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Abstract--In recent years, several topologies with multiple-path between each pairs of end hosts for data center (DC) 
networks have been proposed. However, the path diversity is shown to be not enough to improve the network 

performance. Researches on the DC network measurements have shown that congestion occurs even when the average 

utilization of links is low, which means that some of the links are over-utilized while others are underutilized and have 

a considerable available bandwidth. Therefore, traffic engineering (TE) is necessary for proper distribution of the 

network load as well as exploiting the path diversity that is provided by new topologies. Current Equal Cost Multi Path 
(ECMP) based approaches are not efficient in lots of cases because numerous big flows may collide on the same path. 

The centralized solutions depend on the ability to predict the traffic pattern, which is not effective for unpredictable 

traffic patterns of data centers. In this paper, SDTE, an online software defined TE approach is proposed for cloud data 

centers. The proposed system does not depend on the ability to predict traffic pattern or the size of flows. SDTE exploits 

the PEFT routing algorithm to assign weights to links. SDTE is implemented within the OpenFlow framework. The 

evaluation shows that SDTE performs close to the optimal routing (average deviation is about 7%). 

Key words: Software Defined Networking, Data Center Routing, Multipath Routing, Traffic Engineering, Cloud 

Computing, OpenFlow.  

I. INTRODUCTION 

     Cloud computing [17] is one of the fast growing 

segments of IT industry in which services are highly 
available from anywhere/anytime. A data center (DC) 

is the underlying infrastructure that is used by Cloud. 
DCs are now an important part of the Internet that host 

a wide variety of applications and cloud-based 
services. With the expansion of Cloud, demands for 

cloud computing services grows . Consequently, it 
becomes critical for DC planners to address both 

current and future needs of cloud data centers [10]. The 
DC network architecture typically consists  of routing 

and switching elements, that looks like a tree in which 
hosts are in the lowest layer, however, expensive non-

commodity switches are in the higher layer(s). The 
difference in the cost of the commodity and non-

commodity switches inclines the planners toward 



 

using lots of small commodity switches for building 
large-scale communication networks instead of using a 

few numbers of expensive ones. Therefore, several 
architectures with the aim of horizontally (rather than 

vertically) expansion of DCs have been proposed. 
These methods exploit a large number of inexpensive 

commodity switches to increase the aggregate 

bandwidth among the communicating hosts. These 
architectures are called multi-rooted tree as they 

provide a large number of parallel paths between 
servers. Lots of these kinds of topologies (e.g., Fat-tree 

shown in Figure 1) are based on clos topology [11]. 

    It should be mentioned that even with a high 

available bandwidth, the utilization of the network is 

affected by the flow scheduling. Therefore, in order to 
exploit the capacity of path diversity provided by 

multi-rooted topologies, traffic must be engineered on 
all possible paths. Studies on the traffic patterns and 

measurements of DCs show that the current DC 
networks are under-utilized [18], [19] and [20]. 

Therefore, operators should optimize their network 
infrastructure before expanding their topologies  or 

upgrading to new fabrics [10]. In the light of this fact, 

the reduction of congestion and load balancing on all 
reachable paths can improve the overall network 

performance along with maximization of the aggregate 
network utilization. 

    While many TE approaches have been suggested for 
the Internet, TE for DCs is still at the initial state. Two 

state-of-the-art solutions are the Equal-Cost-Multi-

Path (ECMP) [8] and Valiant Load Balancing (VLB) 
[12] approaches. ECMP and VLB are not aware of link 

load. ECMP is a network congestion condition 
agnostic approach that splits the load across the 

available paths evenly. When a packet arrives, it is 
forwarded on the path that corresponds to a hash of 

selected fields of the packet's header: therefore, all the 

packets of a flow take the same path. Two or more big 
flows (flows that carry out large amount of data) can 

collide on their hash and be routed through one path 
which can lead to persistent congestion on some links 

while other links remain under-utilized [8]. 

     However, several solutions including both 

centralized (e.g., Hedera [5], MicroTE [7], and Mahout 
[6]) and distributed solutions (e.g., MPTCP [24]) are 

provided that are load-aware. In the centralized  

solutions, the routing decisions are made by a global 
controller, while in the distributed solutions, the 

routing decisions are made by end-hosts or switches. 
MicroTE [7] is a system that adapts to the traffic 

variations through leveraging the partial predictability  
of the traffic matrix (TM). MicroTE relies on the traffic 

predictability and when a large portion of the traffic is 

predictable, it has a high efficiency; otherwise, it 
seamlessly shifts to using ECMP. First, it routes the 

predictable traffic optimally and then uses the 
weighted ECMP to route the unpredictable traffic [7]. 

Based on the studies [18, 19, and 20], DCs have a burst 
traffic pattern which is not predictable and leads weak 

performance of the TM prediction-based TE 

approaches like MicroTE. 

    Hedera [5] detects large flows at the edge switches 

and estimates the large flows demand. Hedera uses the 
placement algorithms to compute the proper paths for 

them. At the end, these paths are installed on the 
switches [5]. Hedera uses ECMP to schedule the small 

flows (short lived flows) and a centralized controller to 
schedule the large flows that exceed 10% of the host-

NIC bandwidth. The problem is that in Hedera only 
flows exceeding 10% of the NIC bandwidth are 

considered as large flows. This cannot be an 

appropriate definition for the large flows because there 
are flows with a long lifetime transmitting at rates 

below 10% of the NIC bandwidth while such flows are 
never scheduled by Hedera. In Mahout [6], a shim 

layer on each end-host monitors the host flows in order 
to detect elephant flows (big flows). When the shim 

layer detects an elephant flow, it marks the subsequent 

packets of that flow using an in-band signaling 
mechanism. Then, switches tell Mahout Controller that 

there is an elephant flow through sending these packets 
to the Controller. Mahout Controller places the 

elephant flow on the leas t congested path. Mahout 
modifies the end-hosts and it is too complex to be 

implemented. 

    The mentioned approaches schedule the flows using 

ECMP by default, however, when traffic is predictable 

or elephant flows are detected, a series of simple and 
non-optimal algorithms are used. These approaches 

require modifications on switches and end-hosts. 
Multipath TCP [25, 31] is an end-host solution that 

splits a flow into sub-flows and balances the load 
across the sub-flows. Each sub-flow is similar to a 

regular TCP connection. The problem of end-host 

solutions is that they have to react to the congestion on 
the paths and rebalance the load due to the lack of a 

global view of the network. 

    Software Defined Networking (e.g. via OpenFlow 

[16]) as a new concept creates a new networking 
paradigm in which programming the network data path 

becomes possible. OpenFlow switch is based on an 

Ethernet switch with an internal flow table and a 
channel to an external controller which makes the 

routing decisions. Each flow table in the switch 
contains a set of flow entries and when a packet arrives, 

these entries are matched with the packet header's 
information. If a matching is made, the instructions 

associated with the specific flow entry will be 
executed, otherwise the packet will be forwarded to the 

controller through the OpenFlow channel. The 

controller can add, update, and delete the flow entries 
on the switches flow table using OpenFlow protocol 

[13]. 

    Many proposals use software defined networking 

idea to improve traffic engineering. The Fibbing [1] 
controller injects fake nodes to create a fake topology 

in order to deceive the routers. Weighted Cost Multi-

path (WCMP) [2] is a solution for weighted traffic 
hashing; it distributes traffic among all available paths 

in proportion to the available link capacity. WCMP 
assigns weights to each egress port in a multipath  

topology. These weights are proportional to the 
capacity of the path(s) associated with egress port. 

Today's OpenFlow 1.x standard has limitations . The 

impact of these limitations on our work is described in 
the implementation section. To overcome the 

limitations of OpenFlow 1.x standard, the future 
generation of OpenFlow should allow the controller to 

tell the switch how to operate, rather than be 



 

constrained by a fixed switch design. The future 
switches should support flexible mechanisms for 

parsing packets and matching header fields  [4].    

    This research presents SDTE, a software defined 

dynamic flow scheduling system which aims to 
balance the load and minimize the maximum link 

utilization (MLU) through exploiting the path 

diversity. SDTE exploits the path diversity through 
using the PEFT1 routing algorithm for assigning non-

uniform weights to the links [9]. PEFT splits the traffic  
along all the paths, however, it penalizes longer paths 

(i.e., paths with higher sums of link weights).  The 
PEFT protocol has been proposed for wide-area ISP 

networks where the traffic matrix is predictable in 

contrast with DC traffic pattern. Thus, in this paper, 
PEFT was modified in order to be used in SDTE;  

however, the modified version has the same 
computational overhead as the original version. In our 

modified version the weights are computed and used 
by a central controller. In contrast to the existing TE 

approaches: (1) STD does not rely on the ability to 
predict the size of the flow, nor does it worry about the 

size of the new arriving flows, be it mice (short lived 

flows) or elephant. (2) It uses a global view of the 
traffic rather than a local view and knows exactly how 

much of the traffic must be routed from which path. (3) 
This system does not need to modify the end-hosts or 

switches. 

 
Fig. 1. Fat tree topology  

    In this paper, we propose an adaptive load-sensitive 
software defined TE approach that does not rely on the 

ability to predict traffic pattern. Our proposed system 
combines the power of software defined networking 

and optimality of PEFT. Additionally, we provide a 
practical implementation of PEFT (in java) for software 

defined data center networks. The rest of this paper is 
organized as follows. In section 2 the proposed system 

architecture is presented with its components and their 

interactions. Section 3 explains the system implemen-
tation and emulation results, and finally, section 4 con-

cludes the paper.        

II. SDTE ARCHITECTUR 

    In this section, the proposed architecture which is 
called SDTE is presented. The proposed system uses 

online traffic matrix (TM) calculation and assigning 

the non-uniform weights to links in 50s intervals. In 
each interval, TM will be calculated by considering all 

current active flows among all hosts; then, the new TM 
is compared with the previous time interval TM. If the 

difference between each entry of these two matrices is 
more than 20%, the weights are recalculated; 

                                        
1
 Penalizing exponential flow-splitting 

otherwise, SDTE continues its work with the same 
weights. It means that by entrances of each flow there 

is no need for weight recalculation. Assigning the link 
weights is done through using PEFT which is an 

optimal routing algorithm that splits the traffic over 
multiple paths with an exponential penalty on longer 

paths that is explained in the next subsection briefly.  

    Figure 2 presents the components of our architecture 
and how they interact. SDTE consists of five 

components which can be classified into two groups: 
the executive group (EG) and the computing group 

(CG). The EG consists of the routing component and 
the path calculation component. The CG consists of the 

optimization component, rerouting component, and 

JIPOPT component. CG will compute the weights 
while EG use these weights for flow routing. Among 

the computing components, only the optimization  
component runs periodically. Two other computing 

components would also be called for weight 
recalculation, if needed. When a packet arrives, the 

routing component extracts special packet header's 
fields (such as source and destination MAC, IP 

addresses, and the network layer protocol); then sends 

them to the path calculation component to request a 
suitable path. The path calculation component replays 

the suitable path using this information along with the 
available weights. After all, the routing component 

installs the path on the switches. As it will be shown, 
the proposed architecture is quite effective in practice.  

A. Overview of PEFT Routing Algorithm 

    PEFT is a TE mechanism that was introduced for 
ISP networks. Key properties of PEFT are summarized  

in this section. According to [9] and [10], consider a 
network as a directed graph G = (V, E), where V is the 

set of nodes (where N = |V|), E is the set of links (where 
E = |E|), and link (u, v) has the capacity 𝑐𝑢,𝑣. The 

offered traffic is represented by a traffic matrix D(s, t) 

for source-destination pairs indexed by (s, t). TE 

usually considers a link-cost function 𝜑 ({𝑓𝑢,𝑣 , 𝑐𝑢,𝑣}) 

that is an increasing function of 𝑓𝑢 ,𝑣. Since we consider 

the link utilization function, 𝑓𝑢,𝑣 ⁄ 𝑐𝑢,𝑣 , then the PEFT's  

TE objective is to minimize  𝑚𝑎𝑥𝑢,𝑣 ∈𝐸 𝜑 (𝑓𝑢 ,𝑣 , 𝑐𝑢,𝑣). 

Optimal TE requires solving the following flow 
conservation and link capacity constraint given by [9], 

whose corresponding notation is given in Table 1. 

min ∅({𝑓𝑢 ,𝑣 , 𝑐𝑢,𝑣}) (1) 

s. t. ∑ 𝑓𝑠,𝑣
𝑡 − 

𝑣:(𝑠,𝑣)∈𝐸

∑ 𝑓𝑢 ,𝑠
𝑡

𝑢:(𝑠,𝑢 )∈𝐸

= D(𝑠, 𝑡), ∀𝑠 ≠ 𝑡 

𝑓𝑢 ,𝑣 = ∑ 𝑓𝑢,𝑣
𝑡

𝑡 ∈𝑣

≤ 𝑐𝑢,𝑣 , ∀(𝑢, 𝑣)  

vars . 𝑓𝑢 ,𝑣
𝑡 , 𝑓𝑢 ,𝑣 ≥ 0.  

     To offload the traffic from the congested paths to 

less congested but slightly longer ones, PEFT allows 
exponential traffic splitting over unequal-cost paths as 

shown in equation (2) where 𝑝𝑢 ,𝑡  is the set of the paths 

from u to t and 𝑥𝑢,𝑡
𝑖  is the fraction of forwarding a 



 

packet to the i-th path, i.e., 𝑝𝑢 ,𝑡
𝑖  . 

     𝑥𝑢,𝑡
𝑖 =

𝑒 −𝑃𝑢,𝑡
𝑖

∑ 𝑒
−𝑃𝑢,𝑡

𝑗

𝑗

   (2) 

     PEFT splits the traffic along all the available paths, 

but penalizes the longer paths exponentially [10]. 

Table 1. Key Notations 

Notation Meaning 

D (s, t) Traffic demand from source s to 

destination t 

𝑐𝑢,𝑣 Capacity of link (u, v) 

𝑓𝑢,𝑣 Flow on link (u, v) 

𝑓𝑢,𝑣
𝑡  Flow on link (u, v) destined to node t 

B. Challenges of Using PEFT Routing Algorithm on 

the SDTE Architecture 

    PEFT is originally designed for the ISP networks. 

PEFT calculates the weights on an offline manner due 

to the predictable traffic pattern of ISP networks. In 
ISP networks, at first, the network operators obtain the 

TM from their network over long intervals and then the 
derived TM is used with link capacities as inputs of the 

link weight calculation module that exists in another 

independent machine. At this point, resulting links 
weight will be installed on switches. In contrast to the 

traffic pattern of the ISP networks, the measurement  
studies have reported that the traffic in a DC is highly 

dynamic and unpredictable. The lack of short term TM 
predictability is due to the use of random resource 

allocation for improving the performance of DC 

applications, because the distributed file system 
spreads the data chunks randomly across servers for 

load distribution and redundancy [10]. 

    Thus, PEFT should be used in an online manner in 

DC networks instead of the offline manner. Previously 
[10] has modified PEFT for DC networks, but its 

applicability for software defined DC networks is not 

clear and has not been studied yet. In this research, the 
original offline PEFT was modified to be used in an 

online software defined TE system that is different 
from the original PEFT in the operational context (but 

it is not different in the computational context). In our 
implementation, the optimization component obtains 

the TM periodically, and when the difference between 
the new and old TMs is greater than 20%, the weights 

are recalculated in an online manner. For calculating 

the link weights at first, the JIPOPT component solves 
the optimization problem (1) and then the optimization  

component calculates the new weights following the 
functions given in [9].  

 

 

Fig. 2. SDTE architecture 

 

C. SDTE components 

1. Routing component 

    The routing component is a simple but important 

component that acts similar to the input component of 



 

the proposed system. When a packet that belongs to a 

new flow arrives, this component asks for the suitable 

path from the path calculation component. At this 

point, the routing component extracts special packet 

header's fields such as MAC address of source and 

destination, IP address of source and destination, and 

the network layer protocol; then it sends them to the 

path calculation component. The purpose of selecting 

these fields is to specify a unique flow. When the path 

calculation component replies, the routing component 

installs the flow table entries on all switches of the 

specified path. Installation of flow table entries is done 

by OpenFlow protocol standard messages. This 

component interacts with the path calculation 

component and requests and installs suitable paths for 

new flows.  

2. Path calculation component 

    The path calculation component has a database of 

network topology information and uses it for path 

calculation of new flows. This information is provided 

by basic services of Beacon controller [14] which is an 

OpenFlow controller used for our emulation. The 

optimization component assigns a weight to each link 

of the topology due to the network load and conditions 

of the network congestion. The path calculation 

component calculates requested path based on link 

weights and the header information (e.g. the 

destination address) and sends the path to the routing 

component. The optimization component periodically  

calculates the weights for the path calculation 

component. In fact, the weights and consequently the 

paths modifies upon the changes that happen in the 

TM.  

3. JIPOPT component 

    At first, this component solves the optimization  

problem that was mentioned in subsection A to provide 

the optimal distribution of the traffic (the necessary 

capacity2). Then, these necessary capacities will be 

sent to the optimization component. Solving the 

optimization problem can be done through modeling it 

through using AMPL (A Modeling Language for 

Mathematical Programming) [26] and subsequently 

employing an appropriate solver such as CPLEX [27] 

and the IPOPT solver [28]. However, this is unsuitable 

for our architecture, because the optimization  

component needs to run in an online manner. As a 

result, the java interface of the IPOPT's C++ library  

(JIPOPT) was included in our implementation . 

Furthermore JNI [15] was utilized to run JIPOPT.  

4. Rerouting component 

    In each time interval, the optimization component 

characterize the link weights. This links weight will be 

used for the rest of interval. In the next time interval, if 

the network traffic pattern changes, the weights will be 

recalculated. Meanwhile, it is possible that there are 

some routed flows based on the previous weights 

which still continue in the new interval. According to 

                                        
2
The necessary capacity is a minimal set of link capacities to realize 

the optimal TE [9]. 

the OpenFlow protocol, since the flow entries of these 

flows are installed on the switches flow table, they are 

not routed again. The controller can act in two ways: 

1.The controller is aware of the flows on each link and 

their rate so it checks if the present path of flows is in 

accordance with the new weights or not. As the total 

link weights over all reachable paths to each 

destination on every switch is equal to one, therefore, 

if a link load is more than optimal load then another 

one has an under-optimal load. The controller reroutes 

the flows via updating the flow table entries. 2. The 

controller can delete all flow table entries from the 

source edge layer switches after weight recalculation.  

Both approaches increase the controller processing 

overhead. In the final implementation, the second 

approach is used because our emulation results reveal 

that in addition to the controller processing overhead, 

the first approach increases the reaction time of the 

controller when faced with a different traffic pattern 

compared to the previous interval traffic pattern.  

5. Optimization component 

    The main component of the SDTE architecture is the 

optimization component that runs at every 50s interval. 

This component requires two pieces of global 

information about the network: the flow-level TM and 

the network topology. The first one is provided by 

requesting the flows statistics periodically from 

switches and the second one is provided by the path 

calculation component as discussed earlier. The 

functions of the optimization component are presented 

as follows: (1) Calculating the new (current) TM and 

its difference with the old one. (2) Sending the TM to 

the JIPOPT component, receiving the necessary 

capacities and calculating the new link weights if it is 

required. (3) Sending the new weights to the path 

calculation component and calling the rerouting 

component if needed. The pseudo code of this 

component is given in algorithm1. In each interval, the 

optimization component starts with calculating the 

new TM. For this purpose, this component must be 

able to perform the following tasks: (1) sending flow 

statistics request messages to switches (2) Receiving 

the flow statistics reply messages from switches and 

processing them. The information about the individual 

flows is requested by OFPST_FLOW stats request 

messages [13]. The body of replied messages includes 

information about the flows such as the packet count, 

byte count, total flow duration, and etc. 
The optimization component calculates the flow-level 

TM through using transmitted byte count and flow 

duration time. After TM calculation, if the difference 

between the new and old TMs 3 is greater than 20%, the 

JIPOPT component and the 

optimizeOverLinkWeights() function will be called. 

The optimization component sends the TM to the 

JIPOPT component and then the JIPOPT component 

returns the necessary capacities values. These values 

are utilized by optimizeOverLinkWeights function for 

link weights calculation. The pseudo code of 

3
 A comparison is made for each individual entry within the matrix. 



 

optimizeOverLinkWeights function is presented in [9]. 

Due to space constraints, the extra explanations are 

avoided here. After these steps, the new weights is sent 

to the path calculation component and the rerouting 

component will be called. In addition to the mentioned 

threshold (20%), a low threshold value will be 

considered. The value of this threshold is 15%. 

Suppose the difference between a new entry and an old 

entry is close to 20% (but not 20%). In this case the 

weights will not be recalculated. But if this scenario 

repeats for several times, the weights must change. The 

low threshold will checks for this scenario. 

I. IMPLEMENTATION AND EVALUATION 

    In this section, the performance of SDTE is evalu-

ated with respect to improve flow rate, link utilization , 

and load balancing. SDTE was proposed for software 

defined networks therefore, a controller and a network 

emulator are required for its implementation. There are 

several SDN controllers such as Beacon [14], Nox [3], 

Pox [22], Floodlight [23] and OpenDayLight [24]. For 

our emulation, Beacon (a Java_based OpenFlow con-

troller) and OpenVswitch (a software OpenFlow 

switch) running in Mininet [29] were used. Currently, 

the Beacon controller like most other controllers sup-

ports OpenFlow specification version 1.0. Mininet is a 

network emulator that runs on a single Linux kernel, 

which is used for building a Fat tree topology that was 

described in section I. We evaluated SDTE for a Fat-

tree k=4 topology that contains 16 hosts, 20 switches, 

and 64 links. All links are 1Gb/s. In the following part, 

the results of the proposed system are discussed and 

compared with the results of random routing of flows. 

In the future work we will use Maxinet [30]. Maxinet  

extends Mininet to spans an emulated network over 

several physical machines, making it possible to emu-

late large data center networks. It also introduces a traf-

fic generator for data center traffic. 

The optimization component algorithm 

a timer is scheduled to run every 50 seconds 

flow statistics are obtained 

previous trafficMatrix is stored in oldTrafficMatrix 

structure 

//calculation of newTrafficMatrix  

foreach switch do 

send    ofp_stats_request of type OFPST_FLOW   // 

flow statistics request messages 

receive reply to OFPST_FLOW request                

//flow statistics response messages 

retrieval flow src & dst  

insert flow in newTrafficMatrix Entry  

store flow statistics & senderSwitch 

end foreach 

current trafficMatrix is stored in newTrafficMatrix struc-

ture 

compare difference between oldTrafficMatrix & 

newTrafficMatrix //entry by entry  

if difference > 15% then 

call JIPOPT component 

call optimizeOverLinkWeights( )          

call rerouting component 

end if 

Continue 

Algorithm 1: The optimization component algorithm 

A. Traffic generation 

    One challenge of the proposed system performance 

evaluation is how to simulate and generate the cloud 

DC traffic pattern. At first the DC traffic patterns are 

investigated briefly and then the traffic generator is 

explained. Research articles [18, 19, and 20] have 

studied the traffic characterization in data center 

networks. Based on these studies, in cloud DCs, the 

majority of the traffic originated by servers (about 

80%) stays within the rack. However, for other DCs 

such as university and private enterprise data centers, 

most of the traffic (40-90%) leaves the source rack for 

other destination racks. In the studied data centers, 

80% of the flows are smaller than 10KB in size and 

most of the bytes are in the top 10% of large flows 

whose length varies from 100MB to about 1GB [10]. 

Also, the lifetime of 80% of the flows is less than 11 

seconds. Our traffic generator uses the aforementioned 

characteristics and sends 20% of the traffic to external 

destinations or other racks while 80% of the traffic 

stays within the rack. The size of 20% of flows is 

between 500Mb and 1Gb which are considered big 

flows and the size of 80% of flows is between 10Kb 

and 1Mb which are considered small flows. In order to 

pressure the network, the destination of big flows is set 

outside of the rack and the destination of the small 

flows inside the rack. The lifetime of flows is 5ms.  

    The OpenFlow specification version that Beacon 

controller supports (version 1.0), limits our simulation. 

As mentioned before, version 1.0 does not support flow 

splitting. To compensate for this limitation, our traffic 

generator generates flows with uniform sizes. In fact, 

SDTE needs to split flows and without this ability, its 

performance would be dependent on flow sizes; there-

fore if the size of flows is uniform, SDTE performs  

close to the optimal; otherwise, it will distance from 

the optimal. As will be explained in the next parts, for 

the next version of SDTE, the flow splitting ability is 

added to the controller. 

B. Control messages  

    SDTE uses four types of control messages that are 

exchanged between the controller and switches. These 

messages are: OFPST_FLOW messages for requesting 

information about flow OFPST_PORT messages for 

requesting information such as port's number of 

transmitted bytes, OFPT_FLOW_MODE messages 

with OFPFC_ADD command for installing new flow 

entries on switches flow table, and OFPT_FLOW  

_MODE messages with OFPFC_DELETE command 

for deleting flow entries from switches flow table. The 

first two messages are exchanged every time the 



 

optimization component runs and the next two messag-

es are exchanged when installing a path for a new flow 

or deleting a flow entry from switches flow table. The 

Optimization component time interval is 50 seconds; 

however, smaller time intervals could provide a more 

accurate view of flows but increases the amount of 

control messages transmitted over the network and 

processed by the controller. Yet, in the next part the 

evaluation results show that SDTE performance is 

close to the optimal. 

C. Flow Rate 

    In this section, we focus on the performance of 

SDTE with respect to the flow rate. First the path 

stretch is discussed. [10] defines the path stretch as the 

ratio of the length of actual path to the length of the 

shortest path. In our emulation which uses fat tree 

topology with many redundant paths, path stretch is 

equal to 1. This means all paths that are used for 

routing are shortest paths and no detour path is needed. 

In the following part, we used "designated rate" to refer 

to the bandwidth that has been designed to send the 

flows and "actual rate" for referring to the real 

bandwidth that one flow can achieve. The actual rate 

depends on the route that a flow takes. If this route is 

congested because of the load imbalance, the actual 

rate of flows will be reduced. If the network traffic is 

distributed properly, the actual rate of flows will be 

increased. 

 
Fig.3. Comparison of actual rate of flows for SDTE and 

Random 

    For example, if the designated rate of a flow is 

500MB and its actual rate is 400MB, this flow has 

gained 80% of its designated rate. Figure 3 shows the 

actual rate of flows relative to the designated rate of 

flows. Because the results of the emulation show that 

the actual rate of small flows was at least equal to their 

designated rate, this figure only examines the big 

flows. More flows can obtain a higher rate with SDTE. 

The number of flows with the lowest rate (about 30-

40%) are equal in both SDTE and Random. SDTE 

provides an actual rate of 60-70% for 25% of flows 

while this value is around 2% for Random. Random 

cannot distribute the network load over all possible 

paths because when a new flow arrives, it routes the 

flow from one of the available paths without 

considering the network current traffic. Therefore, it is 

possible that two or more big flows are routed from the 

same path while other paths are underutilized. In 

Contrast to Random, SDTE does not act randomly, 

rather it uses unequal cost paths for the flow routing 

and because of this, the network load is distributed over 

all available paths; as a result, more flows can achieve 

a higher rate. The difference between SDTE and 

Random performance is particularly evident through 

investigating the link utilization. In the next part, this 

parameter will be analyzed. 

D. Link Utilization 

    Figure 4a compares the link utilization of Optimal, 

SDTE, and Random over Fat tree topology. The 

Optimal values are the values that have been resulted 

from solving the optimization problem (1) by JIPOPT 

component. [9] Has proven that these values are 

optimal. Figure 4b compares the link utilization of 

Optimal and Random. In this figure, it is clear that the 

behavior of Random is different from Optimal. 

Random cannot properly distribute the load on links 

because it randomly selects one of the possible paths 

without any knowledge of current links load. 

Therefore, it cannot prevent the congestion over some 

of the links while others are idle or underutilized. It is 

noteworthy that in the presence of more flows and 

heavier traffic, Random shows a worse performance, 

and also in the case of more redundant paths, it hides 

his bad performance better. The existence of larger and 

smaller values compared to Optimal in figure 4b shows 

that there are several big flows on some of the links 

while the others are idle and the network load is not 

properly distributed i.e. the network load is not 

balanced. Figure 4c compares SDTE and Random.  
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Fig. 4 .Comparison of link utilization for (a) Optimal, SDTE, and Random, (b) Random versus Optimal, (c) Random versus 

SDTE, (d) SDTE versus Optimal

 
Fig.5. A flow from the source host A to the destination host 

B 

     For a better explanation, in Figure 5 there is a flow 
from the source host A to the destination host B with 

two different paths. As mentioned before, Random 

routes the flow from one of the possible paths without 
considering current load on that path or links 

congestion. Contrary to Random, SDTE routes the 
flows according to the network congestion conditions 

and the weights that it holds; therefore, flows are 
distributed on outgoing interfaces according to the 

optimal weights. This is the reason of the fundamental 

mismatch between SDTE and Random performance. 
Figure 4d compares link utilization of SDTE and the 

Optimal. The performance of SDTE is closer to the 
Optimal compared to Random. The question is that 

despite the fact of using optimal weights, why SDTE 

still deviates from the Optimal? As previously 
discussed, one reason is that the utilized controller does 

not support flow splitting and the other reason refers 
back to reactive and sparse TM calculation because of 

saving resources. On average, SDTE only slightly 
sacrifices the optimality by 7.3%, yet it provides a 

significant improvement over Random about 9.9%. 

     The maximum and minimum link utilization values 
of Optimal, SDTE, and Random over Fat tree topology 

are presented in Table 2. It can be seen that Random 
exhibits a wider spread in link utilization over SDTE 

and Optimal which implies that traffic on the links 
across the network is unbalanced. While the maximu m 

link utilization of SDTE is 4% more than Optimal, this 

value is 17% for Random. For a closer look, the link 
utilization of core  

Table 2. The maximum and minimum link utilization 
values of Optimal, SDTE, and Random 

 
Maximum Link 
Utilization 

Minimum Link 
Utilization  

Optimal 39% 16% 

SDTE 43% 15% 

Random 6% 2% 

layer links is demonstrated in Figure 6. The worse 

performance of Random compared to SDTE is evident. 
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SDTE schedules and splits the traffic over paths to 
leverage the path diversity and as a result, the network 

traffic is balanced better, while Random shows a 
different behavior due to the randomness in flow 

scheduling. SDTE provides more links with average 
link utilization while Random has some links with link 

utilization close to zero and some with high link 

utilization.  

 
Fig. 6. Comparison of core layer link utilization for Random 

versus SDTE 

E. System stability 

     Systems that are used for TE should be able to 

preserve their stability for different traffic patterns. It 
should be noted that stability is highly important for 

online TE systems. Each time the network traffic 
pattern changes, SDTE recalculates the weights. SDTE 

output is an appropriate path for flows based on these 
weights. If the recalculation of weights is done 

repeatedly, the system loses its stability and causes 

route oscillation. The proposed system can prevent this 
instability through assigning a suitable time interval 

(this time interval is 50s in our emulation) for the 
optimization component to recalculate weights when 

facing different traffic patterns. However, this interval 
causes SDTE to deviate from Optimal, yet is effective 

and providing a performance near to Optimal. 

F. System overhead 

    system overhead can be studied from two aspects, 1) 

time complexity of optimization component and 2) the 
number of input flows to routing component. 

optimization component uses optimize over link 
weights function.  This function requires Floyd-

Warshal algorithm to compute the all-pairs shortest 

paths that has time complexity 𝑂(𝑁 3). Also, this 
function requires topology sorting. For each 

destination, topology sorting needs O(N+E) time, and 

summarizing the incomping flow and splitting across 
the outgoing links requires O(N+E). Thus, the total 

time complexity to calculate the traffic distribution is 

𝑂(𝑁 3 + 𝑁(𝑁 + 𝐸)) = 𝑂(𝑁 3) [9].  

    In current version of SDTE, switches inform routing 
component with each new flow. Then routing 

component specify route to the new flow. It increases 
overhead of the controller beacuse the median arrival 

rate of all flows is 105 flows per second in DCNs [19]. 
In future, we will use group table [21] to decrease 
overhead of the controller. With group table, some 

decisions are made locally by switches. Therefore, no 

need to send all new flows to the controller. 

II. CONCLUSION AND FUTURE WORK 

    In this paper, we proposed SDTE (an online load 

sensitive software defined traffic engineering system) 
to improve link utilization, load balancing and perfor-

mance over cloud data center networks. SDTE distrib-
utes network traffics among all available paths. SDTE 

uses PEFT which assigns a weight for each link/desti-

nation to achieve optimal traffic distribution. We mod-
ified PEFT to make it compatible with both DC traffic 

pattern fluctuations and OpenFlow framework. The 
evaluation shows that the proposed system results are 

close to the optimal solution. Therefore, it can distrib-
ute the load on all available paths , this leads to reduc-

tion of maximum link utilization. Moreover, the eval-

uation confirmed that SDTE improves the rate of 
flows. Due to limitations of current implemented ver-

sion of OpenFlow (version1.0) the proposed system 
does not support flow splitting. Future works would be 

dedicated to extend SDTE to support flow splitting and 
group table (a new feature in OpenFlow version1.1 and 

later versions through which packets are processed 
based on a switch-computed selection algorithm). 
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