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Abstract—In this paper we show how the classical and modern adaptive filter algorithms can be introduced in a
unified way. The Max normalized least mean squares (MAX-NLMS), N-Max NLMS, the family of SPU-NLMS, SPU
transform domain adaptive filter (SPU-TDAF), and SPU subband adaptive filter (SPU-SAF) are particular
algorithms are established in a unified way. Following this, the concept of set-membership (SM) adaptive filtering is
extended to this framework, and a unified approach to derivation of SM and SM-SPU adaptive filters is presented.
The SM-NLMS, SM-TDAF, SM-SAF, SM-SPU-NLMS, and SM-SPUSAF are presented based on this approach. Also,
this concept is extended to the SPU affine projection (SPU-AP) and SPUTDAF algorithms and two new algorithms
which are called SM-SPU-AP and SM-SPU-TDAF algorithms, are established. These novel algorithms are
computationally efficient. The good performance of the presented algorithms is demonstrated in system identification

application.
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L. INTRODUCTION

Adaptive filtering is an important subfield of
digital ~ signal  processing having numerous
applications [1], [2], [3], [4]. In some of these
applications, a large number of filter coefficients are
needed to achieve an acceptable performance.
Therefore the computational complexity is one of the
main problems in these applications. Several adaptive
filter algorithms such as the subband adaptive filters
(SAFs), the adaptive filter algorithms with selective
partial updates (SPU) and the setmembership (SM)
filtering have been proposed to solve this problem.

The SPU adaptive algorithms update only a subset
of the filter coefficients in each time iteration and
consequently reduce the computational complexity.

The Max normalized least mean squares (Max-
NLMS) [5], the N-Max NLMS [6], [7], variants of the
selective partial update normalized least mean square
(SPU-NLMS) [8], [9], [10], [11], the SPU transform
domain LMS (SPU-TDAF) [12], the SPU affine
projection algorithm (SPU-APA), [13], [14], and
selective partial update subband adaptive filter (SPU-
SAF) [15] are important examples of this family of
adaptive filter algorithms. Unfortunately, as with
many other adaptive filter algorithms, the step-size
determines the tradeoff between steady-state mean
square error (MSE) and convergence rate in SPU
adaptive filters.

Having fast convergence, low steady-state MSE,
and low computational complexity at the same time is

International Journal of Information & Communication Technology




IJICT volume 2- Number 2- July 2010

highly desirable. The set-membership normalized
LMS (SM-NLMS) is one of the algorithms that has
these three features [16]. Based on [16], different SM
adaptive algorithms have been developed. The SM
affine projection algorithm (SM-APA) [17], [18], and
the SM binormalized data-reusing LMS (SM-
BNDRLMS) algorithms [19] are important examples
of this family of adaptive filters. In [20], the SM-PU-
NLMS was presented based on the combination of the
partial updating and setmembership filtering
approaches to achieve a more computationally
efficient algorithm with reasonable performance.

In [21], the subband adaptive algorithm called
normalized SAF (NSAF) was developed based on a
constrained optimization problem. In [15], the
concepts of SM filtering and SPU adaptation were
also extended to NSAF, and SM-SAF, SPUSAF, and
SM-SPU-SAF algorithms were developed which were
computationally efficient.

In this paper we present a unified approach to
establishment of the classical and modemn adaptive
filter algorithms. Accordingly, we present a unified
approach to derivation of SM, and SM-SPU adaptive
filtering algorithms. What we propose in this paper
can be summarized as follows:

* The establishment of the classical and SPU
adaptive filter algorithms in a unified way. The
NLMS, -NLMS, the family of APA, TDAF, Max-
NLMS, N-Max NLMS, the family of SPU-NLMS,
SPU-TDAF, and SPU-SAF are established through
this approach.

* The establishment of a unified approach to
derivation of the SM adaptive filter algorithms. The
SM-NLMS, SM-APA, SM-TDAF, SM-SAF
algorithms are established based on this approach.

* A unified combination of the SPU and SM
approaches to derivation of existing SM-SPU
adaptive filter algorithms. The SM-SPU-NLMS, and
SM-SPU-SAF are established with this approach.

* The establishment of two new adaptive
algorithms which are called, SM-SPU-APA, and SM-
SPU-TDAF.

* Demonstrating of the presented algorithms in
system identification application.

We have organized our paper as follows: In the
following section we briefly review the NLMS, the
SPU-NLMS and the SM-NLMS algorithms. In the
next section the generic filter update equations are
introduced. In Section 1V, the classical and SPU
adaptive filter algorithms are derived. In Section V, a
unified approach to derivation of SM adaptive
filtering is presented. Section VI presents the relations
for SM-SPU adaptive filter algorithms based on the
unified approach. The computational complexity of
the presented algorithms is studied in Section VIL
Finally, we present several simulation results to
demonstrate the good performance of the SM-SPUAP
and SM-SPU-TDAF algorithms. Throughout the
paper, the following notations are adopted:

H Norm of a scalar.

”” Squared Euclidean norm of a vector.

T :
() Transpose of a vector or a matrix.
Tr(.) Trace of a matrix.

diag(.) has the same meaning as the MATLAB

operator with the same name: If its argument is a
vector, a diagonal matrix with the the diagonal
clements given by the vector argument results. If the
argument is a matrix, its diagonal is extracted into a
resulting vector.

II. BACKGROUND ONNLMS, SPU-NLMS AND
SM-NLMS ALGORITHMS

Figure 1 shows a typical adaptive filter setup,
where x(n), d(n) and e(n) are the input, the desired
and output error signals, respectively. Here, h(n) is a
M X1 column vector of filter coefficients at iteration
n.

d{n)

y(n)

. eln)

—~{+)
|

( n)

Fig. 1. A typical adaptive filter setup

It is well known that the NLMS algorithm can be
derived from the solution of the following
optimization problem:

min || h(n+1) ~h(n) Ik M

subject to
d(n)=x" (m)h(n+1) @
where x(n) = [x(n),x(n=1),...x(n— M +D]".

Using the method of Lagrange multipliers to solve
this optimization problem leads to the following
recursion:

h(n+1)=h(n) + __/.t_2 x(n)e(n) 3)
I x(m) |
where e(n) =d(n)—x" (n)h(n), and K is the
step-size which is introduced in (3) to control over the
convergence speed and excess MSE (EMSE).
Now partition the input signal vector and the
vector of filter coefficients into K blocks each of
length L' which are defined as

x(n) =[x] (n),x] (n),....xx (W] @

h(n) =[h{ (),h (n),.... hy (M)’ ©
The SPU-NLMS algorithm for a single block update
in every iteration, minimizes following optimization
problem:

min)||hj(1f1+1)—hj(n)||2 (6)

h,(n+l

! Note that K= % and is an integer
L
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subject to (2), where j denotes the index of the block
that should be updated. Again by using the method of
Lagrange multipliers, the update equation for SPU-
NLMS is given by:

hj(n+1):hj(n)+%xj(n)e(n) @)
%, () ||

where j =argmax || x,(n) ||° for ISi< K [9].

The SM-NLMS algorithm minimizes (1) subject to
h(n+1)e ¥, where™

¥, =theRY | dn)-x"(nh <y} ®)

This aim is achieved by an orthogonal projection of
the previous estimate of h onto the closest boundary
of ‘Pn [16]. The resulted recursion for the SM-
NLMS is given by:

h(+1) = h(n) + ﬂz— x(n)e(n) ©
| x(n) ||

where

==t
1 o) ifle(m) >y

0 Otherwise

a(n) =

III. THE GENERIC ADAPTIVE FILTER
UPDATE EQUATIONS

From [22], the generic filter vector update equation
can be stated as:

h(n+1) = h(n) + LC(n)X(n)e(n) (11)
where

e(n) =d(n) - X" (n)h(n) (12)
is the output error vector. The matrix X(7) is a
M X P input signal matrix which is defined as®:
X(») =[x(n),x(n=1),...x(n—(P-1))] 3
and d(n)is a P X1 vector of desired signal which is
given by:

d(n) =[d(n),d(n-1),..,d(n—(P-1))]" a4

The matrix C(n) is a M XM invertible matrix

called the preconditioner. Selecting C(n) as an

approximate inverse of autocorrelation matrix, we can
improve the convergence speed dramatically relative
to the case when no preconditioner is employed [22].
One strategy for selecting the matrix C(n) is to
use the regularized inverse of the estimated
autocorrelation matrix as a preconditioner. In this
case, by using the matrix inversion lemma, we write:

2 . . g
The set \Pn is referred to as the constraint set, and its

boundaries are hyperplanes, Also, ¥ is the magnitude of the error
bound

3 . o .
The parameter P is a positive integer (usually, but not necessarily
P M)
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C(m)X(n) = X(n)W(n) (15)
where W(n) is the PX P invertible matrix called
the weighting matrix [23], [24]. The interested reader
is referred to [22] for more details. From this, one
might argue that in some cases, a suitable alternative
form of the generic adaptive filter is given by:

h(n+1) =h(n)+ X(n)W(n)e(n) (16)
To have both forms of the generic update equations,

we prefer to call the following equation as generic
adaptive filter:

h(n+1) =h(#n)+ uC(n)X(n)W(n)e(n) amn

IV. DERIVATION OF ADAPTIVE FILTER
ALGORITHMS

We can now make specific choices for the
preconditioner matrix C(#) or the weighting matrix

W(n)as well as for the parameter P . Different

adaptive filter algorithms can be viewed as specific
instantiations of the generic adaptive filter update
equation (equations (11), (16), or (17)) [22], [23],
[25].

A.  Derivation of the NLMS, € -NLMS and the
Family of Affine Projection Algorithms

By substituting the matrices C(n), W(#), and

the parameter P from Table I in the generic adaptive
filter update equations, the NLMS, and the & -NLMS
are established respectively. From the generic
adaptive filter update equation, we can also derive the
family of affine projection algorithms. These
algorithms are the standard version of APA, the
regularized APA (R-APA) [26], and the binormalized
data-reusing LMS (BNDR-LMS) [27].

B.  Derivation of the TDAF and SAF Algorithms

The transform domain adaptive filter (TDAF)
algorithm [2] is also established based on
the parameter sclections from Table 1 [22]*

For the subband adaptive filters C(n)=1,

W(n) = Fd + diag{diagF" X" (n)X(n)F} }T'F’
and the input signal matrix and the vector of desired
signal are defined as

X(n) = [x(nS),x(1S = 1),...,x(nS — (D —1))]
and

d(n) =[d(nS),d(nS - 1),...,d(nS — (D -1))
respectively where F is the DX .S matrix whose
columns are the unit responses of the channel filters
of the analysis filter bank where, .S is the number of

subbands and D is the length of the channel filters
[22]. It is interesting to note that the adaptive filter
algorithms in [28], [29], [21], while derived from

* The matrix T is an MxM orthogonal transform matrix
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different points of view, are the same [24]. Selecting
£ =0 in W(n), results in (8) from [29].

C. Derivation of the Family of Adaptive Filter
Algorithms with Selective Partial Updates
From (17), the generic filter coefficients update
equation for P =1, and W(n) =1, can be stated

as:

h(n+1) = h(n) + uC(n)x(n)e(n) (18)
As we noted, in the adaptive filter algorithms with
selective partial updates, the M X1 vector of filter
coefficients is partitioned into K blocks each of

length L and in each iteration a subset of these blocks
is updated. For this family of adaptive filters, the

matrix C(#) can be obtained from Table II, where

the A matrix is the M X M diagonal matrix with the
1 and 0 blocks each of length L on the diagonal
and the positions of 1’s on the diagonal determine
which coefficients should be updated in each
iteration. In Table II, the parameter L is the length of
the block, K is the number of blocks, and N is the
number of blocks to update. Through the specific
choices for L, N, and the matrix C(n), different

adaptive filter algorithms with selective partial
updates are established.

By partitioning the regressor vector X(n) into
K blocks each of length L, the positions of 1
blocks ( NV blocks and N < K) on the diagonal of

A matrix for each iteration in the family of SPU-
NLMS adaptive algorithms are determined by the
following procedure:

1) The | x;(n) ||* values are sorted for
0<j<K-1,where
Xj (n)=[x(n—jL),x(n—jL-1),....x(n—jL—(L-1))]

2) The values that determine the positions of 1
blocks correspond to the N largest values of

2
X, (n) |l
From [22] the filter coefficients update equation for

transform domain adaptive filters (TDAF) can be
stated as:

w(n +1) = w(n) + uA *u(n)e(n) (19)
where W(n) = T h(n),u(n) = T'x(n) are the

transformed matrix, and A? is the power matrix of
transform outputs. This matrix can be estimated by

A7 (n) =[diag{diag () A’ (i)}}]"
where 0 << A <1. By partitioning u(n)into K
blocks each of length L and A >(n) into K

matrices each of size L XL, the positions of 1
blocks (N blocks and N < K ) on the diagonal of
matrix A for each iteration in the SPU-TDAF
adaptive algorithm are determined by the following
procedure [12]:

1) The u? (n)A;2 (mu ; (n) values

are sorted for 0<j<K-1,
A7 (n) = diag{Ay (n),....,A ¢ (1)} and

where

u; (m)=[u(n—jL)u(n—jL-1),...u(n—jL—-L+1)]L

2) The j values that determine the positions of
1 blocks correspond to the N largest values of
T -2
u; (MA(mu,(n).
Therefore, SPU-TDAF adaptive algorithm can be
written as:

w(n+1)=w(n)+ uAA” (n)u(n)e(n) (20)

Multiplying both sides of this equation by T from the
left, we obtain:

h(n+1) = h(n) + uTAA > (n)T" x(n)e(n) (21)
which is in the form of (18) with
C(n) = TAA(n)T" . The particular choices and

their corresponding algorithms are summarized in
Tables I and II.

TABLE I
THE MOST COMMON FAMILIES OF ADAPTIVE FILTER
ALGORITHMS CAN BE DESCRIBED THROUGH

h{(n+1)=h{n)+pC(n)X{(r)W{n)e(n)

Algorithm C(nyand W(n)

C(n) 11 and W(n) =1

B 1
= U

or

1
W(n) = [W]I and C(n) =1

Cn) = (A + x(mx () and W(n) =1
or

W) = (e +x (mx(n) " Tand C(n) =1

W(n) = (XT(n)X(n))_1 and C(n) =1

W) = (X (X)) | and C(n) =1

C(n) = (A + XWX (1) and W(n) =1
or
W(n) = (d + X (X)) and C(n) = 1

and W(n)=1

C(n)=T [diagldiag I, A" T x()x ()T 1

@/\N\Intemational Journal of Information & Communication Technology




TABLE II
FAMILY OF ADAPTIVE FILTERS WITH SELECTIVE
PARTIAL UPDATES

Algorithm Pl L] & Cn)

Max-NLMS [5] 1] 1 A
IAx(mIP

N-Max-NLMS [61,[7] A

Ix(m)*

SPU-NLMS[8] < A
Ix(a)F

SPU-NLMS[9],[30] M | A
Il Ax(n)*

| SPU-NLMS[9] A

I AX(m)I*

SPU-NLMS[9] < A
lAx(m)”

SPU-TDAF[12]

=2 il
TAA  (m)T

D. Derivation of the SPU-SAF Algorithms

From [15], the filter update equation for SPU-SAF
can be stated as:

h(n +1) =h(n) + LAX(n)F[L(n)]'F e(n) (22)
where

L(n) = diag{diag{F" (n)X" (n)A” AX(n)F}}
and e(n) =d(n) ~ X" (n)h(n).

The A matrix is again the M X M diagonal
matrix with the 1 and 0 blocks each of length L on
the diagonal and the positions of 1°s on the diagonal
determine which coefficients should be updated in

each subband at every adaptation. In [15], we
proposed two criteria to find these positions. The

positions of the 1 blocks are determined by the
following procedure:

1) Partition X(#)F into K matrices each of size
LxS as:
- X,(n)
Xi(n)
X(n)F =

Xy ()
2) Compute the following values:
T .
Ir(X;(m)X,(n) for 0< j<K -1 (24)
3) The positions of 1 blocks on the diagonal
correspond to the NV largest values of (24).

Another strategy to find the positions of 1 blocks can
be summarized as follows:
1) Compute the following values:

e’ (n)Fldiag{diag{X[(mX (n)} }T'Fe(n) s
for 0<j<K-1 (

2) The positions of 1 blocks on the diagonal
correspond to the N smallest values of (25).

)
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Comparing (22) with the generic filter vector update
equation, we find that with substituting C(n) = Al
and W(n)=F[I'(n)]'F’", the SPU-SAF is
established.

V. SET-MEMBERSHIP ADAPTIVE FILTER
ALGORITHMS

A.  Set-Membership Affine Projection (SM-AP)
Algorithms

From [17], we know that the SM-APA minimizes
(1) subjectto he ¥, "W, N..NY,_,,, where:

¥ . =theRY:|dn-i)-x"(n—-ih <y} (26)
In [17], it has been shown that the suitable update
equation for SM-APA can be stated as:

h(n+1) =h(n)+ X)X (n)X(n))" gedm)e(n) 27)
where q =[1,0,...,0]" and @(#)can be obtained

from (10). It is important to note that the SM-NLMS
in [16], and SMBNDR-LMS in [19] can also be
established when P =1, and P = 2 respectively.

B.  Set-Membership TDAF (SM-TDAF) Algorithms
By defining z(n)= Aw(n), the SM-TDAF

minimizes the following objective function:

min || z(n +1) - z(n) | (28)

subject to Z(n)€ P, where:
@, ={ze R":|d(n)-g" (mz|<y} (29)

and g(n)= A 'u(n). This aim is achieved by an
orthogonal projection of the previous estimate of z
onto the closest boundary of @ . Doing this, the
recursion for the SM-TDAF is given by:

2(n+1)=2(n) + —a(n—)zg(n)e(n) (30)
Il g(m) ||

where (n)is given by (10). Because the entries of

g(n) are approximately uncorrelated, thanks to the
transform T, the normalization in the update term of
(30) does not provide any improvement in the
convergence rate and can be dropped safely. After
dropping the normalization and left multiplying by

A" we obtain:
w(n+1)=w(n)+a(n)Au(n)e(n) (31)
By multiplying both sides of this equation by T from
the left, we obtain:

h(n +1) = h(n) + a(n)C(n)x(n)e(n) (32)
where C(n) corresponds to the TDAF algorithm and
is obtained from Table L.

C.  Set-Membership SAF (SM-SAF) Algorithm

By defining X(m)F =[x,(n),x,(n),...X; (1],
and  F'd(n) =[d,(n),d,(n),...d;_ ()], the
SM-SAF minimizes (1) subject to:
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h(n+1)e (‘Pn’o m‘l’",l m...m‘l’n,s_l) (33)
where:
¥, =theRY jd(m)-x{(mh[<y} (4

This aim is obtained by an orthogonal projection of
the previous estimate of h onto the closest boundary

of ¥
update equation for SM SAF can be stated as:
X, (1)

1%, (m) |
e(n) = d(n)— X" (mh(n),

=[e,(n),,(1),...,es ,(n)]" and

ﬂ,-(n)= e ()llfle()| (36)

0 Otherwise

Equation (35) can also be represented as:

h(#n + 1) =h(n) + X(n)W(n) B(n)e(n) (37)
where B(n) = diag(B,(n), B,(n),..., Bs_1(n)) ,

and
W) = Fd +diagldiagF™X () X@)F}  T'F .

V1. SET-MEMBERSHIP SELECTIVE PARTIAL UPDATE
ADAPTIVE FILTER ALGORITHMS

i each subband. Doing this, the filter vector

h(n+1)= h(n)+z,3( y—

e(n) (35)

where

F'e(n)

A.  SM-SPU-NLMS Algorithms

The family of SPU-NLMS algorithms are
established from Table II. The family of SM-SPU-
NLMS algorithms minimizes

|h.(n+1)~h. (1) |Fwhere F = {j,, j,s-., j } denot-
e the indices of the N blocks out of K blocks subject
to h(n+1)e ¥, . This aim is achieved by following
update equation:
h(n+1) =h(n)+ a(n)C(n)x(n)e(n) (38)
where a(n)is given by (10), and C(#n) is obtained
from Tablell.
B. SM-SPU-AP Algorithms
From [91, the SPU-AP minimizes

||h,(n+1)—h,(n)|f subject to d(n) = X" (n)h(n).
This aim is achieved by:
hy(1+D=h, )+ X, ()X (DX () &) (39)
where:

X () =X, (1), X, (1),.. X, ()] (40)
is the NL X P matrix and
X, (n) =[x,(n),x;(n—1),....x,(n— P+1)]is the

L X P matrix. The indices of F are obtained by the
following procedure:

1) Compute the following values for 1 <i< K :
Tr(X] (M) X (1)) @1

2) The indices of F are correspond to N largest
values of (41).
The SM-SPU-APA also

Iy (2+D—h, ()| but
he (¥, Nn¥Y,_ ,Nn.NY, ;). This aim is
achieved by following update equation:

b, (++)=h, (X OKOX ) o) (42)
C. SM-SPU-TDAF Algorithms

By partitioning the Z(#)into K blocks each of
length L, the SM-SPU-TDAF algorithm minimizes
|z (n+1)~2.(B)|]* subject to Zz(n)€ @, . This aim

minimizes

subject to

is achieved from (38) where C(#n)is correspond to
SPU-TDATF given in Table II.

D. SM-SPU-SAF Algorithms
The SM-SPU-SAF algorithm
|h,(n+1)—h,(n)|Fsubject to (33). From (22), the

SM-SPU-SAF algorithm is
following update equation:

h(z+1) =h(n)+ AXWFIL()]'F fne(n) (43)

minimizes

obtained from the

VII. COMPUTATIONAL COMPLEXITY

From [9], the number of multiplications and division
for NLMS algorithm is 2M + 2, and 1 division
respectively at every iteration. The SPU-NLMS
algorithm needs M+NL+2 multiplications and 1
division. The number of comparisons in this
algorithm is O(K) + Klog2(N) [9]. In the SM-NLMS,
the adaptation is related to the condition in (10). This
relation determines that when the filter coefficients
should be updated at every adaptation. If the
condition in (10) always becomes true (which in
practice it does not), then the computational
complexity of SM-NLMS is 2M + 2 multiplications
and 2 divisions which is similar to the complexity of
NLMS. But the gains of applying the SM-NLMS
algorithm comes through the reduced number of
required updates, which cannot be accounted for a
priori, and an increased performance as compared to
the NLMS algorithm. The computational complexity
of SM-SPU-NLMS algorithms is similar to the SPU-
NLMS in the worst case. The computational
complexity of the TDAF, and SPU-TDAF algorithms
is from [12]. The computational complexity of thr
SM-TDAF, and SM-SPU-TDAF algorithms is related
to the condition in (10). If the condition in (10)
always becomes true (which in practice it does not),
then the computational complexity of SM-TDAF, and
SM-SPU-TDAF is similar to the TDAF, and SPU-
TDAF algorithms. For the family of SAF algorithms,
the computational complexity is from [15]. Table 111
summarizes the computational complexity of the
algorithms.
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TABLE III
COMPUTATIONAL COMPLEXITY OF THE NLMS, TDAF,
SAF, SPU-NLMS, SPU-TDAF, SPU-SAF, SM-NLMS, SM-
TDAF, SM-SAF, SM-SPU-NLMS, SM-SPU-TDAF, AND SM-
SPU-SAF ALGORITHMS

Algorithm

Multiplications

Divisions

NLMS

2M+2

TDAF

O(M) - TM+1

SAF

IM+38D+1

SPU-NLMS

M+NL+2

SPU-TDAF

O(M)+6M+NL+1 |

SPU-SAF(Based on_

the first criterion)

2M+NL+3SD+1

|
|
|
I
1

SPU-SAF(Based on

the second criterion )

2M+NL+3SD+2

SM-NLMS

2M+2

SM-TDAF

O(M)+7M~+1

SM-SAF

3M+385D+1

SM-SPU-NLMS

M+NL+2

SM-SPU-TDAF

O(M)+6M+NL+1

SM-SSPU-

2MANL+3SD+1

SAF(Based on the first

criterion)

SM-SSPU-
SAF(Based on the

second criterion)

2M+NLA+38D+2

VIIL

We demonstrate the performance of the proposed
algorithms by several computer simulations in a
system identification scenario. In the system
identification setup, the unknown systems have 32
and 64 taps and are selected at random. The input
signal, X(7), is a first order autoregressive (AR(1))
signal generated according to:

x(n) = px(n—-1)+ w(n) (44)

where @(n)is a zero mean white Gaussian signal

SIMULATION RESULTS

and the parameter O was set to 0.9. The measurement

noise, V(1) , with o> =107 was added to the noise

free desired signal generated through

d(n) =h!x(n), where h, is the true unknown filter

vector. The adaptive filter and the unknown filter
vector are assumed to have the same number of taps
For the TDAF algorithm, a M-point Discrete Cosine
Transform (DCT) was employed as the orthogonal
transform. Also in APA and for M = 32, the
parameter P was set to 3, and for M = 64, this
parameter was set to 5. In all the simulations, the
simulated learning curves were obtained by ensemble
averaging over 200 independent trials. For M = 32,
the number of blocks (K) was set to 4 and for M = 64,
this parameter was set to 8. Also the value of ¥ was

setto /507 [19].

Figs 2 and 3 show the learning curves of SPU-
APA and SM-SPU-APA for M = 32. For the SPU-
APA, the step-size is setto ¢/ =1 and ¢ =0.1. Fig.
2 shows the results for N = 3. As we can see, the SM-

SPU-APA has both fast convergence similar to that of
SPU-APA and a significantly lower steady-state MSE
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than ordinary SPU-APA. Furthermore, the average
number of updates in SM-SPU-APA was 514 instead
of 4000 in SPU-APA. Fig. 3 shows the results for N =
4. Again, the good performance of SM-SPU-APA can
be seen. In this simulation, the the average numbers
of updates was 411 instead of 4000 in SPU-APA. Fig.
4-6 show the results for M = 64. For the SPU-APA,
the step-size is set to 0.1 and 1. Again, the SM-SPU-
APA has both fast convergence similar to that of
SPU-APA and a significantly lower steadystate MSE
than ordinary SPU-APA. Fig. 4 shows the results for
N = 6. The average numbers of updates in SM-SPU-
APA was 796 instead of 4000 in SPU-APA. Figs. 5
and 6 show the results for N = 7, and 8 respectively.
Simulation results show the good performance of the
SM-SPU-APA. In Fig. 5, the average number of
updated was 677 and in Fig. 6, the average number of
updates was 622. Table IV summarizes the average
number of updates in SM-SPU-APA for different
parameters.

Fig. 7-9 show the learning curves of SPU-TDAF
and SMSPU- TDAF for M = 32. For the SPU-TDAF,

the step-size is set to #=land=0.1. Fig. 2

shows the results for N = 2. As we can see, the SM-
SPU-TDAF has both fast convergence similar to that
of SPU-TDAF and a significantly lower steadystate
MSE than ordinary SPU-TDAF. Furthermore, the
average numbers of updates in SM-SPU-TDAF was
975 instead of 8000 in SPU-TDAF. Fig. 8 shows the
results for N = 3. Again, the good performance of
SM-SPU-TDAF can be seen. In this simulation, the
the average numbers of updates was 777 instead of
8000 in SPU-TDAF. For N = 4, the average number
of updates was 691. Figs. 10-12 show the results for
M = 64. For the SPU-TDAF, the step-size is set to 0.1
and 1. Again, the SM-SPU-TDAF has both fast
convergence similar to that of SPU-TDAF and a
significantly lower steady-state MSE than ordinary
SPU-TDAF. Fig. 10 shows the results for N = 6. The
average numbers of updates in SM-SPU-TDAF was
1189 instead of 8000 in SPU-TDAF. Figs. 11 and 12
show the results for N = 7, and 8 respectively.
Simulation results show the good performance of the
SM-SPU-TDAF algorithm. In Fig. 11, the average
number of updated was 1095 and in Fig. 12, the
average number of updates was 1033 instead of 8000
in SPU-TDAF algorithm. Table V summarizes the
average number of updates in SM-SPU-TDAF for
different parameters.

IX. SUMMARY AND CONCLUSIONS

In this paper, we presented a unified approach to
establish the NLMS, the family of APA, TDAF, SAF,
and the adaptive filters with selective partial updates.
Accordingly, we presented a unified strategy to
derivation of SM and SM-SPU adaptive filter
algorithms. We demonstrated the good performance
of two proposed algorithms which were called SM-
SPU-AP and SM-SPU-TDAF algorithms in system
identification application.
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TABLE IV
THE AVEARAGE NUMBER OF UPDATES IN SM-SPU-AP
ALGORITHM
Algorithm M=32 M=64

SM-SPU-APA,N=3 514 .
SM-SPU-APA N=4 411 5
SM-SPU-APA N=6 =
SM-SPU-APAN=7 -
SM-SPU-APA,N=8

TABLE V
THE AVEARAGE NUMBER OF UPDATES IN SM-SPU-
TDAF ALGORITHM
M=32
SM-SPU-TDAF,N=2 975
SM-SPU-TDAF,N=3 777
SM-SPU-TDAF.N—=4 691
SM-SPU-TDAF,N—6
SM-SPU-TDAF,N=7
SM-SPU-TDAF,N=38

Algorithm M=64

(I SPUAPA P=3 K = LN =3, j=L)
—— (M SPILAPA (P =3 K = N -
—— {1 SMSPULAPA (P =3 K =4 ¥ =3

loput Gaussiaw AR(1), p=009

(b} SPILAPA, p=]

\( (a1 SPULAPA, je=1
y.4 il

() SA-SPU-APA

e 1500 000 =0
Ttrratiou Number

Fig. 2. Learning curves of SPU-APA, and SM-SPU-APA
algorithms for M= 32, P=3, K =4, and N = 3. (input: Gaussian
AR(1), p=09)

L] ] X 0
Tmabion Number

Fig. 3. Learning curves of SPU-APA, and SM-SPU-APA
algorithms for M=32, P=3, K =4, and N = 4. (input: Gaussian
AR(1), p=09)

iy SPTAPY g=01

oy SPUEAPA, =1

SALSPLLAPA

TNy

Fig. 4. Learning curves of SPU-APA, and SM-SPU-APA
algorithms for M= 64, P =5, K =8, and N = 6. (input: Gaussian
AR(1), p=09)

Inpetat: Chabimsian AT L. )

Fig. 5. Learning curves of SPU-APA, and SM-SPU-APA
algorithms for M= 64, P=5, K =8, and N = 7. (input: Gaussian
AR(1), p=09)

(53]

R ":’4“
Teszanion Numaber

Fig. 6. Learning curves of SPU-APA, and SM-SPU-APA
algorithms for M= 64, P =5, K =8, and N = 8. (input: Gaussian
AR(1), p=0.9)
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Fig, 7. Learning curves of SPU-TDAF, and SM-SPU-TDAF
algorithms for M =32, K =4, and N =2 (input: Gaussian
AR(1), p=09)
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Fig. 8. Learning curves of SPU-TDAF, and SM-SPU-TDAF
algorithms for M=32, K =4, and N = 3 (input: Gaussian
AR(1), p=0.9)
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Fig. 9. Learning curves of SPU-TDAF, and SM-SPU-TDAF
algorithms for A/=32, K = 4, and N = 4 (input: Gaussian

AR(1), p=09)

[ SPETRAR Ik 28X s
bSPUIBAE N L2 RATEE |
sof SASPLEAR (K w8 N

1) SPIVTHAF, 4

~

= —- —= " 0 e TR

Fig. 10, Learning curves of SPU-TDAF, and SM-SPU-TDAF
algorithms for M= 64, K =8, and N = 6 (input: Gaussian
AR(1), p=09)
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Fig. 11. Learning curves of SPU-TDAF, and SM-SPU-TDAF
algorithms for M = 64, K = 8, and N =7 (input: Gaussian
AR(1), p=09)
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Fig. 12. Learning curves of SPU-TDAF, and SM-SPU-TDAF

algorithms for M= 64, K = 8, and N = 8 (input: Gaussian
AR(1), p=0.9)
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