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Abstract— Session Initiation Protocol (SIP) is the main signaling protocol of the next generation networks. The security 

issues of SIP-based entities (i.e. proxy servers and clients) have a direct impact on the perceived quality of experience 
of end users in multimedia sessions. In this paper, our focus is on the SIP flooding attacks including denial of service 

and distributed denial of service attacks. After classifying various types of SIP attacks based on their sources, we extract 

four feature sets based on the specification of its attack group, as well as the normal behavior of the SIP state machine 

specified in RFC 3261. We then minimize the number of derived features in each set to reduce the computational 

complexity of our proposed approach. This facilitates employing the engineered feature sets in embedded SIP-based 
devices such as cell phones and smart TVs. We evaluate the performance of the propose d feature sets in detecting SIP 

attack sequence. For this, we design and implement a real test-bed for SIP-based services to generate normal and attack 

traffics. The experimental results confirm that the engineered feature sets perform well in terms of detection accuracy 

and false alarm rates in classifying benign and anomaly traffic in various attack scenarios .  

Keywords- SIP Security, SIP Feature Set, SIP intrusion detection system, Application Layer DoS Attack (DDoS), SIP state 

machine, VoIP IDS, NGN and IMS Security 

 

I. INTRODUCTION  

The session initiation protocol (SIP) is an IETF 

protocol for controlling VOIP and other multimedia 
communication sessions like IPTV and instant 

messaging. SIP is designed with an open architecture 
vulnerable to security attacks. Therefore, effective 

                                                                 
1 This work was supported partly by the CyberSpace Research Institute (CSRI) of IRAN under contract NO 17164/500. 

detection of flooding attack to the SIP proxy server is 
critical to ensure robust multimedia communications 

over IP networks.  Due to the increasing popularity of 

the SIP-based services (such as VoIP, IPTV, IMS 
infrastructure), the security concerns of the end users 

and service providers should seriously be taken into 
consideration. The existing security mechanisms 



against SIP flooding attacks work less than expected. 
These mechanisms may fail when flooding is launched 

by simultaneously manipulating different types of SIP 
messages [1]. Furthermore, SIP is a transactional 

protocol and possesses multiple controlling message 
attributes [2] [3] and its behavior is defined as a set of 

relatively independent steps with not a fixed coupling 

between them [4]. 

SIP entities (i.e. proxy servers and clients) 

encounter various types of Denial of Service (DoS) 
attacks because of both implementation and protocol 

weaknesses [5]. Since SIP works in application layer of 
TCP/IP without any consideration about lower layers 

(IP), the definition of distributed DoS on SIP entities is 

a little different with other protocols. In other words, 
SIP DDoS attack is a special flooding attack that uses 

the inefficiencies of SIP implementations.  

Generally VoIP attacks classify to six different 

groups: social threats, eavesdropping, interception and 
modification, service abuse, intentional and non-

intentional interruption of service [4] [6]. VoIP systems 
have predominantly software-based implementations 

which are vulnerable to application layer flooding 

attacks [5]. The SIP flooding attacks exhaust the 
resources of both networks and entities and can be 

launched easily [7].  

We categorize the flooding attacks into four groups 

based on their generation complexity: basic flooding 
(DoS), advanced flooding (DDoS), authentication and 

memory based attacks (incomplete transactions). This 

categorization is based on the production process and 
also the target of attacks. The basic flooding attacks are 

generated by sending a large amount of SIP messages 
to server containing random generated fields. These 

messages deplete memory, processor and bandwidth of 
the victim. Since the attacker doesn’t care about the 

random generated fields, this class can be considered as 

SIP DoS. The advanced flooding attacks are generated 
by smart use of special SIP messages. SIP brute force 

attack [8] is an example of this class. As it is defined by 
RFC 3261, SIP has four layers: syntax and encoding; 

transport; transaction; and transaction user (TU). 
Handling the current state of transactions in transaction 

and transaction user layers needs a considerable 
memory which will be exhausted if the number of 

concurrent calls is larger than the predicted amount of 

memory. Therefore, the intruder generates messages 
belonging to different transactions to occupy more 

memory. We call them advanced SIP flooding attack 
which depletes the memory with lower number of SIP 

messages. These attacks are categorized as SIP DDoS. 
The third class of SIP flooding attacks called 

authentication attack misuses the simple authentication 

process of the SIP entities and tries to deplete CPU as 
shown in Figure 1. Much of the processing power of a 

typical SIP component is consumed for security checks 
and also message parsing. SIP uses a challenge based 

authentication mechanism that is based on HTTP 
authentication [9]. In this authentication mechanism 

when client wants to communicate to a SIP proxy, 

receives a “407 Proxy authentication required” 
response with an authentication header contains a 

random string (challenge) generated by server called 
nonce. Client program generates an authentication 

header by applying MD5 algorithm on received nonce 

and embed its URI and password and send the request 
message back to the server. Server similarly calculates 

the response value and compares it with the desired 
value. This procedure requires significant processing 

resources from server in generating random numbers 
and also comparing the extracted nonce from input 

messages. Accordingly, attacker can occupy server 

processing resources (CPU) by organizing the 
following attack scenarios [10]:  

- Static nonce-based flooding attack: intruder 
uses spoofed nonce to create authentication 

enabled requests. In other words, the attacker 
uses valid nonce to generate new calls. 

- Adaptive nonce-based flooding attack: the 

intruder continuously refreshes nonce, to create 
valid requests that not filtered before 

processing. 

- Adaptive nonce-based flooding attacks with 

spoofed IP addresses: the intruder sends 
requests with valid nonce and by using spoofed 

IP addresses tries to harden the detection 
process. 

 

Fig. 1- A sample authentication based attack 

We call the fourth SIP flooding attack scenario as 
memory-based attack or incomplete transaction. The 

attacker prolongs the call control sessions by misusing 
the SIP state machine. These attacks usually are 

generated by cooperation of one valid host in the VoIP 
network as shown in Figure 2. In this scenario, an 

INVITE request is sent by an attacker. He repeats 
sending 1xx responses and do not send the final 

response (2xx) to exhaust the memory of the SIP server. 

 

Fig.2 - Prolong the SIP sessions for memory depletion 

attack 
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The real-time nature of VoIP systems requires the 
security mechanisms to work with minimal delay, and 

also, minimal false alarm. In this paper, we propose four 
different feature sets for detecting the abovementioned 

attack groups. The proposed features in all groups use 
only the explicit extracted information of incoming 

packets. As such, they are calculated with minimum 

overhead and delay. We also reduce the number of 
features in each group to minimize the runtime 

computation complexity. We show the effectiveness of 
the proposed feature set by comparing its performance 

with all features and also random selected features. The 
main contributions of this paper are as follows:  

- We concurrently employ of the SIP state 

machine (normal behavior) and SIP attack 
scenarios to engineer  features  

- We propose a specification-based intrusion 
detection system by combining the SIP finite 

state machine and machine learning-based 
approaches 

- We deploy the proposed minimal feature set in 
a specification-based SIP anomaly detection 

systems   

- Our proposed technique detects  all SIP 
flooding based attack scenarios including DoS 

and DDoS  

The rest of the paper is organized as follows. The 

related works are summarized in the following section. 
The proposed feature sets are introduced in the section 

III, followed by the experiment setup and database 

preparation described in details in Section IV. The 
results analysis and conclusion are given in Sections V 

and VI, respectively. 

II. RELATED WORK 

Intrusion detection in SIP based systems classifies 
into statistical approaches and machine learning 

techniques [11]. We proposed a method based on the 
SIP state machine in [12] to detect SIP flooding attacks. 

We followed the original SIP state machine in [12] with 
different thresholds in such a way that the transaction 

anomalies are revealed. The main drawback of [12] is 

its parameter setting which is time consuming and 
traffic specific. Moreover, it has lower detection rate in 

comparison to machine learning techniques. A cross 
layer detection scheme is proposed in [13]. It 

simultaneously utilizes the RTP and SIP protocol stacks 
and their relationships. Since concurrent accessibility to 

the signaling and media protocols (in a detection system) 

is a very preventive assumption on VoIP systems, their 
proposed solution seems not to be appropriate in real 

world applications. A basic security architecture for 
monitoring, detecting, analyzing and countering SIP 

attacks is presented in [14] as VoIP defender. It offers 
the essential facilities for analyzing the SIP layer down 

to the transport, network and MAC layers. The 
real-time applicability and the transparency to SIP 

entities are main advantages of VoIP defender. A 

protected robust SIP state machine is proposed in [15] 
to resist against SIP flooding attacks but their proposed 

architecture cannot detect some advanced attacks like 
brute force or CPU based attacks which have more 

complicated construction process. Another 

specification based intrusion detection framework is 
presented in [3]. It extracts some explicit features 

directly from SIP state machine and utilizes threshold 
values to make decision about abnormality of 

designated traffic in real-time which makes it 
susceptible to low rate SIP attacks. Using bloom filters 

is another statistical approach that used in some SIP 

IDS systems [6]. The main problem of bloom filters is 
their high false alarm rates. Some classic statistical 

approaches like Hellinger distance is also used in SIP 
anomaly detection systems [16]. The authors of [1] use 

a multidimensional system based on Hellinger distance 
to detect SIP DoS attacks.  

Using machine learning techniques alongside with 

appropriate feature definition makes another class of 
SIP intrusion detection systems. Real-time operation of 

SIP related applications makes it necessary to use 
online and incremental learning approaches. An online 

SIP monitoring system is presented in [17]. A set of 38 
statistical features (in five groups) is defined to 

highlight the abnormal SIP activities. These features are 
fed to the support vector machine (SVM) for 

classification in [18]. Another comprehensive 

engineered feature set for detection of flooding attacks 
is presented in [11]. The feature definition of [11] is 

done by the normal behavior of SIP state machine and 
also by considering the attack scenarios. The main 

weakness of [11] and also [17] is their maxima l 
approach in feature definition which makes the 

detection of attack types unachievable, and therefore, 

limits their usages in intrusion response systems.  

We propose four sets of specialized features by 

focusing on the SIP vulnerabilities and SIP state 
machine for each class of SIP flooding attacks based on 

the attack types. The proposed feature sets are 
engineered by carefully investigating the VoIP reported 

vulnerabilities in many previous research papers such 

as [19] [20] [21] [22]. We also propose a specification-
based intrusion detection system by combining the SIP 

finite state machine and machine learning-based 
approaches. The engineered feature sets are described 

in the following section and their applicability is shown 
in different conditions. 

III. SIP FEATURE SET ENGINEERING 

We propose four different subsets of features based 

on the characteristics of SIP attacks that enable us to 
predict the attack types. Prediction of attack class helps 

the intrusion response systems to make appropriate 

reaction. We consider the SIP state machine and SIP 
normal traffic in our feature set engineering process. 

The proposed feature sets detect the SIP anomalies in 
real-time and are grouped into four different subsets 

based on their underlying attack group. Table-1 
summarizes the proposed feature sets. In addition to 

detection of anomalies in SIP traffic, the determination 
of attack type will be possible by using these proposed 

small feature sets. The following sub-sections describe 

the engineered features in details. 

 

 

 

 



 
Table 1. Engineered features for each flooding attack 

Title # of 
Featur

es 

Engineered Features 

Basic 

Flooding 

3 (
𝑆𝐼𝑃 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠

𝑇𝑖𝑚𝑒 𝑊𝑖𝑛𝑑𝑜 𝑤
), 

(
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑆𝐼𝑃 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑆𝐼𝑃 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠
), 

(𝐼𝑁𝑉𝐼𝑇𝐸 − 𝐴𝐶𝐾) 

Advanced 
Flooding 

5 (𝑆𝐼𝑃  𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠

𝑇𝑖𝑚𝑒 𝑊𝑖𝑛𝑑𝑜𝑤
) , ( 𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑆𝐼𝑃 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑆𝐼𝑃 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠
), 

 (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜 𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝐼𝑃 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠  𝑖𝑛 𝑊𝑖𝑛𝑑𝑜𝑤
), 

(
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 1𝑥𝑥

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑖𝑛 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑊𝑖𝑛𝑑𝑜𝑤
), 

( 𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  2𝑥𝑥

𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠  𝑖𝑛 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑊𝑖𝑛𝑑𝑜𝑤
), 

Authenticati

on Based 
Flooding 

5 (
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 4𝑥𝑥

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠
), 

(
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 5𝑥𝑥

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠
), 

(
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑅𝐸𝐺𝐼𝑆𝑇𝐸𝑅  𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  2𝑥𝑥  𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠
), 

(
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑆𝑒𝑛𝑑𝑒𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
), 

(
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑅𝑒𝑞𝑢𝑒𝑠𝑡  𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒  𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠
) 

Memory 

Based 
Flooding 

5 (
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 1𝑥𝑥

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠  𝑖𝑛 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑊𝑖𝑛𝑑𝑜𝑤
), 

(
𝑆𝐼𝑃 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠

𝑇𝑖𝑚𝑒 𝑊𝑖𝑛𝑑𝑜 𝑤
), (

𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 4𝑥𝑥

𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠
), 

(
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑆𝑒𝑛𝑑𝑒𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
), 

(
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑆𝐼𝑃 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑖𝑛 𝑊𝑖𝑛𝑑𝑜 𝑤
) 

ALL 14 All above features 

 

A. Engineered Features for Basic Flood Detection 

Since the SIP entities designed for a specific 

maximum workload, the number of input requests 
should not exceed this threshold. Thus, we define a 

feature for monitoring the online SIP message rate in a 

designated time period. This feature is computed as the 
ratio of all input messages (regardless of its request or 

response nature) within the specified time 

interval (
𝑺𝑰𝑷 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔

𝑻𝒊𝒎𝒆  𝑾𝒊𝒏𝒅𝒐𝒘
) . We expect a considerable 

increase in this ratio during the basic flooding attack 

periods. In this class of flooding attacks, the intruder 
can use INVITE, OPTION, CANCEL, BYE, 1xx or any 

other SIP messages. However, using INVITE method is 

more convenient because according to the RFC 3261, 
all SIP components have to support the INVITE method. 

Moreover, all SIP entities (including user agents and 
proxies) design to accept incoming SIP requests 

without preceding session setup. Accordingly, the 
intruder can expose an attack vector based on this 

method to deplete the bandwidth, memory or CPU of 
the designated SIP entity. It is also clearly expressed in 

SIP state machine that each SIP request requires at least 

one response. All SIP INVITE messages should be 
accompanied by an appropriate temporal (i.e. 1xx) and 

final (i.e. 2xx) response messages. Consequently we 
expect that the number of SIP request messages in any 

selected time window become less than the total 
number of SIP messages. Accordingly we define the 

second feature for detecting SIP basic floods as 

(
𝑵𝒖𝒎𝒃𝒆𝒓  𝒐𝒇 𝑺𝑰𝑷 𝑹𝒆𝒒𝒖𝒆𝒔𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆 𝒓  𝒐𝒇 𝑺𝑰𝑷 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔
).  

The previous two features are helpful for detecting 

simple attacks where the intruder forwards a high 
volume of SIP messages with random value fields 

towards victim. Since SIP is a stateful protocol, two 

types of sessions are defined in SIP: transaction and 
dialog. Almost all SIP entities works in transaction 

level and initiates, maintains and terminates calls 
appropriately. Each SIP call is initiated with INVITE 

packet and its transaction is terminated by 200 OK 
message accompanied by ACK and its dialog is 

terminated finally by BYE message. Since all valid 
INVITE requests should have a final ACK, we define 

the third feature of this group as the difference between 

the INVITE and ACK messages (𝑰𝑵𝑽𝑰𝑻𝑬 − 𝑨𝑪𝑲) 
which indicates the number of incomplete or 

in-progress calls.  

Despite of its simplicity, this group of attacks can 
be very harmful because when the proxy or user agent 

faces with more input requests than its capacity, a 
breakdown in performance is occurred. Moreover, 

based on the RFC 3261, all SIP components have to 
support the INVITE method and all SIP user agents and 

proxies are by design ready to accept incoming 
invitations without prior session setup. Consequently 

the intruder can expose an attack vector based on this 

method to deplete the bandwidth, memory or CPU of 
the designated SIP entity. 

B. Engineered Features for Advance Flood Detection 

Since the stateful SIP proxy servers reserve a 

specific amount of memory for each transaction upto its 
completion, it may fail to respond to new incoming 

requests, if the number of concurrent calls reach a 
specified threshold. The intruder abuses this issue and 

arranges a brute force attack (large number of SIP 
packets with different transaction identifiers). In other 

words, brute force flooding attacks are made by altering 

the transaction and dialogue related parameters of SIP 
messages (i.e. VIA Branch, CSeq Method, CALL-id , 

TO Tag and From Tag) which is equivalent to 
application layer distributed DoS.  

We expect that monitoring the statistics of 
transactions and dialogs in SIP reveals advanced 

flooding attacks. In normal circumstances, each SIP 

transaction involves of one request message (i.e. 
INVITE); one or more provisional response message 

(i.e. 1xx) and finally it will finish with one successful 
response message (i.e. 2xx) followed by an optional 

ACK message. Accordingly we expect that the 
distribution of number of transactions in each time 

window has a noticeable variation in attack periods. 

Therefore we define the ratio of transactions to total 
number of SIP messages in each selected window to 
detect this kind of attacks (

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑺𝑰𝑷 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔 𝒊𝒏 𝑾𝒊𝒏𝒅𝒐𝒘
).  

Since this group of attacks is made by generating 

high volume of packets, we monitor the ratio of SIP 

packets in time windows too. This feature can be used 
in detection of basic flooding attacks. Another useful 

information for SIP flood detection is the ratio of 
provisional and successful SIP response messages. We 

expect that the distribution of SIP response messages in 
attack situation differs from normal states because of 

stateful nature of SIP components. Therefore we 

monitor the number of SIP provisional responses and 
SIP final responses within the current window 
(

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝟏𝒙𝒙

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔 𝒊𝒏 𝑪𝒖𝒓𝒓𝒆𝒏𝒕 𝑾𝒊𝒏𝒅𝒐𝒘
) and 

(
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝟐𝒙𝒙

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔 𝒊𝒏 𝑪𝒖𝒓𝒓𝒆𝒏𝒕 𝑾𝒊𝑛𝒅𝒐𝒘
). 



C. Engineered Features for Authentication Flood 

Detection 

We categorize the flood attack scenarios against 

authentication mechanism into three separate groups. 
These attacks attempt to deplete the processing resource 

of victim by sending smart set of SIP requests. Based 

on these attack vectors, and also, by considering the SIP 
state machine, we propose five features to detect this 

attack group as follows.  

In static nonce and valid URI flooding attack, it is 

assumed that attacker has collected some valid URIs 
from the corresponding SIP domain. Attacker sends 

INVITE and REGISTER requests to server by using 
these valid URIs. Depending on request type, server 

replies by 401 or 407 message containing 

authentication header with a valid nonce. Attacker 
resends request including a fake authentication header, 

containing valid nonce and a wrong response.  When 
server receives this request it is compelled to check its 

validity by calculating the correct response using 
appropriate hash algorithm. By performing this 

procedure consistently with different URIs, attacker 

wastes processing resources of server. In mentioned 
scenario, attacker uses valid nonce and valid URIs in 

each request to lead his behavior appears normal and 
make detection of attack harder.  

In the next scenario, attacker uses invalid URIs in 
static nonce-based flood to make server perform 

authentication signaling, and also, access database of 

URIs. Facing with valid nonce string, server has to 
access database and consume processing power; and 

then reply to the sender by a 401 or 407 messages; 
meaning invalid URI or invalid password in the 

authentication header of received SIP message. We can 
also detect this class by monitoring the rate of 4xx and 

5xx messages.  

Attacker can alternatively send authentication 

request message to the server and use received valid 

nonce to make several SIP messages with URI of first 
message or invalid URIs to perform dynamic nonce 

flooding attack. Receiving messages with valid nonce; 
if URI in the received message doesn’t differ from the 

URI of the first message, server replies by a 401 or 407 
message; otherwise server has to respond by a 403 not 

here message; meaning that the profile of transaction 

couldn’t be retrieved.  

In comparison with normal situations based on the 

SIP state machine, we expect to see more client error 
messages (i.e. 4xx) and server error message (i.e. 5xx) 

in authentication attack intervals. Consequently we 
define the two separate features for monitoring the 
client and server error messages (

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝟒𝒙𝒙

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔
) and 

(
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝟓𝒙𝒙

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔
). We also monitor the ratio of successful 

REGISTER messages, and we expect that the 
distribution of successful registration might change in 

authentication attack intervals because we witness high 
rate of unsuccessful registration attempts 
(

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑹𝑬𝑮𝑰𝑺𝑻𝑬𝑹 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝟐𝒙𝒙 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔
). Another authentication related 

attack to SIP entities can be launched by misusing the 
NAT technology because we cannot restrict the input 

requests by their IP addresses. The SIP users may not 
have concurrent calls (or have a very limited number of 

simultaneous calls), then we also used this information 

in our features by considering the number of senders. 
Therefore, if we monitor the normalized ratio of senders 

to transactions, we can detect this kind of attacks 
(

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑺𝒆𝒏𝒅𝒆𝒓𝒔

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔
). This feature can detect the simple 

SPIT (SIP SPAM) too. The final engineered feature of 

this group is the ratio of request to response messages. 
This ratio reveals the unusual situations in which the 

intruder tries to forward invalid request or response 
messages (

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑹𝒆𝒒𝒖𝒆𝒔𝒕 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔
). 

D. Engineered Features for Memory Flood Detection 

By prolonging the transaction time, the memory of 
SIP entity may deplete. The intruder generates as much 

as different transactions by randomly selected initiators 
for his SIP messages (i.e. “VIA Branch”, “To TAG” 

and “From TAG”). Accordingly, the number of 
concurrent unique transactions may be an operational 

feature for detecting the memory based attacks 
(

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔
). In addition to number of different 

transactions, we observe that in normal situations the 

total number of senders is less than the total number of 
transactions. Consequently, we consider this ratio as a 
new feature (

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑺𝒆𝒏𝒅𝒆𝒓𝒔

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑻𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔
). Another sample attack of 

this class is incomplete transactions with host 
cooperation or ringing based attacks in which the 

attacker sends INVITE requests to his colleague and he 

prolongs the lifetime of a transaction by sending 
provisional responses (e.g. 1xx). According to 

RFC3261, the transaction time can be prolong to 
several minutes which misused by attacker. For further 

extending the transaction lifetime, the target 
destinations may collaborate in attack and reply just 

with provisional responses [23]. Therefore, we expect 

that monitoring the number of provisional responses in 
different time intervals can reveal the memory based 
attacks (

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝟏𝒙𝒙 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑨𝒍𝒍 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔
). As it is mentioned in the 

previous sections, if the attacker generate requests with 

different transactions and dialog identifiers, his requests 

require more memory than simple flooding attacks. As 
such, we consider the number of client error message 

especially the 403 Not Here message to detect the 
memory based flooding attacks (

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝟒𝒙𝒙 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔

𝑵𝒖𝒎𝑏𝒆𝒓 𝒐𝒇 𝑨𝒍𝒍 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝒔
). 

IV. EVALUATION OF THE ENGINEERED FEATURE 

SETS 

The evaluation of the proposed feature sets and our 
experimental setup is presented in this section. Three 

different datasets are exploited for studying the 
efficiency of the proposed feature sets. Because of 

diversity of SIP attack types, we may not access to the 

attack traffic before their occurrence and for this reason 
we have to use the one class classifiers. One-class 

classification systems are categorized to two groups: 
OCSVM and non-OCSVM. We employ a sample one 

class support vector machine in this paper to study its 
accuracy in detecting the SIP anomalies with our 

proposed feature sets. Since the available datasets did 

not include all SIP attack types, we also prepare a SIP 
test bed in our experiments to generate the 

authentication and memory based attacks. 

A. Experimental Setup  

The architecture and main components of our test-
bed is shown in Figure 3. We use the OPENSIPS [24] 

as a SIP proxy server and SIPp [25] as user agents 



(server and client). All additional attacks 
(authentication and memory based attacks) are 

implemented by these tools. We also used three 
different datasets in our experiments. The NRG-IUST 

[4] is generated and collected in our test-bed. Traffic 
generation is described in our previous published works 

[4], [8] and [26]. We extend this testbed to generate new 

types of attacks. The second dataset is based on 
OPENSIPS and the last one is collected with 

ASTERISK in INRIA [18]. 

 

 

Fig.3 - The SIP Test-bed (extended version of [4]) 

 
The performance of designated features in normal 

and attack periods is shown initially. It is revealed by 
comparing the value of the selected feature in normal 

and attack periods in all datasets. Finally we used the 

engineered features as an input of sample classifier to 
show its performance in terms of accuracy, detection 

and false alarm rates.  

B. Quantitative Evaluation of the Engineered 

Individual Features 

To show the efficiency of each nominated feature in 
attack periods, we take one sample feature in each four 

suggested groups and quantitatively compare the 

variation of its value in normal and attack periods. The 
“Normalized Number of Requests per Window” feature 

highlights the basic flooding attacks in OPENSIPS 

INRIA [18] traffic. Figure 4 shows the behavior of this 

feature over a window of 1000 ms. As shown in Figure 
4, the value of the feature fluctuates (increased and 

decreased) significantly during attack intervals in 
comparison to the normal traffic interval. According to 

RFC 3261, there must be at least one response to each 

request in normal circumstances. Alongside other 
features of this group, the ratio of request messages to 

all messages can be used to detect the basic flooding 
attacks. 

 

 

Fig. 4- The value of “Normalized Number of Requests per 
Window” feature (window size = 1000 ms and attack 

periods are highlighted by “-1” value in red line) 

 
The derived feature “Number of Transactions per 

Message per Window” is studied for advanced flooding 
attacks. Figure 5 shows the behavior of this feature in 

IUST-NRG advanced flooding attack during normal 
and attack intervals. In normal circumstances, the value 

of this feature should be around 0.25 because we have 
at least one provisional (usually more than one) and one 

final response to each request in all successful 

transactions. Since the SIP proxy reserves a specific 
amount of memory and processing power for each call, 

if the number of concurrent calls become more than the 
specific threshold value, the throughput of the proxy 

server drops significantly. The attack periods are tagged 
with “-1” in this figure that indicate their perceptible 

change of this feature encountering attacks. 

 

 

Fig.5 - “Number of Transactions per Message per Window” 
is shown in the IUST-NRG dataset as a sample feature of 

second group (advanced flooding attacks). This feature 
reveals the periods that the attacker tries to deplete the 

memory of victim proxy by producing new calls with 

different transaction information. The attack intervals are 

labelled with “-1” in red line. 

Next, we study authentication-based attacks. The 

proposed feature “Number of REGISTER messages per 
2xx Messages” reveals the status of the system facing 

with authentication attacks. In Error! Reference 
source not found. this feature is shown in one sample 

traffic of IUST-NRG for REGISTER flooding.   
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Fig. 6- “Number of REGISTER messages per 2xx 
Messages” is shown in IUST-NRG dataset as a sample 

feature of third proposed group (authentication based 
attacks). Variation of the successful SIP registration 

messages reveals the authentication-based attacks. The 

attack intervals are labelled with “-1” in red line. 

 
As shown in Figure 7, the number of provisional 

responses in attack intervals grow significantly. 

Consequently, the ratio of provisional response per 

messages in each window is employed as a feature to 
highlight the memory based attacks. The behavior of 

this ratio is shown in one sample of RINGING based 
attacks of IUST-NRG traffics in Figure 7. 

 

 
Fig. 8- “Number of provisional responses per messages per 
window” is shown in IUST-NRG dataset as a sample feature 

of forth proposed group (memory based attacks). The ratio 
of provisional responses to total number of messages 

reveals the periods that the attacker tries to deplete memory 

by prolonging the sessions. The attack intervals are labelled 

with “-1” in red line 

In the following section we evaluate the 

performance of the proposed feature sets (including 
accuracy and false alarm) when employed in a sample 

classification system. 

C. Performance Analysis of the Engineered Feature 

Sets in a Classification System 

In order to investigate the effectiveness of the 
proposed derived features, we test them on a sample one 

class classifier designed to detect given SIP flooding 

attacks. Figure 8 shows the block diagram of the 
training and testing phases of the classifier.  

 

 

Fig. 7 - OCSVM based classification used for performance 

evaluation of engineered feature sets 

The efficiency of the engineered feature set in terms 

of accuracy, detection rate and false alarm rate are 

measured in four different conditions: (a) using the 
suggested set of features, (b) using randomly selected 

features, (c) using all features and finally (d) using not 
appropriate set of proposed features. Since we used 

OCSVM based classifier in our evaluations, only 
normal traffic is used in the training phase. The 

parameters of the classifier is tuned by considering the 
ROC curve for maximizing the classification accuracy. 

The selected input traffics for this evaluation are 

summarized in the Table-2. As shown in this table, the 
evaluation is done on seven different datasets from 

INRIA and IUST-NRG.  

Table 2. Datasets used for evaluation of the engineered 

feature sets 
Title Attack Type 

NRG-Basic Flood 

Basic SIP  Message Flooding by using 

different SIP  request and response 
messages 

INRIA-OPENSIPS 
Simple advanced INVITE flooding 

attack 

INRIA-ASTERISK 
Simple advanced INVITE flooding 

attack 

NRG-Advanced Flood 

Advanced SIP  Flooding by generating 

traffic with different transaction and 

dialog identifiers 

NRG-Authentication Attack 
Authentication attack by generating 

request messages with random nonce 

NRG-Ringing Attack 

Simple memory based attacks by 

prolonging the sessions with appropriate 

misuse of provisional SIP  responses 

NRG-Memory Attack 

Advanced memory based attacks by 

generating incomplete transactions which 
can be categorized in advanced flooding  

 
The attacks include INVITE flooding attack in 

INRIA OPENSIPS dataset (normal=100 cps, 

attack=100 cps), Register flooding attack in NRG 
dataset (normal=10 cps, attack=10 cps), Ringing based 

SIP attack in NRG dataset (normal=18 cps, attack=10 

cps), Simple request message flooding in NRG 
(normal=18 cps, attack=80 cps), Mixture of all flooding 

attacks in NRG dataset (normal=18 cps), 
Authentication attack based on static random nonce 

values (normal=20 cps, attack=20 cps) and Invite 
flooding attack in INRIA ASTERISK dataset 

(normal=10 cps, attack=100 cps).  

Figure 9 and Figure 10 show the comparison 

between the performances of the classifier with 

proposed feature set versus the performances of the 
classifier with other feature sets. 
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Fig.9- Detection rate of the OCSVM based classifier on 
various datasets using the engineered feature sets. The 

detection rates are selected based on the ROC considering 

maximum accuracy and an acceptable false alarm rate 

 
Fig. 10- Comparison of False Alarm Rates of the OCSVM 

based classifier on different datasets using the engineered 
feature sets. The reported false alarm rates are selected 

based on the ROC while maximum accuracy is considered 

The following table summarizes the results of 

employing the engineered feature sets in different 
scenarios. As it can be seen, in some circumstances, the 

performance of all features in terms of detection rate is 

better than the proposed feature set but the relationship 
between detection rate and false alarm rate should not 

be ignored. 

 

 

 

 

 

 

 

 

 

Table 3. Performance of classifier with attack specific 

feature sets 
# Title (input 

traffic)  
Feature Set  Detectio

n Rate 
False 
Alar

m 
Rate 

1 NRG-Basic 
Flood 

Basic flood 
features 

98.69 2.54 

2 INRIA-OPENSI
PS 

Memory 
Features 

97.76 2.37 

3 INRIA-ASTERI

SK 

Basic flood 

features 

95.28 0 

4 NRG-Advanced

 Flood 

Advanced 

Flooding 
Features 

99.28 0.72 

5 NRG-Authentic
ation 

Authenticatio
n Based 
Features 

97.1 0 

6 NRG-Ringing Memory 

Features 

97.33 1.4 

7 NRG-Memory Advanced 
Flooding 
Features 

98.58 2.2 

 
Shown in Table 3, the classifier exhibits good 

performance by using the proposed feature sets. The 

results of this experiment highlight that the proposed 

engineered feature sets can be employed to effectively 
detect attacks and the performance of the reduced size 

attack-specific engineered feature set is completely 
comparable with all features. Extracting the reduced 

size engineered feature sets has a reasonable low 
computational complexity. As such, they can be 

implemented in SIP-enabled devices to shield them 

against specific type of attacks. 

D. Conclusions and Future Works  

The security issues of SIP-based entities (e.g. proxy 

servers and clients) have a direct impact on the 

perceived quality of experience of end users in 
multimedia sessions. In this research, we focused on 

SIP flooding attacks including denial of service and 
distributed denial of service attacks. After classifying 

various types of SIP attacks based on their sources, we 
extracted four specific feature sets to detect these 

attacks. Each derived feature set is extracted from the 

specification of its attack group, and also, the normal 
behavior of the SIP state machine. This feature 

categorization helps to minimize the computation 
complexity of intrusion detection systems encountering 

different classes of attacks. Consequently, it will be 
feasible to embed the detection mechanisms into end 

user devices (e.g. mobile, smart TV, etc.). We studied 

these feature sets in different scenarios of SIP attacks to 
show its performance in attack sequence detection. The 

experimental results confirm that the engineered feature 
sets perform well in terms of detection accuracy and 

false alarm rates. We plan to expand our research by 
defining appropriate features for detecting SIP 

malformed messages and SIP spam (SPIT) detection in 
our future works.  
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