

SDTE: Software Defined Traffic Engineering

for Improving Data Center Network

Utilization

Marzieh Khoshbakht

The Faculty of Electrical

and Computer Engineering

Tarbiat Modares University

Tehran, Iran

m.khoshbakht@modares.ac.ir

Mohammad Mahdi Tajiki
The Faculty of Electrical

 and Computer Engineering

Tarbiat Modares University

Tehran, Iran

mahdi.tajiki@TMU.ac.ir

Behzad Akbari

The Faculty of Electrical

and Computer Engineering

Tarbiat Modares University

Tehran, Iran

b.akbari@TMU.ac.ir

Received: November 28, 2015- Accepted: March 12, 2016

Abstract--In recent years, several topologies with multiple-path between each pairs of end hosts for data center (DC)
networks have been proposed. However, the path diversity is shown to be not enough to improve the network

performance. Researches on the DC network measurements have shown that congestion occurs even when the average

utilization of links is low, which means that some of the links are over-utilized while others are underutilized and have

a considerable available bandwidth. Therefore, traffic engineering (TE) is necessary for proper distribution of the

network load as well as exploiting the path diversity that is provided by new topologies. Current Equal Cost Multi Path
(ECMP) based approaches are not efficient in lots of cases because numerous big flows may collide on the same path.

The centralized solutions depend on the ability to predict the traffic pattern, which is not effective for unpredictable

traffic patterns of data centers. In this paper, SDTE, an online software defined TE approach is proposed for cloud data

centers. The proposed system does not depend on the ability to predict traffic pattern or the size of flows. SDTE exploits

the PEFT routing algorithm to assign weights to links. SDTE is implemented within the OpenFlow framework. The

evaluation shows that SDTE performs close to the optimal routing (average deviation is about 7%).

Key words: Software Defined Networking, Data Center Routing, Multipath Routing, Traffic Engineering, Cloud

Computing, OpenFlow.

I. INTRODUCTION

 Cloud computing [17] is one of the fast growing

segments of IT industry in which services are highly
available from anywhere/anytime. A data center (DC)

is the underlying infrastructure that is used by Cloud.
DCs are now an important part of the Internet that host

a wide variety of applications and cloud-based
services. With the expansion of Cloud, demands for

cloud computing services grows . Consequently, it
becomes critical for DC planners to address both

current and future needs of cloud data centers [10]. The
DC network architecture typically consists of routing

and switching elements, that looks like a tree in which
hosts are in the lowest layer, however, expensive non-

commodity switches are in the higher layer(s). The
difference in the cost of the commodity and non-

commodity switches inclines the planners toward

using lots of small commodity switches for building
large-scale communication networks instead of using a

few numbers of expensive ones. Therefore, several
architectures with the aim of horizontally (rather than

vertically) expansion of DCs have been proposed.
These methods exploit a large number of inexpensive

commodity switches to increase the aggregate

bandwidth among the communicating hosts. These
architectures are called multi-rooted tree as they

provide a large number of parallel paths between
servers. Lots of these kinds of topologies (e.g., Fat-tree

shown in Figure 1) are based on clos topology [11].

 It should be mentioned that even with a high

available bandwidth, the utilization of the network is

affected by the flow scheduling. Therefore, in order to
exploit the capacity of path diversity provided by

multi-rooted topologies, traffic must be engineered on
all possible paths. Studies on the traffic patterns and

measurements of DCs show that the current DC
networks are under-utilized [18], [19] and [20].

Therefore, operators should optimize their network
infrastructure before expanding their topologies or

upgrading to new fabrics [10]. In the light of this fact,

the reduction of congestion and load balancing on all
reachable paths can improve the overall network

performance along with maximization of the aggregate
network utilization.

 While many TE approaches have been suggested for
the Internet, TE for DCs is still at the initial state. Two

state-of-the-art solutions are the Equal-Cost-Multi-

Path (ECMP) [8] and Valiant Load Balancing (VLB)
[12] approaches. ECMP and VLB are not aware of link

load. ECMP is a network congestion condition
agnostic approach that splits the load across the

available paths evenly. When a packet arrives, it is
forwarded on the path that corresponds to a hash of

selected fields of the packet's header: therefore, all the

packets of a flow take the same path. Two or more big
flows (flows that carry out large amount of data) can

collide on their hash and be routed through one path
which can lead to persistent congestion on some links

while other links remain under-utilized [8].

 However, several solutions including both

centralized (e.g., Hedera [5], MicroTE [7], and Mahout
[6]) and distributed solutions (e.g., MPTCP [24]) are

provided that are load-aware. In the centralized

solutions, the routing decisions are made by a global
controller, while in the distributed solutions, the

routing decisions are made by end-hosts or switches.
MicroTE [7] is a system that adapts to the traffic

variations through leveraging the partial predictability
of the traffic matrix (TM). MicroTE relies on the traffic

predictability and when a large portion of the traffic is

predictable, it has a high efficiency; otherwise, it
seamlessly shifts to using ECMP. First, it routes the

predictable traffic optimally and then uses the
weighted ECMP to route the unpredictable traffic [7].

Based on the studies [18, 19, and 20], DCs have a burst
traffic pattern which is not predictable and leads weak

performance of the TM prediction-based TE

approaches like MicroTE.

 Hedera [5] detects large flows at the edge switches

and estimates the large flows demand. Hedera uses the
placement algorithms to compute the proper paths for

them. At the end, these paths are installed on the
switches [5]. Hedera uses ECMP to schedule the small

flows (short lived flows) and a centralized controller to
schedule the large flows that exceed 10% of the host-

NIC bandwidth. The problem is that in Hedera only
flows exceeding 10% of the NIC bandwidth are

considered as large flows. This cannot be an

appropriate definition for the large flows because there
are flows with a long lifetime transmitting at rates

below 10% of the NIC bandwidth while such flows are
never scheduled by Hedera. In Mahout [6], a shim

layer on each end-host monitors the host flows in order
to detect elephant flows (big flows). When the shim

layer detects an elephant flow, it marks the subsequent

packets of that flow using an in-band signaling
mechanism. Then, switches tell Mahout Controller that

there is an elephant flow through sending these packets
to the Controller. Mahout Controller places the

elephant flow on the leas t congested path. Mahout
modifies the end-hosts and it is too complex to be

implemented.

 The mentioned approaches schedule the flows using

ECMP by default, however, when traffic is predictable

or elephant flows are detected, a series of simple and
non-optimal algorithms are used. These approaches

require modifications on switches and end-hosts.
Multipath TCP [25, 31] is an end-host solution that

splits a flow into sub-flows and balances the load
across the sub-flows. Each sub-flow is similar to a

regular TCP connection. The problem of end-host

solutions is that they have to react to the congestion on
the paths and rebalance the load due to the lack of a

global view of the network.

 Software Defined Networking (e.g. via OpenFlow

[16]) as a new concept creates a new networking
paradigm in which programming the network data path

becomes possible. OpenFlow switch is based on an

Ethernet switch with an internal flow table and a
channel to an external controller which makes the

routing decisions. Each flow table in the switch
contains a set of flow entries and when a packet arrives,

these entries are matched with the packet header's
information. If a matching is made, the instructions

associated with the specific flow entry will be
executed, otherwise the packet will be forwarded to the

controller through the OpenFlow channel. The

controller can add, update, and delete the flow entries
on the switches flow table using OpenFlow protocol

[13].

 Many proposals use software defined networking

idea to improve traffic engineering. The Fibbing [1]
controller injects fake nodes to create a fake topology

in order to deceive the routers. Weighted Cost Multi-

path (WCMP) [2] is a solution for weighted traffic
hashing; it distributes traffic among all available paths

in proportion to the available link capacity. WCMP
assigns weights to each egress port in a multipath

topology. These weights are proportional to the
capacity of the path(s) associated with egress port.

Today's OpenFlow 1.x standard has limitations . The

impact of these limitations on our work is described in
the implementation section. To overcome the

limitations of OpenFlow 1.x standard, the future
generation of OpenFlow should allow the controller to

tell the switch how to operate, rather than be

constrained by a fixed switch design. The future
switches should support flexible mechanisms for

parsing packets and matching header fields [4].

 This research presents SDTE, a software defined

dynamic flow scheduling system which aims to
balance the load and minimize the maximum link

utilization (MLU) through exploiting the path

diversity. SDTE exploits the path diversity through
using the PEFT1 routing algorithm for assigning non-

uniform weights to the links [9]. PEFT splits the traffic
along all the paths, however, it penalizes longer paths

(i.e., paths with higher sums of link weights). The
PEFT protocol has been proposed for wide-area ISP

networks where the traffic matrix is predictable in

contrast with DC traffic pattern. Thus, in this paper,
PEFT was modified in order to be used in SDTE;

however, the modified version has the same
computational overhead as the original version. In our

modified version the weights are computed and used
by a central controller. In contrast to the existing TE

approaches: (1) STD does not rely on the ability to
predict the size of the flow, nor does it worry about the

size of the new arriving flows, be it mice (short lived

flows) or elephant. (2) It uses a global view of the
traffic rather than a local view and knows exactly how

much of the traffic must be routed from which path. (3)
This system does not need to modify the end-hosts or

switches.

Fig. 1. Fat tree topology

 In this paper, we propose an adaptive load-sensitive
software defined TE approach that does not rely on the

ability to predict traffic pattern. Our proposed system
combines the power of software defined networking

and optimality of PEFT. Additionally, we provide a
practical implementation of PEFT (in java) for software

defined data center networks. The rest of this paper is
organized as follows. In section 2 the proposed system

architecture is presented with its components and their

interactions. Section 3 explains the system implemen-
tation and emulation results, and finally, section 4 con-

cludes the paper.

II. SDTE ARCHITECTUR

 In this section, the proposed architecture which is
called SDTE is presented. The proposed system uses

online traffic matrix (TM) calculation and assigning

the non-uniform weights to links in 50s intervals. In
each interval, TM will be calculated by considering all

current active flows among all hosts; then, the new TM
is compared with the previous time interval TM. If the

difference between each entry of these two matrices is
more than 20%, the weights are recalculated;

1
 Penalizing exponential flow-splitting

otherwise, SDTE continues its work with the same
weights. It means that by entrances of each flow there

is no need for weight recalculation. Assigning the link
weights is done through using PEFT which is an

optimal routing algorithm that splits the traffic over
multiple paths with an exponential penalty on longer

paths that is explained in the next subsection briefly.

 Figure 2 presents the components of our architecture
and how they interact. SDTE consists of five

components which can be classified into two groups:
the executive group (EG) and the computing group

(CG). The EG consists of the routing component and
the path calculation component. The CG consists of the

optimization component, rerouting component, and

JIPOPT component. CG will compute the weights
while EG use these weights for flow routing. Among

the computing components, only the optimization
component runs periodically. Two other computing

components would also be called for weight
recalculation, if needed. When a packet arrives, the

routing component extracts special packet header's
fields (such as source and destination MAC, IP

addresses, and the network layer protocol); then sends

them to the path calculation component to request a
suitable path. The path calculation component replays

the suitable path using this information along with the
available weights. After all, the routing component

installs the path on the switches. As it will be shown,
the proposed architecture is quite effective in practice.

A. Overview of PEFT Routing Algorithm

 PEFT is a TE mechanism that was introduced for
ISP networks. Key properties of PEFT are summarized

in this section. According to [9] and [10], consider a
network as a directed graph G = (V, E), where V is the

set of nodes (where N = |V|), E is the set of links (where
E = |E|), and link (u, v) has the capacity 𝑐𝑢,𝑣. The

offered traffic is represented by a traffic matrix D(s, t)

for source-destination pairs indexed by (s, t). TE

usually considers a link-cost function 𝜑 ({𝑓𝑢,𝑣 , 𝑐𝑢,𝑣})

that is an increasing function of 𝑓𝑢 ,𝑣. Since we consider

the link utilization function, 𝑓𝑢,𝑣 ⁄ 𝑐𝑢,𝑣 , then the PEFT's

TE objective is to minimize 𝑚𝑎𝑥𝑢,𝑣 ∈𝐸 𝜑 (𝑓𝑢 ,𝑣 , 𝑐𝑢,𝑣).

Optimal TE requires solving the following flow
conservation and link capacity constraint given by [9],

whose corresponding notation is given in Table 1.

min ∅({𝑓𝑢 ,𝑣 , 𝑐𝑢,𝑣}) (1)

s. t. ∑ 𝑓𝑠,𝑣
𝑡 −

𝑣:(𝑠,𝑣)∈𝐸

∑ 𝑓𝑢 ,𝑠
𝑡

𝑢:(𝑠,𝑢)∈𝐸

= D(𝑠, 𝑡), ∀𝑠 ≠ 𝑡

𝑓𝑢 ,𝑣 = ∑ 𝑓𝑢,𝑣
𝑡

𝑡 ∈𝑣

≤ 𝑐𝑢,𝑣 , ∀(𝑢, 𝑣)

vars . 𝑓𝑢 ,𝑣
𝑡 , 𝑓𝑢 ,𝑣 ≥ 0.

 To offload the traffic from the congested paths to

less congested but slightly longer ones, PEFT allows
exponential traffic splitting over unequal-cost paths as

shown in equation (2) where 𝑝𝑢 ,𝑡 is the set of the paths

from u to t and 𝑥𝑢,𝑡
𝑖 is the fraction of forwarding a

packet to the i-th path, i.e., 𝑝𝑢 ,𝑡
𝑖 .

 𝑥𝑢,𝑡
𝑖 =

𝑒 −𝑃𝑢,𝑡
𝑖

∑ 𝑒
−𝑃𝑢,𝑡

𝑗

𝑗

 (2)

 PEFT splits the traffic along all the available paths,

but penalizes the longer paths exponentially [10].

Table 1. Key Notations

Notation Meaning

D (s, t) Traffic demand from source s to

destination t

𝑐𝑢,𝑣 Capacity of link (u, v)

𝑓𝑢,𝑣 Flow on link (u, v)

𝑓𝑢,𝑣
𝑡 Flow on link (u, v) destined to node t

B. Challenges of Using PEFT Routing Algorithm on

the SDTE Architecture

 PEFT is originally designed for the ISP networks.

PEFT calculates the weights on an offline manner due

to the predictable traffic pattern of ISP networks. In
ISP networks, at first, the network operators obtain the

TM from their network over long intervals and then the
derived TM is used with link capacities as inputs of the

link weight calculation module that exists in another

independent machine. At this point, resulting links
weight will be installed on switches. In contrast to the

traffic pattern of the ISP networks, the measurement
studies have reported that the traffic in a DC is highly

dynamic and unpredictable. The lack of short term TM
predictability is due to the use of random resource

allocation for improving the performance of DC

applications, because the distributed file system
spreads the data chunks randomly across servers for

load distribution and redundancy [10].

 Thus, PEFT should be used in an online manner in

DC networks instead of the offline manner. Previously
[10] has modified PEFT for DC networks, but its

applicability for software defined DC networks is not

clear and has not been studied yet. In this research, the
original offline PEFT was modified to be used in an

online software defined TE system that is different
from the original PEFT in the operational context (but

it is not different in the computational context). In our
implementation, the optimization component obtains

the TM periodically, and when the difference between
the new and old TMs is greater than 20%, the weights

are recalculated in an online manner. For calculating

the link weights at first, the JIPOPT component solves
the optimization problem (1) and then the optimization

component calculates the new weights following the
functions given in [9].

Fig. 2. SDTE architecture

C. SDTE components

1. Routing component

 The routing component is a simple but important

component that acts similar to the input component of

the proposed system. When a packet that belongs to a

new flow arrives, this component asks for the suitable

path from the path calculation component. At this

point, the routing component extracts special packet

header's fields such as MAC address of source and

destination, IP address of source and destination, and

the network layer protocol; then it sends them to the

path calculation component. The purpose of selecting

these fields is to specify a unique flow. When the path

calculation component replies, the routing component

installs the flow table entries on all switches of the

specified path. Installation of flow table entries is done

by OpenFlow protocol standard messages. This

component interacts with the path calculation

component and requests and installs suitable paths for

new flows.

2. Path calculation component

 The path calculation component has a database of

network topology information and uses it for path

calculation of new flows. This information is provided

by basic services of Beacon controller [14] which is an

OpenFlow controller used for our emulation. The

optimization component assigns a weight to each link

of the topology due to the network load and conditions

of the network congestion. The path calculation

component calculates requested path based on link

weights and the header information (e.g. the

destination address) and sends the path to the routing

component. The optimization component periodically

calculates the weights for the path calculation

component. In fact, the weights and consequently the

paths modifies upon the changes that happen in the

TM.

3. JIPOPT component

 At first, this component solves the optimization

problem that was mentioned in subsection A to provide

the optimal distribution of the traffic (the necessary

capacity2). Then, these necessary capacities will be

sent to the optimization component. Solving the

optimization problem can be done through modeling it

through using AMPL (A Modeling Language for

Mathematical Programming) [26] and subsequently

employing an appropriate solver such as CPLEX [27]

and the IPOPT solver [28]. However, this is unsuitable

for our architecture, because the optimization

component needs to run in an online manner. As a

result, the java interface of the IPOPT's C++ library

(JIPOPT) was included in our implementation .

Furthermore JNI [15] was utilized to run JIPOPT.

4. Rerouting component

 In each time interval, the optimization component

characterize the link weights. This links weight will be

used for the rest of interval. In the next time interval, if

the network traffic pattern changes, the weights will be

recalculated. Meanwhile, it is possible that there are

some routed flows based on the previous weights

which still continue in the new interval. According to

2
The necessary capacity is a minimal set of link capacities to realize

the optimal TE [9].

the OpenFlow protocol, since the flow entries of these

flows are installed on the switches flow table, they are

not routed again. The controller can act in two ways:

1.The controller is aware of the flows on each link and

their rate so it checks if the present path of flows is in

accordance with the new weights or not. As the total

link weights over all reachable paths to each

destination on every switch is equal to one, therefore,

if a link load is more than optimal load then another

one has an under-optimal load. The controller reroutes

the flows via updating the flow table entries. 2. The

controller can delete all flow table entries from the

source edge layer switches after weight recalculation.

Both approaches increase the controller processing

overhead. In the final implementation, the second

approach is used because our emulation results reveal

that in addition to the controller processing overhead,

the first approach increases the reaction time of the

controller when faced with a different traffic pattern

compared to the previous interval traffic pattern.

5. Optimization component

 The main component of the SDTE architecture is the

optimization component that runs at every 50s interval.

This component requires two pieces of global

information about the network: the flow-level TM and

the network topology. The first one is provided by

requesting the flows statistics periodically from

switches and the second one is provided by the path

calculation component as discussed earlier. The

functions of the optimization component are presented

as follows: (1) Calculating the new (current) TM and

its difference with the old one. (2) Sending the TM to

the JIPOPT component, receiving the necessary

capacities and calculating the new link weights if it is

required. (3) Sending the new weights to the path

calculation component and calling the rerouting

component if needed. The pseudo code of this

component is given in algorithm1. In each interval, the

optimization component starts with calculating the

new TM. For this purpose, this component must be

able to perform the following tasks: (1) sending flow

statistics request messages to switches (2) Receiving

the flow statistics reply messages from switches and

processing them. The information about the individual

flows is requested by OFPST_FLOW stats request

messages [13]. The body of replied messages includes

information about the flows such as the packet count,

byte count, total flow duration, and etc.
The optimization component calculates the flow-level

TM through using transmitted byte count and flow

duration time. After TM calculation, if the difference

between the new and old TMs 3 is greater than 20%, the

JIPOPT component and the

optimizeOverLinkWeights() function will be called.

The optimization component sends the TM to the

JIPOPT component and then the JIPOPT component

returns the necessary capacities values. These values

are utilized by optimizeOverLinkWeights function for

link weights calculation. The pseudo code of

3
 A comparison is made for each individual entry within the matrix.

optimizeOverLinkWeights function is presented in [9].

Due to space constraints, the extra explanations are

avoided here. After these steps, the new weights is sent

to the path calculation component and the rerouting

component will be called. In addition to the mentioned

threshold (20%), a low threshold value will be

considered. The value of this threshold is 15%.

Suppose the difference between a new entry and an old

entry is close to 20% (but not 20%). In this case the

weights will not be recalculated. But if this scenario

repeats for several times, the weights must change. The

low threshold will checks for this scenario.

I. IMPLEMENTATION AND EVALUATION

 In this section, the performance of SDTE is evalu-

ated with respect to improve flow rate, link utilization ,

and load balancing. SDTE was proposed for software

defined networks therefore, a controller and a network

emulator are required for its implementation. There are

several SDN controllers such as Beacon [14], Nox [3],

Pox [22], Floodlight [23] and OpenDayLight [24]. For

our emulation, Beacon (a Java_based OpenFlow con-

troller) and OpenVswitch (a software OpenFlow

switch) running in Mininet [29] were used. Currently,

the Beacon controller like most other controllers sup-

ports OpenFlow specification version 1.0. Mininet is a

network emulator that runs on a single Linux kernel,

which is used for building a Fat tree topology that was

described in section I. We evaluated SDTE for a Fat-

tree k=4 topology that contains 16 hosts, 20 switches,

and 64 links. All links are 1Gb/s. In the following part,

the results of the proposed system are discussed and

compared with the results of random routing of flows.

In the future work we will use Maxinet [30]. Maxinet

extends Mininet to spans an emulated network over

several physical machines, making it possible to emu-

late large data center networks. It also introduces a traf-

fic generator for data center traffic.

The optimization component algorithm

a timer is scheduled to run every 50 seconds

flow statistics are obtained

previous trafficMatrix is stored in oldTrafficMatrix

structure

//calculation of newTrafficMatrix

foreach switch do

send ofp_stats_request of type OFPST_FLOW //

flow statistics request messages

receive reply to OFPST_FLOW request

//flow statistics response messages

retrieval flow src & dst

insert flow in newTrafficMatrix Entry

store flow statistics & senderSwitch

end foreach

current trafficMatrix is stored in newTrafficMatrix struc-

ture

compare difference between oldTrafficMatrix &

newTrafficMatrix //entry by entry

if difference > 15% then

call JIPOPT component

call optimizeOverLinkWeights()

call rerouting component

end if

Continue

Algorithm 1: The optimization component algorithm

A. Traffic generation

 One challenge of the proposed system performance

evaluation is how to simulate and generate the cloud

DC traffic pattern. At first the DC traffic patterns are

investigated briefly and then the traffic generator is

explained. Research articles [18, 19, and 20] have

studied the traffic characterization in data center

networks. Based on these studies, in cloud DCs, the

majority of the traffic originated by servers (about

80%) stays within the rack. However, for other DCs

such as university and private enterprise data centers,

most of the traffic (40-90%) leaves the source rack for

other destination racks. In the studied data centers,

80% of the flows are smaller than 10KB in size and

most of the bytes are in the top 10% of large flows

whose length varies from 100MB to about 1GB [10].

Also, the lifetime of 80% of the flows is less than 11

seconds. Our traffic generator uses the aforementioned

characteristics and sends 20% of the traffic to external

destinations or other racks while 80% of the traffic

stays within the rack. The size of 20% of flows is

between 500Mb and 1Gb which are considered big

flows and the size of 80% of flows is between 10Kb

and 1Mb which are considered small flows. In order to

pressure the network, the destination of big flows is set

outside of the rack and the destination of the small

flows inside the rack. The lifetime of flows is 5ms.

 The OpenFlow specification version that Beacon

controller supports (version 1.0), limits our simulation.

As mentioned before, version 1.0 does not support flow

splitting. To compensate for this limitation, our traffic

generator generates flows with uniform sizes. In fact,

SDTE needs to split flows and without this ability, its

performance would be dependent on flow sizes; there-

fore if the size of flows is uniform, SDTE performs

close to the optimal; otherwise, it will distance from

the optimal. As will be explained in the next parts, for

the next version of SDTE, the flow splitting ability is

added to the controller.

B. Control messages

 SDTE uses four types of control messages that are

exchanged between the controller and switches. These

messages are: OFPST_FLOW messages for requesting

information about flow OFPST_PORT messages for

requesting information such as port's number of

transmitted bytes, OFPT_FLOW_MODE messages

with OFPFC_ADD command for installing new flow

entries on switches flow table, and OFPT_FLOW

_MODE messages with OFPFC_DELETE command

for deleting flow entries from switches flow table. The

first two messages are exchanged every time the

optimization component runs and the next two messag-

es are exchanged when installing a path for a new flow

or deleting a flow entry from switches flow table. The

Optimization component time interval is 50 seconds;

however, smaller time intervals could provide a more

accurate view of flows but increases the amount of

control messages transmitted over the network and

processed by the controller. Yet, in the next part the

evaluation results show that SDTE performance is

close to the optimal.

C. Flow Rate

 In this section, we focus on the performance of

SDTE with respect to the flow rate. First the path

stretch is discussed. [10] defines the path stretch as the

ratio of the length of actual path to the length of the

shortest path. In our emulation which uses fat tree

topology with many redundant paths, path stretch is

equal to 1. This means all paths that are used for

routing are shortest paths and no detour path is needed.

In the following part, we used "designated rate" to refer

to the bandwidth that has been designed to send the

flows and "actual rate" for referring to the real

bandwidth that one flow can achieve. The actual rate

depends on the route that a flow takes. If this route is

congested because of the load imbalance, the actual

rate of flows will be reduced. If the network traffic is

distributed properly, the actual rate of flows will be

increased.

Fig.3. Comparison of actual rate of flows for SDTE and

Random

 For example, if the designated rate of a flow is

500MB and its actual rate is 400MB, this flow has

gained 80% of its designated rate. Figure 3 shows the

actual rate of flows relative to the designated rate of

flows. Because the results of the emulation show that

the actual rate of small flows was at least equal to their

designated rate, this figure only examines the big

flows. More flows can obtain a higher rate with SDTE.

The number of flows with the lowest rate (about 30-

40%) are equal in both SDTE and Random. SDTE

provides an actual rate of 60-70% for 25% of flows

while this value is around 2% for Random. Random

cannot distribute the network load over all possible

paths because when a new flow arrives, it routes the

flow from one of the available paths without

considering the network current traffic. Therefore, it is

possible that two or more big flows are routed from the

same path while other paths are underutilized. In

Contrast to Random, SDTE does not act randomly,

rather it uses unequal cost paths for the flow routing

and because of this, the network load is distributed over

all available paths; as a result, more flows can achieve

a higher rate. The difference between SDTE and

Random performance is particularly evident through

investigating the link utilization. In the next part, this

parameter will be analyzed.

D. Link Utilization

 Figure 4a compares the link utilization of Optimal,

SDTE, and Random over Fat tree topology. The

Optimal values are the values that have been resulted

from solving the optimization problem (1) by JIPOPT

component. [9] Has proven that these values are

optimal. Figure 4b compares the link utilization of

Optimal and Random. In this figure, it is clear that the

behavior of Random is different from Optimal.

Random cannot properly distribute the load on links

because it randomly selects one of the possible paths

without any knowledge of current links load.

Therefore, it cannot prevent the congestion over some

of the links while others are idle or underutilized. It is

noteworthy that in the presence of more flows and

heavier traffic, Random shows a worse performance,

and also in the case of more redundant paths, it hides

his bad performance better. The existence of larger and

smaller values compared to Optimal in figure 4b shows

that there are several big flows on some of the links

while the others are idle and the network load is not

properly distributed i.e. the network load is not

balanced. Figure 4c compares SDTE and Random.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

C
D

F

Percentage of Actual Flow Rate to Designed Flow Rate

SDTE

Random

(a) (b)

 (c) (d)

Fig. 4 .Comparison of link utilization for (a) Optimal, SDTE, and Random, (b) Random versus Optimal, (c) Random versus

SDTE, (d) SDTE versus Optimal

Fig.5. A flow from the source host A to the destination host

B

 For a better explanation, in Figure 5 there is a flow
from the source host A to the destination host B with

two different paths. As mentioned before, Random

routes the flow from one of the possible paths without
considering current load on that path or links

congestion. Contrary to Random, SDTE routes the
flows according to the network congestion conditions

and the weights that it holds; therefore, flows are
distributed on outgoing interfaces according to the

optimal weights. This is the reason of the fundamental

mismatch between SDTE and Random performance.
Figure 4d compares link utilization of SDTE and the

Optimal. The performance of SDTE is closer to the
Optimal compared to Random. The question is that

despite the fact of using optimal weights, why SDTE

still deviates from the Optimal? As previously
discussed, one reason is that the utilized controller does

not support flow splitting and the other reason refers
back to reactive and sparse TM calculation because of

saving resources. On average, SDTE only slightly
sacrifices the optimality by 7.3%, yet it provides a

significant improvement over Random about 9.9%.

 The maximum and minimum link utilization values
of Optimal, SDTE, and Random over Fat tree topology

are presented in Table 2. It can be seen that Random
exhibits a wider spread in link utilization over SDTE

and Optimal which implies that traffic on the links
across the network is unbalanced. While the maximu m

link utilization of SDTE is 4% more than Optimal, this

value is 17% for Random. For a closer look, the link
utilization of core

Table 2. The maximum and minimum link utilization
values of Optimal, SDTE, and Random

Maximum Link
Utilization

Minimum Link
Utilization

Optimal 39% 16%

SDTE 43% 15%

Random 6% 2%

layer links is demonstrated in Figure 6. The worse

performance of Random compared to SDTE is evident.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

C
D

F

Link Utilization

Random

Optimal

SDTE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

C
D

F

Link Utilization

Random

Optimal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

C
D

F

Link Utilization

Random

SDTE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

C
D

F

Link Utilization

SDTE

Optimal

SDTE schedules and splits the traffic over paths to
leverage the path diversity and as a result, the network

traffic is balanced better, while Random shows a
different behavior due to the randomness in flow

scheduling. SDTE provides more links with average
link utilization while Random has some links with link

utilization close to zero and some with high link

utilization.

Fig. 6. Comparison of core layer link utilization for Random

versus SDTE

E. System stability

 Systems that are used for TE should be able to

preserve their stability for different traffic patterns. It
should be noted that stability is highly important for

online TE systems. Each time the network traffic
pattern changes, SDTE recalculates the weights. SDTE

output is an appropriate path for flows based on these
weights. If the recalculation of weights is done

repeatedly, the system loses its stability and causes

route oscillation. The proposed system can prevent this
instability through assigning a suitable time interval

(this time interval is 50s in our emulation) for the
optimization component to recalculate weights when

facing different traffic patterns. However, this interval
causes SDTE to deviate from Optimal, yet is effective

and providing a performance near to Optimal.

F. System overhead

 system overhead can be studied from two aspects, 1)

time complexity of optimization component and 2) the
number of input flows to routing component.

optimization component uses optimize over link
weights function. This function requires Floyd-

Warshal algorithm to compute the all-pairs shortest

paths that has time complexity 𝑂(𝑁 3). Also, this
function requires topology sorting. For each

destination, topology sorting needs O(N+E) time, and

summarizing the incomping flow and splitting across
the outgoing links requires O(N+E). Thus, the total

time complexity to calculate the traffic distribution is

𝑂(𝑁 3 + 𝑁(𝑁 + 𝐸)) = 𝑂(𝑁 3) [9].

 In current version of SDTE, switches inform routing
component with each new flow. Then routing

component specify route to the new flow. It increases
overhead of the controller beacuse the median arrival

rate of all flows is 105 flows per second in DCNs [19].
In future, we will use group table [21] to decrease
overhead of the controller. With group table, some

decisions are made locally by switches. Therefore, no

need to send all new flows to the controller.

II. CONCLUSION AND FUTURE WORK

 In this paper, we proposed SDTE (an online load

sensitive software defined traffic engineering system)
to improve link utilization, load balancing and perfor-

mance over cloud data center networks. SDTE distrib-
utes network traffics among all available paths. SDTE

uses PEFT which assigns a weight for each link/desti-

nation to achieve optimal traffic distribution. We mod-
ified PEFT to make it compatible with both DC traffic

pattern fluctuations and OpenFlow framework. The
evaluation shows that the proposed system results are

close to the optimal solution. Therefore, it can distrib-
ute the load on all available paths , this leads to reduc-

tion of maximum link utilization. Moreover, the eval-

uation confirmed that SDTE improves the rate of
flows. Due to limitations of current implemented ver-

sion of OpenFlow (version1.0) the proposed system
does not support flow splitting. Future works would be

dedicated to extend SDTE to support flow splitting and
group table (a new feature in OpenFlow version1.1 and

later versions through which packets are processed
based on a switch-computed selection algorithm).

References

[1] S. Vissicchio, L. Vanbever and J. Rexford, "Sweet Lit-

tle Lies: Fake Topologies for Flexible Routing", Pro-
ceedings of the 13th ACM Workshop on Hot Topics in
Networks - HotNets-XIII, 2014.

[2] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L.
Poutievski, A. Singh and A. Vahdat, "WCMP:
Weighted Cost Multipathing for Improved Fairness in
Data Centers", Proceedings of the Ninth European
Conference on Computer Systems - EuroSys '14, 2014.

[3] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N.

McKeown and S. Shenker, "NOX: Towards an Oper-
ating System for Networks", ACM SIGCOMM Com-
puter Communication Review, vol. 38, no. 3, p. 105,
2008.

 [4] P. Bosshart, G. Varghese, D. Walker, D. Daly, G. Gibb,
M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco and A. Vahdat, "P4: Programming Proto-
col-Independent Packet Processors", ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp.

87-95, 2014.

[5] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N.
Huang and A. Vahdat, "Hedera: Dynamic Flow Sched-
uling for Data Center Networks", Proceedings of the
7th USENIX conference on Networked systems design
and implementation, pp. 19-19, 2010.

 [6] A. Curtis, W. Kim and P. Yalagandula, "Mahout: Low-
Overhead Datacenter Traffic M anagement Using End-
Host-Based Elephant Detection", 2011 Proceedings

IEEE INFOCOM, 2011.

[7] T. Benson, A. Anand, A. Akella and M. Zhang, "Mi-
croTE: Fine Grained Traffic Engineering for Data Cen-
ters", Proceedings of the Seventh Conference on
emerging Networking EXperiments and Technologies
on - CoNEXT '11, 2011.

 [8] C. Hopps, "Analysis of an Equal-Cost Multi-Path Al-
gorithm", RFC 2992, 2002.

[9] Dahai Xu, Mung Chiang and J. Rexford, "Link-State

Routing With Hop-by-Hop Forwarding Can Achieve
Optimal Traffic Engineering", IEEE/ACM Transac-
tions on Networking, vol. 19, no. 6, pp. 1717-1730,
2011.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

C
D

F

Link Utilization(Core Layer)

Random

SDTE

[10] F. Tso and D. Pezaros, "Improving Data Center Net-
work Utilization Using Near-Optimal Traffic Engi-
neering", IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 6, pp. 1139-1148, 2013.

[11] M. Al-Fares, A. Loukissas and A. Vahdat, "A Scalable,
Commodity Data Center Network Architecture", ACM
SIGCOMM Computer Communication Review, vol.
38, no. 4, p. 63, 2008.

[12] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C.

Kim, P. Lahiri, D. Maltz, P. Patel and S. Sengupta,
"VL2: A Scalable and Flexible Data Center Network",
ACM SIGCOMM Computer Communication Review,
vol. 39, no. 4, p. 51, 2009.

[13] "OpenFlow switch specification", Open Networking
Foundation, ver. 1.0, 2009.

[14] Openflow.stanford.edu, "Home - Beacon - Conflu-
ence". Available: https://openflow.stanford.edu/dis-
play/Beacon/Home.

[15] S. Liang, The Java Native Interface. Reading, Mass.:
Addison-Wesley, 1999.

[16] N. McKeown, T. Anderson, H. Balakrishnan, G. Parul-
kar, L. Peterson, J. Rexford, S. Shenker and J. Turner,
"OpenFlow: Enabling Innovation in Campus Net-
works", ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

[17] R. Bohn, J. Messina, F. Liu, J. Tong and J. Mao, "NIST
Cloud Computing Reference Architecture", 2011 IEEE

World Congress on Services, 2011.

[18] T. Benson, A. Anand, A. Akella and M. Zhang, "Un-
derstanding Data Center Traffic Characteristics", ACM
SIGCOMM Computer Communication Review, vol.
40, no. 1, p. 92, 2010.

[19] S. Kandula, S. Sengupta, A. Greenberg, P. Patel and R.
Chaiken, "The Nature of Data Center Traffic: M eas-
urements &Analysis", Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement con-

ference - IMC '09, 2009.

[20] T. Benson, A. Akella and D. Maltz, "Network Traffic
Characteristics of Data Centers in the Wild", Proceed-
ings of the 10th annual conference on Internet meas-
urement - IMC '10, 2010.

[21] "OpenFlow switch specification", Open Networking
Foundation, ver. 1.4, 2013.

[22] Openflow.stanford.edu, "POX Wiki - Open Network-
ing Lab - Confluence". Available: https://open-

flow.stanford.edu/display/ONL/POX+Wiki.

[23] Project Floodlight, "Floodlight OpenFlow Controller -
". Available: http://www.projectfloodlight.org/flood-
light/.

[24] J. Medved, R. Varga, A. Tkacik and K. Gray,
"OpenDaylight: Towards a Model-Driven SDN Con-
troller Architecture", Proceeding of IEEE Interna-
tional Symposium on a World of Wireless, Mobile and
Multimedia Networks 2014, 2014.

[25] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F.

Duchene, O. Bonaventure and M. Handley, "How Hard
Can It Be? Designing and Implementing a Deployable
Multipath TCP", Proceedings of the 9th USENIX con-
ference on Networked Systems Design and Implemen-
tation, pp. 29-29, 2012.

[26] R. Fourer, D. Gay and B. Kernighan, AMPL, a Model-
ing Language for Mathematical Programming. San
Francisco, CA: Scientific Press, 1993.

[27] Www-01.ibm.com, "IBM CPLEX Optimizer - United

States". Available: http://www-01.ibm.com/soft-
ware/commerce/optimization/cplex-optimizer/.

[28] A. Wächter and L. Biegler, "On the Implementation of
an Interior-Point Filter Line-Search Algorithm for

Large-Scale Nonlinear Programming", Mathematical
Programming, vol. 106, no. 1, pp. 25-57, 2005.

[29] B. Lantz, B. Heller and N. McKeown, "A Network in
a Laptop: Rapid Prototyping for Software-Defined
Networks", Proceedings of the Ninth ACM SIGCOMM
Workshop on Hot Topics in Networks - Hotnets '10,
2010.

[30] P. Wette, M. Draxler and A. Schwabe, "MaxiNet: Dis-
tributed Emulation of Software-Defined Networks",

2014 IFIP Networking Conference, 2014.

[31] D. Wischik, C. Raiciu, A. Greenhalgh and M. Handley,
"Design, Implementation and Evaluation of Conges-
tion Control for M ultipath TCP", Proceedings of the
8th USENIX conference on Networked systems design
and implementation, pp. 99-112, 2011.

[32] N. Kang, M. Ghobadi, J. Reumann, A. Shraer and J.
Rexford, "Efficient Traffic Splitting on Commodity
Switches", 2015.

[33] P. Sun, L. Vanbever and J. Rexford, "Scalable Program-
mable Inbound Traffic Engineering", Proceedings of
the 1st ACM SIGCOMM Symposium on Software De-
fined Networking Research - SOSR '15, 2015.

[34] S. Vissicchio, O. Tilmans, L. Vanbever and J. Rexford,
"Central Control Over Distributed Routing", ACM
SIGCOMM Computer Communication Review, vol.
45, no. 5, pp. 43-56, 2015.

Marzieh Khoshbakht received her

B.Sc. degree in computer
engineering from Bonab PNU
University, East Azarbaijan, in 2010.
She received her M.Sc. degree in
computer engineering from Tarbiat
Modares University, Tehran, in
2013. Her main research interests
include software defined networking,
traffic engineering, and cloud

computing.

Mohammad Mahdi Tajiki received
his B.Sc. degree in Computer
Engineering from Shahid Bahonar
University, Kerman, Iran, in 2011. In
2013, he graduated from Electrical
and Computer Engineering School of
Tehran University, Tehran, Iran.

Currently, he is a Ph.D. candidate in
Tarbiat Modares University, Tehran,
Iran. His main research interests are
network QoS, media streaming over

the Internet, data center networking, traffic engineering, and
software defined networking (SDN).

Behzad Akbari received his B.Sc.,
M.Sc. and Ph.D degree in Computer

Engineering from Sharif University of
Technology, Tehran, Iran, in 1999,
2002 and 2007 as an assistant profes-
sor, respectively. He joined, to depart-
ment of Electrical and Computer En-
gineering at Tarbiat M odares Univer-

sity, Tehran, Iran in 2007. His main research interests are In-
ternet QoS, media streaming over the Internet, peer-to-peer
networks, peer-to-peer video streaming, wireless video com-

munications, data center networking, software defined net-
working (SDN) and network performance modeling and
evaluation.

