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Abstract—in this paper we studied the performance of several distributed adaptive algorithms for non-stationary 

sparse system identification. Non-stationarity is a feature that is introduced to adaptive networks recently and makes 
the performance of them degraded. We analyzed the performance of both incremental and diffusion cooperation 
strategies in this newly presented case. The performance analyses are carried out with the steady-state mean square 
deviation (MSD) criterion of adaptive algorithms. Some sparsity aware algorithms are considered in this paper which 
tested in non-stationary systems for the first time. It is presented that for incremental cooperation, the performance of 
incremental least means square/forth (ILMS/F) algorithm surpasses all other algorithms as non-stationarity grows 
and for diffusion cooperation, the performance of adapt-then-combine (ATC) diffusion prevails reweighted zero 
attracting (RZA) ATC diffusion algorithm in non-stationary system identification. We hope that this work will inspire 
researchers to look for other advanced algorithms against systems that are both non-stationary and sparse. 

Keywords-Adaptive networks, , incremental least mean square, non-stationary condition, sparse system identification, 

diffusion. 

I.INTRODUCTION 

Practical uses of wireless adaptive sensor networks 
are so widespread and long lasting that made them a 
hot topic of research. Environmental monitoring, 
object surveillance and tracking, wireless channel 
control and so many other applications are proof of the 
importance of this flourishing technology. Analyzing 
the performance of these networks under different 
environmental and systematic conditions is the key 
element of many recently published papers [1 & 3]. 
Adaptive networks usually work with two distributed 
cooperation strategies namely incremental and 

diffusion. In diffusion strategy all nodes can 
communicate with each other, while in incremental 
method each node can only share data with its 
immediate neighboring nodes in a Hamiltonian cycle.  

Recently numerous powerful adaptive algorithms 
are proposed for different applications [10-14]. Most 
of these algorithms are designed to be robust in sparse 
systems that are known with their long impulse 
responses and a few non-zero taps [6]. Sparse system 
identification is a topic that not only challenged 
adaptive algorithms but also crept into the topic of 
adaptive sensor networks. In a few papers [2,4 & 15], 



 

 

the sparse system identification is mentioned with 
sensor networks and some algorithms such as 
incremental reweighted zero attracting LMS (IRZA-
LMS) and adapt then combine (ATC) diffusion 
reweighted zero attracting LMS (RZA-ATC diffusion) 
are presented for this task. Also in [4] diffusion 
normalized least mean forth (LMF) algorithm is 
addressed for this task. It is shown that when we want 
to estimate a very long weight vector with a high value 
of sparsity, it takes a longer time for the distributed 
adaptive algorithm to converge. Also it is preferable 
for an algorithm to have reasonable results for both 
highly sparse and non-sparse system identification. 

Also recently the performance of adaptive 
networks under non-stationary conditions became an 
important branch of research. In several papers [3, 9, 
18], the performance of distributed LMS algorithm 
and its variants are considered in estimating a non-
stationary unknown weight vector. It is claimed in 
these papers that when we want to track a non-
stationary vector, the performance of network 
degrades according to the non-stationarity of weight 
vector that is, when the system changes rapidly, the 
tracking of its behavior gets harder and in some cases 
impossible. The sparsity of the system may change 
after some time and give the algorithm the time to 
converge, but in non-stationary case, the vector 
changes at each iteration. If these changes are small 
enough, we can expect the convergence of network, in 
other cases we must look for other solutions. But there 
are problems where we need to identify an unknown 
system which is both sparse and non-stationary. Such 
problems arise in, for example, wireless channel 
estimation.   

Unfortunately, while there has been a struggle for 
presenting more sparsity aware algorithms, up until 
now there has been no effort in producing algorithms 
that are specially designed for non-stationary systems. 
We tested several newly proposed algorithms in order 
to find a suitable one for non-stationary case and it 
turned out that the combined least mean square/forth 
(LMS/F) algorithm of [5] works slightly better than 
others for incremental cooperation.  

Our contribution in this paper is that we combined 
both non-stationary and sparse system identification 
and analyzed the performance of some adaptive 
distributed algorithms over networks. As we 
mentioned, such complicated conditions may occur in 
the tasks like sparse channel estimation [16] or sparse 
echo and noise cancellation. It means that most of the 
channels that we are interested in estimating are fading 
channels that are modeled with non-stationary 
systems. Due to the complexity of the proposed 
condition and the multiplicity of analyzed algorithms, 
we only considered cyclic or incremental mode of 
cooperation between sensor nodes, namely 
incremental LMS or ILMS algorithm, and postponed 
analyzing diffusion mode for our future works. Also 
we must remind that in [10] a sparse non-stationary 
system is mentioned but in that system only the 
sparsity of weight vector changed in time and for 
different phases of simulation. The rest of this paper is 
organized as follows: 

In part II we briefly review incremental and 
diffusion LMS algorithms for stationary systems. In 
part III we review some distributed algorithms with 
incremental cooperation then we introduce a new 
algorithm that can handle both non-stationarity and 
sparsity in systems. In part IV we describe sparse 
diffusion algorithms. In part V we analyze the 
computational complexity of the presented algorithms 
and in part VI we present our simulation results for 
non-stationary sparse system identification. Finally, in 
part VII we present our conclusion and future scope. 

Notation: We used boldface letters for vector 
variables. Also we used the notation 𝔼[. ]  to denote 
expectation operation and notation (. )∗  to denote 
complex conjugation for vectors. 

II. SYSTEM EXPLANATION 

Consider a network with 𝑁 active nodes as in Fig. 
1 that is deployed to estimate an unknown weight 
vector 𝒘𝑜with 𝑀 entries. In stationary case, this vector 
is considered constant for all observations, but in non-
stationary case the unknown weight vector changes 
with time and adaptive distributed algorithm must 
track it. In non-stationary case instead of a weight 
vector with constant values, the desired unknown 
vector can change according to Random-walk model: 

  𝒘𝑜(𝑖 + 1) = 𝒘𝑜(𝑖) + 𝜼(𝑖)        
(1) 

where 𝜼(𝑖) is a zero mean random sequence with 
covariance matrix 𝑅𝜂 . Along with non-stationarity 

condition we assume that the weight vector is sparse. 
It means that majority of its coeficients are zero and 
the rest are produced according to non-stationary 
model.  Detailed explanations of the production of 
weight vector is explained in simulation part. 

 

Fig. 1. Distributed sensor network with incremental cooperation 

In our network we assume that each node 𝑘  in 
time index 𝑖  has access to local observations of  
desired output 𝑑𝑘(𝑖) and regressor vector  𝒖𝑘(𝑖). In 
incremental strategy each node has only 
communication with its immidiate neighbors while in 
diffusion strategy the connections are more. here we 
review the simple incremental LMS and diffusion 
LMS algorithms. 

A. Incremental cooperation 

Simple ILMS algorithm starts with the assumption 
that there is a linear relation between desired output 
and algorithm inputs as follows:   



 

 

 𝑑𝑘(𝑖) = 𝒖𝑘(𝑖)𝒘𝑜(𝑖) + 𝑣(𝑖)        
(2) 

in this equation 𝒘𝑜(𝑖) is the unknown non-stationary 
weight vector and 𝑣(𝑖)  is white Gaussian noise 
sample. If we take 𝝍𝑘(𝑖)  as the local estimate of 
𝒘𝑜(𝑖) in node 𝑘, we have the following calculations 
for each iteration 𝑖 repeat: 

 𝝍0(𝑖 + 1) = 𝒘(𝑖)    

 𝑒𝑘(𝑖) = 𝑑𝑘(𝑖) − 𝒖𝑘(𝑖)𝝍𝑘−1(𝑖 + 1)   

 𝝍𝑘(𝑖 + 1) = 𝝍𝑘−1(𝑖 + 1) + 𝜇𝑘𝒖𝑘
𝑇(𝑖)𝑒𝑘(𝑖)       

(3) 

 𝒘(𝑖 + 1) = 𝝍𝑁(𝑖 + 1)   

in this relation 𝜇𝑘  is the step size. For all the 
algorithms that follows and for ILMS algorithm too, 
we evaluate the performance with Mean Square 
Deviation (MSD) criteria that for each node is defined 
as: 

 𝑀𝑆𝐷𝑘 ≜ 𝔼‖𝝍̃𝑘−1(∞)‖
𝐼

2
        

(4) 

where  

 𝝍̃𝑘(𝑖) ≜ 𝒘𝑜(𝑖) − 𝝍𝑘(𝑖)        
(5) 

and ‖𝑥‖Σ
2 operator means 𝑥∗Σ𝑥 for column vector 𝑥. 

B. Diffusion cooperation 

In diffusion strategy as we mentioned the nodes 
exchange their data with other than their neighboring 
nodes. The combination policy is governed by the 
determination of combination weights namely 𝑎𝑙,𝑘. A 

network with diffusion cooperation is presented in Fig. 
2. The simple ATC diffusion LMS algorithm can then 
be given as [17]: 

For each iteration 𝑖 repeat: 

𝝍𝑘(𝑖) = 𝒘𝑘(𝑖 − 1) + 𝜇𝑘𝒖𝑘
∗ (𝑖)[𝑑𝑘(𝑖) − 𝒖𝑘(𝑖)𝒘𝑘(𝑖 −

1)]   (6) 

 𝒘𝑘(𝑖) = ∑ 𝑎𝑙,𝑘𝝍𝑙(𝑖)𝑙∈𝒩𝑘
            

(7) 

   

 

Fig. 2. Distributed sensor network with diffusion cooperation 

III. SPAPRSE SYSTEM IDENTIFICATION WITH 

INCREMENTAL STRATEGY 

In this part we will present some of the tested 
distributed algorithms with incremental cooperation in 
sparse system identification. Some of these algorithms 
are tested in distributed networks for the first time and 
others are never tested in non-stationary system 

tracking. All in all, four distributed sparsity-aware 
adaptive algorithms are tested in this part and their 
performances are compared to ILMS algorithm in non-
stationary case. It is obvious that to find an algorithm 
that is robust to both sparsity and non-stationarity we 
must compare all algorithms in the same situations.  

To the best of our knowledge only three distributed 
incremental algorithms are tested in sparse system 
identification and none of them are tested in non-
stationary systems. RZA ATC diffusion and IRZA-
LMS algorithms are mentioned in [15] and [2] and a 
normalized version of diffusion least mean forth 
(LMF) algorithm is used in [4]. Here we will review 
some incremental versions of these algorithms and 
also introduce LMS/F algorithm to distributed 
processing. 

A. IRZA-LMS algorithm 

The main distributed algorithms that are introduced 
for sparse system identification are IZA-LMS and 
IRZA-LMS algorithms. The later algorithm is 
concluded to be more robust in comparison and here 
we will explain it. Again for each iteration we have: 

𝝍0(𝑖 + 1) = 𝒘(𝑖)    

 𝑒𝑘(𝑖) = 𝑑𝑘(𝑖) − 𝒖𝑘(𝑖)𝝍𝑘−1(𝑖 + 1)   

 𝝍𝑘(𝑖 + 1) = 𝝍𝑘−1(𝑖 + 1) +
𝜇𝑘𝒖𝑘

𝑇(𝑖)𝑒𝑘(𝑖) −

                                          𝜌
𝑠𝑔𝑛(𝝍𝑘−1(𝑖+1))

1+𝜀|𝝍𝑘−1(𝑖+1)|
                        

(8) 

 𝒘(𝑖 + 1) = 𝝍𝑁(𝑖 + 1) 

As we can see only local weight vector update 
equation is changed in comparison with simple ILMS 
algorithm and in this equation a penalty term is added 
to previous one. In this penalty term that helps to 
estimate only those equations that are non-zero, both 𝜌 
and 𝜀 are positive controlling parameters. 

B. ILMS/F algorithm 

The LMS/F algorithm is designed with respect to 
least mean square and forth criterion and the updating 
relation of this algorithm is [5]: 

 𝒘(𝑖 + 1) = 𝒘(𝑖) + 𝜇𝒖𝑇(𝑖)
𝑒3(𝑖)

𝑒2(𝑖)+𝜆
          

(9) 

where 𝜆  is a positive threshold which controls the 
convergence speed and stability of the LMS/F 
algorithm. The optimum value of 𝜆 can be calculated 
according to the method proposed in [5]. The 
distributed version of this algorithm with incremental 
mode of cooperation (ILMS/F) is as follows: 

For each iteration repeat: 

𝝍0(𝑖 + 1) = 𝒘(𝑖)    

 𝑒𝑘(𝑖) = 𝑑𝑘(𝑖) − 𝒖𝑘(𝑖)𝝍𝑘−1(𝑖 + 1)   

𝝍𝑘(𝑖 + 1) = 𝝍𝑘−1(𝑖 + 1) + 𝜇𝑘𝒖𝑘
𝑇(𝑖)

𝑒𝑘
3(𝑖)

𝑒𝑘
2(𝑖)+𝜆

        

(10) 

 𝒘(𝑖 + 1) = 𝝍𝑁(𝑖 + 1) 



 

 

C. Incremental Sparse normalized algorithms 

In some papers the normalized versions of 
algorithms described above are used [14]. These types 
of algorithms are achieved via the normalization of 
input vector to its norm. with this technique the 
algorithm becomes robust to the variations of input 
vector. For example, to achieve the normalized version 
of ILMS algorithm in (3) we have: 

 𝝍𝑘(𝑖 + 1) = 𝝍𝑘−1(𝑖 + 1) + 𝜇𝑘
𝒖𝑘

𝑇(𝑖)

‖𝒖𝑘(𝑖)‖2 𝑒𝑘(𝑖)        

(11) 

IV. SPAPRSE SYSTEM IDENTIFICATION WITH 

DIFFUSION STRATEGY 

Now consider the equation (2) again. We assume 

that the unknown vector  𝒘𝑜(𝑖) is still non-stationary 

and sparse but here we want to estimate it via diffusion 

cooperation starategy. The simple diffusion LMS 

algorithm is not designed for sparse or non-stationary 

system identification and for adapt then combine 

(ATC) scheme it is given in (6) and (7). 

In order to over come sparsity, in [15] a sparsity 

aware algorithm namely ATC-sparse diffusion (ATC-

SD) was proposed. This algorithm is presented by 

considering the following cost function [15]: 

 𝐽𝒘(𝒘) = ∑ 𝔼𝑀
𝑘=1 |𝑑𝑘(𝑖) − 𝒖𝑘,𝑖𝒘|

2
+ 𝜌𝑓(𝒘)          

(12) 

where 𝔼(. ) is the expectation operator and 𝑓(𝑤) is a 

regularization term weighted by parameter 𝜌 > 0. The 

ATC-SD algorithm is then given by: 

𝝍𝑘(𝑖) = 𝒘𝑘(𝑖 − 1) +

𝜇𝑘 ∑ 𝑐𝑙,𝑘𝒖𝑙
∗(𝑖)[𝑑𝑙(𝑖) − 𝒖𝑙(𝑖)𝒘𝑘(𝑖 −𝑙𝜖𝑁𝑘

1)] − 𝜇𝑘𝜌𝜕𝑓(𝒘𝑘(𝑖 − 1))            (13)  

 𝒘𝑘(𝑖) = ∑ 𝑎𝑙,𝑘𝝍𝑙(𝑖)𝑙𝜖𝑁𝑘
          

(14) 

For RZA ATC diffusion algorithm the 𝑓(𝑤) 

function is given by [15]: 

      𝑓(𝑤) = ∑ log(1 + 𝜀|𝑤𝑚|)𝑀
𝑚=1          

(15) 

Finally the sub gradient term 𝜕𝑓(𝒘) can be written as: 

   𝜕𝑓(𝑤) = 𝜀
𝑠𝑖𝑔𝑛(𝑤)

1+𝜀|𝑤|
        

(16) 

In this paper for the first time we examine the 

performance of RZA ATC diffusion algorithm in the 

identification of a non-stationary system. 

V. COMPUTATIONAL COMPLEXITY 

In this paper we presented several adaptive 

algorithms and their cooperative (distributed) versions 

for system identification task. Here we analyze and 

compare the computational complexity of these 

algorithms. The computational complexities of 

distributed versions of employed algorithms are 

directly dependent to that of non-cooperative 

algorithms. Therefore, we only compare the 

complexity of these non-cooperative algorithms in 

TABLE 1. One can easily deduce that if the non-

cooperative version of an algorithm is more complex 

than others, then its distributed version is also more 

complex. Also as we used real valued data in our 

simulations and the complexities of algorithms are 

given for this case.  

TABLE 1. The real computational complexity of 
presented non-cooperative adaptive algorithms 

algorithms Additions Multiplications Divisions 

LMS 2M 2M+1 - 

NLMS 3M 3M+1 1 

ZA-LMS M+3K M+3K+1 - 

RZA-LMS M+4K M+4K+1 M 

LMS/F 2M+1 2M+4 1 

 

In this Table 𝑀 is the length of weight vector and 
𝐾 (not to be confused with the sensor index 𝑘) is the 
number of non-zero elements of the weight vector. As 
we can see the complexity of LMS/F algorithm is only 
a little higher than LMS and lower than other 
presented algorithms.  

The only remaining item here would be comparing 
the complexity of incremental and diffusion 
cooperation strategies. Diffusion strategy is more 
complex than incremental strategy both in 
Computations per node and transmission per node. For 
incremental strategy we need 𝑂(𝑀)  (order of 𝑀 ) 
computations per node and 𝑂(𝑀) scalar transmissions 
per node [18]. While for diffusion algorithm we need 
𝑂(3𝑀) computations and transmissions per node [15]. 
It means that as the number of tap weights goes high, 
the feasibility of diffusion algorithm declines and it is 
better to use incremental cooperation strategy. All in 
all, incremental LMS/F algorithm is more desirable 
with respect to computational complexity. 

VI. SIMULATION RESULTS 

To run our simulations we consider a network with 
20 nodes (𝑁 = 20 ). The value of step-size for all 
incremental algorithms is 0.0045  except for 
Normalized ILMS algorithm in which we have 𝜇 =
0.05. The noise variance for all nodes is chosen to be 
equal and 𝜎𝑣

2 = 0.01 . For our simulations, we 
assumed perfect communication links between nodes 
and the study of non-stationary sparse system 
identification over networks with noisy links or fading 
conditions can be a new topic of research. In order to 
compare the performances of incremental algorithms 
that are mentioned in previous parts we follow two 
scenarios. In both of them as it is customary in sparse 
system identification literature, we consider a 16-tap 
FIR system. But for the first scenario we assume a 
stationary system and for the second one a non-
stationary system is designed. In part C. of our 



 

 

simulations we consider non-stationary sparse system 
identification with diffusion strategies.   

A.  Stationary Sparse system 

We run this simulation for 1800 iterations. For the 
first 600 iterations, only one tap, chosen at random, is 
non-zero. For the next 600 iterations, all the odd 
indexed taps are set to 1. For the last 600 iterations, the 
odd indexed taps remain 1 while the remaining taps 
are set to -1. As a result, the sparsity of the unknown 
system varies during the estimation process [2].  

 

Fig. 3. Stationary sparse system taps 

The taps of this system is depicted in Fig. 3. To 
compare the performance we run the simulation for 4 
separate algorithms and presented MSD results in 
Fig.4. The results are averaged over 50 experiments. 

 

Fig. 4. Performance of incremental algorithms in stationary 
system identification with varying sparsity. 

In this simulation the sparsity for the first 600 

iterations is 
1

16
 and as we can see the performance of 

IRZA-LMS is better than others because this algorithm 
is specially designed for highly sparse systems. The 
performance of ILMS and ILMS/F are almost the 
same and are better for final 600 iterations where the 
system is non-sparse. Also the performance of 
normalized ILMS is good but this algorithm converges 
slower than others. We can speed up the convergence 
of Normalized algorithms by increasing step-size but 
this will accordingly increase steady-state error. 

B. Non-stationary sparse system 

Now we must consider the conditions in which our 
paper proposes a novelty. As mentioned before we 
assume that our unknown weight vector is non-
stationary and changing with time. It means that for 
each iteration we have a slightly different weight 
vector. Also our weight vector is assumed to be sparse. 
It means that only a few entries of it are non-zero. 

Following the procedure in [9, 18] we produce the 
non-zero elements of non-stationary weight vector as 
follows:  

              𝒘𝑖
𝑜 =

1

2
[𝑎1,𝑖 , 𝑎2,𝑖 , 𝑎3,𝑖 , 𝑎4,𝑖]

𝑇
         

(17) 

where 𝑎𝑘,𝑖 = [𝑐𝑜𝑠 (𝜔𝑖 +
(𝑘−1)𝜋

2
) , 𝑠𝑖𝑛 (𝜔𝑖 +

(𝑘−1)𝜋

2
)] 

for 𝑘 = 1,2,3,4 and 𝜔 =
𝜋

3000
. As we can see in this 

case the weight vector has a length of 8 (or 𝑀 = 8) 
and it is not sparse. In order to make it sparse we can 
zero pad this vector to reach the desired length. It is 
important to mention that this 'time changing' model is 
just for simulation purposes and in order to derive 
theoretical results, this non-stationarity must agree 
with Random-walk model. Also in order to produce 
longer vectors we can repeat the vector with 8 entries, 
for example in a vector with 16 entries we repeat (17) 
only 2 times. We can produce this time varying vector 
in advanced and fed it to algorithm at each iteration or 
we can change weight vector iteratively. 

Again a 16-tap system is considered in this simulation 
and we have 1800 iterations. For the first 600 
iterations only one tap has value and it is calculated 
from (17). For the second 600 iterations only odd taps 
are drawn from (17) and for the final 600 iterations all 
the taps are calculated according to (17), in this 
situation the system is not sparse but it is completely 
non-stationary. We can see the results of this 
simulation in Fig. 5.: 

 

Fig. 5. Performance of incremental algorithms in non-stationary 
system identification with varying sparsity. 

Non-stationarity imposes an intrinsic error increase 
to the system performance and it is because of the 
fluctuations of weights around changing optimum 
vector. As the normalized ILMS algorithm did not 
performed well in non-stationary case we omitted it 
from our simulations of this part. 



 

 

It is obvious that as the non-stationarity grows, the 
performance of IRZA-LMS algorithm degrades, 
because this algorithm is specially designed for sparse 
systems. On the other hand, the performance of 
ILMS/F algorithm is better for strongly non-stationary 
systems and clearly outperform both fixed other 
algorithms in final 600 iterations. 

C.  Diffusion strategy performance 

In this part we analyze the performance of a 
network with diffusion cooperation strategy in non-
stationary sparse system identification. Like previous 
simulations we consider a network with 20 nodes that 
have communication with each other and combine 
their data with uniform combination weights [17]. The 
simulations are for 300 iterations and the curve for 
each algorithm is achieved by averaging 20 
simulations. The variance of inputs are slightly higher 
than that of incremental algorithms, therefor we can 
expect a better performance for diffusion cooperation.   

Only two algorithms namely simple ATC diffusion 
and RZA ATC diffusion are compared in this 
simulation. For RZA ATC algorithm the parameters 
are set to be: 𝜇 = 0.05 , 𝜌 = 5 × 10−4  and 𝜀 = 10 . 
We did not consider the stationary simulation in this 
part because similar results are given in [15]. Here we 
only consider a combined non-stationary and sparse 
system. We ran six simulations for this case, three for 
ATC diffusion and three for RZA ATC diffusion 
algorithm. Again we assume the system has 16 taps 
that change with time according to (17) but in the first 
two simulations only one entry of weight vector is not 
zero, in the second two simulations 8 entries are non-
zero, and in the third two simulations all entries are 
non-zero and system is completely non-stationary and 
non-sparse. The results of these six simulations are 
gathered in Fig. 6. As we expected the performance 
degradation of non-stationarity is higher than sparsity. 

 

Fig. 6. Performance of diffusion algorithms in non-stationary system 
identification with varying sparsity. 

As we can see in Fig. 6. When the sparsity ratio is 
1

16
 the performance of RZA ATC algorithms is better 

than simple ATC because RZA ATC is specially 
designed for sparse system identification. But, as the 
sparsity ratio rises, and the system become non-sparse 
and non-stationary, the performance of simple ATC 

prevails RZA ATC algorithm. These results showed 
again that although RZA algorithms are highly 
recommended for sparse systems, they are not a good 
choice for non-stationary system identification. 
Further investigations must be made to find more 
reliable algorithms for non-stationary systems.  

VII. CONCLUSION AND FUTURE SCOPE 

In this paper we studied the performance of several 
sparsity-aware distributed algorithms in adaptive 
networks. The performances are carried out for the 
first time in identifying a non-stationary sparse system. 
For our simulations, three scenarios were taken into 
consideration, in the first scenario a 16-tap stationary 
system is modeled with varying sparsity and it is 
shown that the performance of normalized ILMS 
algorithm is better in the sense of steady-state error but 
its convergence speed is low. For the second scenario 
we considered a time varying non-stationary system 
with 16 taps and changed sparsity for our simulations. 
In this simulation, the ILMS/F algorithm performed 
slightly better for identifying a completely non-
stationary and non-sparse system. In the third scenario 
the performance of non-stationary sparse system 
identification was considered with diffusion 
cooperation strategies. It was presented that RZA ATC 
diffusion algorithm has a better performance when the 
system is highly sparse. 

From these simulations we can conclude that for 
highly sparse systems reweighted zero attracting 
algorithms are recommended while for completely 
non-stationary systems, ILMS/F algorithm and ATC 
diffusion algorithms are more preferable. We can 
combine these algorithms to achieve an algorithm 
which is robust to sparsity and non-stationarity. 

In future works we will examine other newly 
proposed algorithms in non-stationary sparse system 
identification with distributed networks. P-norm like 
adaptive algorithms seems to be good choices for this 
topic and also all tested algorithms in incremental 
strategy can be applied to diffusion cooperation 
strategy and benefit from its features. 

REFERENCES 

 
[1] J. Arenas-Garcia, et. Al, “Combination of adaptive filters: 
performance and convergence properties,” IEEE signal processing 
journal, pp. 120–140, January 2016.  

[2] M. O. Bin Saeed, and A. U.H.Sheikh, “Sparse system 
identification over adaptive networks,”1st international conference 
on signal processing and their applications, pp. 1-5, Feb. 2013. 

[3] H. Nosrati, M. Shamsi, S.M. Taheri and M. H. Sedaaghi, 
“Adaptive networks under non-stationary conditions: formulation, 
performance analysis, and application”, IEEE trans. On signal 
processing, vol. 63, pp. 4300- 4314, 2015. 

[4] M. Hajiabadi and H. Z. Jafarian, “Distributed adaptive LMF 
algorithm for sparse estimation in gaussian mixture noise”, 7th 
international symposium on telecommunications (IST), pp. 1046-
1049, Sept. 2014. 

[5] G. Gui, W. Peng, and F. Adachi, “Adaptive system 
identification using robust LMS/F algorithm,” Int. J. Commun. 
Sys., first published online, DOI: 10.1002/dac.2517, pp. 1-8, Feb. 
2013. 

[6] Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for 
systemidentification,” IEEE Int. Conf. on Acoust., Speech and 
Signal Process. (ICASSP), pp. 3125-3128, April 2009 . 



 

 

[7] A. H. Sayed, Fundamentals of Adaptive Filtering. New York: 
Wiley,2003. 

[8] G. Gui, et. Al, “Variable Earns Profit: Improved Adaptive 
ChannelEstimation Using Sparse VSS-NLMS Algorithms”, IEEE 
signal processing for communications symposium, pp. 4390-4394, 
June 2014. 

[9] X. Zhao, S. Y. Tu, and A. H. Sayed, “Diffusion adaptation over 
networks under imperfect information exchange and non-stationary 
data,”IEEE Trans. Signal Process., vol. 60, no. 7, pp. 3460–3475, 
2012. 

[10] C. Turan, M. S. Salman and A. Eleyan, “A New Variable Step-
size Block LMS Algorithmfor a Non-stationary Sparse Systems”, 
International conference on electronics computer and computation, 
pp. 1-4, Sept. 2015. 

[11] M. O. Bin Saeed, and A. Zerguine, “A Variable Step Size 
Strategy for Sparse System Identification,” 10th international multi-
conference on systems, signals and devices, pp. 1-4, March 2013. 

[12] G. Gui, A. Mehodniya and F. Adachi, “Adaptive Sparse 
Channel Estimation Using Reweighted Zero-Attracting Normalized 
Least Mean Forth”, IEEE international conference on 
communications, pp. 368-373, Aug. 2013. 

[13] Y. Li, Y. Wang, A. Jiang, “Sparse Channel Estimation Based 
on a p-Norm-LikeConstrained Least Mean Fourth Algorithm” 
International conference on wireless communications and signal 
processing, pp. 1-4, Oct. 2015. 

[14] G. Gui, et. Al, “Fast NLMF-Type Algorithms for Adaptive 
SparseSystem Identifications”,  Asia-Pacific signal and information 
processing association annual summit and conference, pp. 958-962, 
Dec. 2015. 

[15] P. Lorenzo, A. H. Sayed “Sparse distributed learning based 
on diffusion adaptation”, IEEE Transactions on Signal Processing, 
vol. 61. pp. 1419-1433, 2013 

[16] Mostafapour, E., Hoseini, A., Nourinia, J., Chehel Amirani, 
M.: ‘Channel estimation with adaptive incremental strategy over 
distributed sensor networks’, IEEE 2nd Int. Conf. on knowledge-
based engineering and innovation, pp. 803-807, Nov. 2015. 

[17] S. Haykin, K. J. Ray Liu,Handbook on Array processing and 
sensor networks. Canada: Wiley,2009. 

[18] C. G. Lopes, A. H. Sayed, "Incremental adaptive strategies 
over distributed networks,” IEEE trans. on signal processing, vol. 
55, pp. 4064- 4077, 2007.  

[19] A. Rastegarnia, M. A. Tinati, and A. Khalili, “Performance 
analysis of distributedincremental LMS algorithm with noisy 
links,” International Journal of Distributed Sensor Networks, 
2011;2011:1–10. 

[20] S. Haykin, “Adaptive filter theory,” 5th international edittion, 
Pearson education, , 2014. 

 

Amir Bazdar was born in 
Urmia, Iran, in 1965. He 
received his B.S. and the M.Sc. 
degrees from the Sharif 
University of Technology, 
Tehran, Iran, in 1989 and 1993, 
respectively, both in electrical 
engineering. He is currently 
pursuing the Ph.D. degree with 

the Department of Electrical Engineering, Urmia 
University. His current research interests include 
adaptive filters, stochastic signal processing, and 
Microwave propagation. 
 

Ehsan Mostafapour was born in 
west Azarbayjan Province, 
Urmia, Iran, in 1988. He received 
his  B.Sc. the M.Sc. degree 
degrees from the Islamic Azad 
University, in 2010 and 2012, 
respectively, both in 
telecommunication engineering. 
He is currently pursuing the 

Ph.D. degree with the Department of Electrical 
Engineering, Urmia University. His research interests 
include stochastic and adaptive signal processing, 
wireless communications, adaptive networks and 
neural networks. 

 

 Amin Ali Abadi was born in 
1984, Tehran, Iran. He received 
his B.Sc. degree from Hamedan 
University and the M.Sc. degree 
from Boushehr University, in 
2010 and 2012, respectively, both 
in electrical engineering. He is 
currently pursuing the Ph.D. 
degree with the Department of 
Electrical Engineering, Urmia 

University. His research interests include stochastic 
and adaptive signal processing, wireless cellular and 
adaptive networks.  
 

Changiz Ghobadi was born on 1 
June, 1960 in Iran. He received his 
B.Sc. degree in Electrical and 
Electronic Engineering and M.Sc. 
degree in Electrical and 
Telecommunication Engineering 
from Isfahan University of 
Technology, Isfahan, Iran and 
Ph.D. degree in Electrical-

Telecommunication from University of Bath, Bath, 
UK in 1998. From 1998 he was an Assistant Professor 
and now is full Professor in the Department of 
Electrical Engineering, of Urmia University, Urmia, 
Iran. His current research interests are in antenna 
design, Propagation and adaptive filters. 
  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Paolo%20Di%20Lorenzo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ali%20H.%20Sayed.QT.&newsearch=true
http://ieeexplore.ieee.org/document/6375851/
http://ieeexplore.ieee.org/document/6375851/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=78


 

 

 

 
 


