)

1. CONCLUSION

Considering the studies conducted on

electronic tutorial systems and the strategies presented

for improving their quality, we can conclude that

interactions play a crucial role in these systems. In

addition to being influenced by the teacher, learners

in a tutorial environment learn by interacting with

other learners. Moreover, studying educational trends

in people’s real life shows that the way learners are

treated plays an important role in their academic

progress. In this article, a new approach was

presented for modeling tutorial-like systems and

improving the student modeling method. We

managed to design a teacher model with the ability to

learn while teaching how to approach the learners and

guide them through the learning process towards

faster learning. Also, through testing the learners

during their learning period, the method helped them

to identify and correct their mistakes. In addition, the

students’ interactions through cellular learning

automata were simulated. As is shown in the results,

the proposed model is a suitable mechanism for

executing the learning process, thus providing

maximal benefits for learners in general. As for our

future work, we will try to address the experimental

problems listed in previous section.

REFERENCES

[1] V.J.Shute ; J.Psotka., “Intelligent Tutoring Systems: Past,

Present, and Future”, Handbook of Research on Educational
Communications and Technology, Scholastic
Publications1995.

Number of iteration

[2] E.Wenger, “Artificial Intelligence and Tutoring Systems:
Computational and Cognitive Approaches to the
Communication of Knowledge” ,Los Altos, CA: Morgan
Kaufmann Publishers, Inc1987.

[3] E.Fischetti, A.Gisolfi., “From Computer-Aided Instruction to
Intelligent Tutoring Systems”, Educ. Technol, 1990, vol, 30,
no. 8, pp. 7–17.

[4] R.Winkels , J.Breuker., “ What’s in an ITS? a functional
Decomposition, in New Directions for Intelligent Tutoring
Systems”, E. Costa, Ed.Berlin, Springer-Verlag, Germany,
1990.

[5] M. K. Hashem; “Learning automata based intelligent
tutorial-like systems”, Ph.D. dissertation, School Comput.
Sci., Carleton Univ., Ottawa, ON, Canada, 2007.

[6] J.Self, “The Defining Characteristics of Intelligent Tutoring
Systems Research: ITSs Care, Precisel”, Int. J. Artif. Intell.
Educ,1990, vol. 10, pp. 350–364.

[7] T. A. Atolage , V. Hlupic, “A multimedia intelligent tutoring
system for simulation modeling. In Andraddttir” S, Healy KJ,
Withers DH, Nelson BL, editors, proceeding of the 29th
conference on winter simulation, Atlanta, Georgina. 1997,
504-509.

[8] R. S. Sutton, A. G. Batro, “ Reinforcement learning: an
intruduction”. MIT Press, Cambridge, MA, 1998.

[9] J. E. beck, B. P. woolf, C. R. beal, “A Machine Learning
Architecture for Intelligent Tutor Construction”, AAAI-00
Proceedings. Copyright © 2000,

[10] R. Sisin, M. Shirnura, “Student modeling and machine
learning”. International journal of AI in education, 9(1-2),
1998.

[11] C. Frasson, T. Mengelle, E. Aimeur, G. Gouarderes G. “An
actor-based architecture for intelligent tutoring system: in
intelligent tutoring system”. In internatinal conference, ITS,
96: lecture note in computer science, Springer-verlag, 1996,
Berlin,57-65.

[12] R.S.Legaspi, R.C.Sison, “Modeling the tutor using
reinforcement learning”. in Proc. PCSC , 2000, pp. 194–196.

[13] P.Baffes, R.Mooney., “Refinement-based student modeling
and automated bug library construction”. J.Artif. Intell. educ,
1996, vol. 7, no. 1, pp. 75–116.

[14] R.Lelouche., “A Collection of pedagogical agents for
intelligent educational systems in intelligent tutoring
systems”. 6th international Conference, ITS, Lecture Notes in
computer Science, Springer-verlag, Berlin, 2000, pp. 143-
152.

[15] Hashem. M. K , B. J. Oommen. “Modeling a Student-
Classroom Interaction in a Tutorial-Like System Using
Learning Automata,” IEEE Trans.Syst., Man, Cybern. B,
Cybern. Feb. 2010, vol.40, no.1.

[16] M.K.Hashem, “Modeling a Student’s Behavior in a Tutorial-
Like System Using Learning Automata”, Ph.D. dissertation,
School Comput. Sci., Carleton Univ., Ottawa, ON, Canada,
2010.

[17] Hashem. M. K , B. J. Oommen. “Modeling the Learning
process of the teacher in a Tutorial-Like System Using
Learning Automata,” IEEE Trans.Syst., Man, Cybern. B,
Cybern, Dec. 2013, vol.43, no.6, pp. 2010-2031.

[18] Y. Wang, W. Jiang. “Learning automata based cooperative
student-team in tutorial-like system”. 10th International
conference, ICIC, Taiyuan,china, 2014, 154- 161.

[19] Ge. Hao, Y. Wang, Y. Gua, C.L.P. Chen. S. Li.
“Acooperative framework of learning automata and its
application in tutorial-like system”. ScienceDirect, Elsevier
B.V, 2015.

[20] M.L. Testlin. “On the behavior of finite automata
in randim media, automation and remote
control". 22:1210-1962.

[21] K.S.Narendra., M.A.L.Thathachar, “ Learning Automata: An
Introduction”. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[22] S.Lakshmivarahan, “Learning Algorithms: Theory and
Applications”. Springer-Verlag: Berlin, Germany, 1981.

[23] K.Najim, A.S.Poznyak, “Learning Automata: Theory and
Applications”. Oxford, U.K 1994: Pergamon.

[24] B.J.Oommen., M.Agache, “Continuous and Discretized
Pursuit Learning Schemes: Various Algorithms and Their
Comparison”, IEEE Trans. Syst., Man. Cyrern. Jun 2001 B,
vol. 31, no. 3, pp. 277-278.

[25] M.A.L.Thathachar, P.S.Sastry, “Varieties of Learning
Automata: An Overview”, IEEE Trans. Syst., Man, Cybern.
B, Cybern, vol. 32, no. 6, pp. 711–722, 2007.

[26] J.V. Neumann, “The theory of self-reproducing automata”
Burks AW (ed), Univ. of Illinois Press, Urbana and London
1996.

[27] M.R.Meybodi., H.Beigy, “ A Mathematical Framework for
Cellular Learning Automata” Advance on Complex Syst.
Sep./Dec 2004 Nos. 3-4.

[28] M.R.Meybodi., H.Beigy, M.Taherkhani, “Cellular Learning
Automata and its Applications”, Sharif Journal of Science and
Technology, 2003,vol. 19, no.25, pp.54-77.

[29] J.L. Schiff, “Cellular Learning Automata: A Discrete View
of the World, A John Wily & Sons, 2007,Inc.,
Publication1807.

Hajar Hajary received her

B.Sc. in Software Computer

Engineering from Mobarakeh

Azad University, Esfahan,

Iran and M.Sc in Software

Computer Engineering from

Science and Research Branch

Islamic Azad university,

Tehran, Iran. Her research

interests include cloud

computing, intelligent systems. Her research interests

include distributed intelligent system, machine

learning and multi agent system.

Ali Ahmadi received his

B.Sc. in Electrical

Engineering from Amirkabir

University, Tehran, Iran in

1991 and M.Sc. and Ph.D. in

Artificial Intelligence and

Soft Computing from Osaka

Prefecture University, Japan

in 2001 and 2004,

respectively. He worked as a

researcher in Research Center for Nanodevices and

Systems in Hiroshima University, Japan during 2004–

2007. He has been with K.N. Toosi University of

Technology, Tehran, Iran as assistant professor from

2007. His research interests include distributed

intelligent systems, human-computer interaction,

computational intelligence, adaptation and interactive

learning models, virtual reality and artificial life.

Maryam Khani Received her

B.Sc. in Software Engineering

from Mobarakeh Azad

University of Esfahan, Iran

and her M.Sc. in Mechatronic

Engineering from Islamic

Azad university, South Tehran

Branch, Tehran, Iran. Her

research interests include

intelligent systems, human-

agent interaction, multi-agent system, learning

machine and trust in social Internet of things as well.

