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Abstract— A scheduling algorithm in cloud computing environment is in charge of assigning tasks of a workflow to 
cloud’s virtual machines (VMs) so that the workflow completion time is minimized. Due to the heterogeneity and 

dynamicity of VMs and diversity of tasks size, workflow scheduling is confronted with a huge permutation space and 

is known as an NP-complete problem; therefore, heuristic algorithms are used to reach an optimal scheduling. While 

the single-objective optimization i.e., minimizing completion time, proposes the workflow scheduling as a NP-complete 

problem, multi-objective optimization for the scheduling problem is confronted with a more permutation space. In 
our pre vious work, we considered single-objective optimization (minimizing the workflow completion time) using 

Particle Swarm Optimization (PSO) algorithm. The current study aims to present a multi -objective optimizer for 

conflicting objectives using Gray Wolves Optimizer (GWO) where dependencies exist between workflow tasks. We 

applied our method to Epigenomics (balanced) and Montage (imbalanced) workflows and compared our results with 

those of the SPEA2 algorithm based on parameters of Attention Quotient, Max Extension, and Remoteness Dispersal.  

 Keywords- Cloud computing; Task scheduling; Grey Wolf Optimizer; Multi -objective optimization; Pareto front; Strength  

Pareto Evolutionary Algorithm2 (SPEA2) 

 

I. I. INTRODUCTION 

In cloud computing environment, although 

Minimization of workflow completion  time has been 

of concern, other objectives are considered with the 

complet ion time as well. Thinking of planning for the 

optimal completion time of workflow tasks is a NP-

hard problem [1], the planning becomes more 

complex when some other objectives should be 

considered as well. Given that a cloud consists of a 

number of virtual machines (VMs) and 𝑡𝑠𝑚,𝑛 is  

execution time of nth task on mth VM,  𝐿𝑚 =
∑ 𝑝𝑚,𝑛will be the complet ion time of tasks in mth VM. 

𝐿𝑚𝑎𝑥 = max(Li) is called the complet ion time of 

workflow tasks in  VMs. Fig. 1 shows a typical 

complet ion time for allocation of 9 tasks to 5 VMs. 

As the figure shows, parallel tasks are running on 

multip le VMs, while sequential tasks are running on 

one VM. 

 

 

                                       

 

 

 

 

 

 

 

 

   

    

   

 

Fig. 1. Completion time of a typical workflow 
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 If G is value of the makespan (completion t ime)  

obtained by a task scheduling algorithm on virtual 

machines and OPT is the lowest possible amount of 

makespan, G≤α*OPT, where  is a threshold. For 

example, =2 means that the obtained makespan in  

task scheduling of virtual machines should not 

become more  than twice the least makespan. In our 

previous work [2], we employed single-objective 

Particle Swarm Optimization (PSO) algorithm for 

workload scheduling with the aim of min imizing the 

makespan when tasks are independent of each other. 

However, usually there are 3 other concerns: (1)  

the more/less processing power VMs have, the 

faster/slower they run tasks (user requests) but the 

more/ less cost they charge (2) VMs providers are 

interested in more  utilization of their VMs. Therefore, 

the optimal scheduling algorithm (allocating tasks to 

VMs) should make trade-off between conflicting  

objectives: (1) makespan minimization, (2) utilization  

maximization, and (3) cost minimizat ion. A unique 

solution that simultaneously optimizes all objectives 

is called a Pareto optimal solution. However, usually  

since the solution is not unique, we have a set of 

optimal solutions called Pareto front.  

As well as the concerns stated above, there are 

scientific workflows such as  bioinformat ics, physics 

and astronomy comprising a number of dependent 

tasks [3]. Dependency between tasks causes 

postponing execution of dependent tasks after that of 

parent tasks. This results in a deferral of the execution  

of entire workflow. The workflows we considered in  

this article have dependent tasks in form of balanced 

(Epigenomics, Fig. 2) and imbalanced (Montage, Fig. 

3) workflows [4,5,6].  

 

Fig. 2. A typical Epigenomics workflow 

  

Fig. 3. A typical Montage workflow 

According to concerns state above, to schedule 

tasks of a workflow on VMs we should obtain an 

optimal scheduling among a large space of the 

scheduling permutations, which has a factorial time 

complexity. To  handle such a problem, among others, 

multi-objective optimizers are significant candidates . 

In this article, a  recent single-objective 

evolutionary algorithm called  the Grey Wolf 

optimizer algorithm (GWO) is spread out to obtain a 

Pareto front of optimal conflicting objectives and it is 

applied to the Epigenomics (Fig. 2) and Montage (Fig. 

3) workflows for the evaluation of performance. We 

call the extended GWO, PGW O (Pareto-based 

GW O). Similar to PSO algorithm GW O algorithm is  

based on swarm intelligence proposed by Mirjalili et  

al [7]. In order to evaluate the performance of the 

proposed algorithm, we implemented the extend 

algorithm using WorkflowSim [8], using the 

CloudSim simulator. Results of the proposed 

algorithm were compared with those of Strength 

Pareto Evolut ionary Algorithm2 (SPEA2) algorithm 

[9]. We used SPEA2 for the comparison because 

based on literature it is used as one of the 

evolutionary algorithms when we need a good 

performance in case of many objectives i.e., more 

than 2 ones [9, 10, 11]. 

The rest of the paper is organized as follows: In  

Section II, the overall concept of task scheduling is  

introduced. In Sect ion III, related works in single -

objective and mult i-objective categories are 

presented. In Section IV, we present our method In  

Section V, case studies, simulation environment, 

performance ind ices, and result evaluation of the 

algorithm are presented. Finally, the conclusion is 

drawn in Section VI. 

II. TASK SCHEDULING 

A set of tasks is called workload if there is no 

dependency between them. However, a workflow 

consists of interdependent tasks shown by a directed 

acyclic graph (DAG).  

The task scheduling problem in the cloud 

computing environment can be modeled as a single- 

or mult i-object ive optimization problem. Unlike 

single-objective optimization which is trying to find a 

unique optimum solution, multi-objective 

optimization is faced with a set of optimal solutions 

called Pareto front. In other words, in Pareto front no 

solution can dominate the other.  

A. Definition 

A mult i-objective optimization problem involves 

some conflicting objective functions (denoted by fi) to  

be optimized (min imized/maximized) simultaneously 

(Eq. 1). 

𝑀𝑖𝑛[𝑀𝑎𝑥(𝑓1 (𝑥), … , 𝑓𝑛(𝑥)]                      (1) 

Where xX and X is the decision space.  
In min imization process, solution 𝑥∗  for a set of 

conflicting objectives dominates solution 𝑥 if no  

member of 𝑥∗ has value more than its corresponding 



member in x, and at least the value of one member of 

𝑥∗ is less than its corresponding component in x (Eq. 

2): 

𝑓𝑖 =1,𝑛(𝑥
∗ ) ≤ 𝑓𝑖 =1,𝑛(𝑥)𝑎𝑛𝑑  𝑓𝑗=1,𝑛(𝑥

∗ ) < 𝑓𝑗 (𝑥)        (2)                              

A set of non-dominated solutions are denoted by P 

where: 

 No solution in P is dominated by another one, 

 Each solution in P dominates at least one solution 

that is not belonging to P. 

III. RELATED WORK 

When the number of tasks and available resources 

rises in a cloud environment, the search of all possible 

task-resource mappings and selection of a Pareto front 

of them become difficult.  Therefore optimized task 

scheduling in the cloud environment is an NP-

complete p roblem that plays a key ro le in determining  

the quality of service, flexib ility and efficiency. Meta-

heuristic algorithms are popular in such optimization  

problems because they are able to find the near 

optimal solutions in a reasonable time [12]. Meta-

heuristic methods for task scheduling in the cloud 

environment can be divided into two categories: 

single-objective and multi-objective techniques.  

A. Scalar optimization 

Scalar optimization called single objective one 

refers to minimizing makespan or cost. Such methods 

are divided into two categories . 

The followings are approaches that deal with  

workload: Zhang et al. [13] used the PSO algorithm in  

order to schedule workload tasks in g rid  computing 

environment with the aim of min imizing completion  

time of tasks. In [2], the PSO algorithm was used to 

schedule workload tasks in  a cloud computing 

environment in order to minimize makespan. In [3], a  

number of different inertia weight approaches were 

used, among which linear descending inertia weight 

(LDIW) approach significantly reduced the 

makespan. LDIW could improve 22.7% compared to  

First Come First Serve (FCFS) algorithm. 

The following approaches consider the workflow 

concepts in their work. The PSO algorithm was used 

by Pandey et al. [14] to assign workflow tasks on 

VMs in the cloud environments to minimize the total 

charge. A Revision of Discrete PSO (RDPSO) was 

used by Wu et al. [15]. A genetic algorithm (GA) was 

used by Yu et al. [16] in utility grid in order to  

minimize makespan with an upper limit o f the user’s 

budget. 

B. Vector optimization 

Vector optimization called  Multi-objective one 

usually involves several conflict ing objectives and the 

aim is to find the optimal trade-off solution between 

these objectives. 

Tsai et al. [17] combined DEA algorithm and the 

Taguchi method, and proposed IDEA algorithm to  

schedule services in the cloud. In this algorithm, 

Pareto-optimal set was obtained based on two 

conflicting objectives: makespan and cost 

minimizat ion. The charge model included the rent 

cost for processing and data transferring. Yu et al [10] 

used multi-objective evolutionary algorithms to 

schedule workflow. The aim of these algorithms is to 

obtain a set of scheduling solutions that establishes a 

trade-off between  user’s QoS requirements. In this  

approach, two conflicting object ives are considered: 

makespan and cost min imization. The constraint was 

the consideration of time and budget determined by 

the user. They evaluated the effectiveness of three 

algorithms: Strength Pareto Evolutionary Algorithm 

(SPEA2), Non-dominated Sorted Genetic Algorithm 

(NSGAII), and Pareto Archived Evolution Strategy 

(PEAS). The results showed that SPEA2 is the most 

effective among the three algorithms when we 

involve more than 2 conflicting object ives. Thus, we 

compared our results with those obtained by SPEA2. 

Mohammadifard et al. [18] proposed a multi-

objective list algorithm which is appropriate to 

workflow scheduling in heterogeneous environments 

such as grid and cloud. Four objective functions were 

considered: (1) cost minimizat ion, (2) makespan 

minimizat ion, (3) reliability maximizat ion, and power 

consumption minimizat ion. Ramzeani et  al. [19] 

developed a multi-objective model for optimal task 

scheduling with the aim of minimizing the execution  

time, transfer charge, power consumption, and task 

queue length of virtual machines. Multi Objective 

Particle Swarm optimizat ion (MOPSO) and mult i 

objective genetic algorithm (MOGA) were used to 

evaluate the proposed model. Talukder et al [20] 

suggested an approach based on multi-objective 

differential evolut ion (MODE) in order to schedule 

workflow in g rid environment. Scheduler can obtain a 

set of optimal solutions regarding two  conflicting  

objectives:  makespan and cost minimization.  

The existing methods for task scheduling in the 

cloud environment often focus on min imizing two  

conflicting objectives, i.e. makespan and the cost and 

benefits of service providers are not considered. In 

this study, in addition to makespan and cost, resource 

efficiency is also considered to increase the benefit  of 

service providers. 

IV. THE PROPOSED METHOD 

Aiming at covering the conflicting objectives, a  

multi-objective model is proposed for workflow 

scheduling in a cloud environment that considers 

three optimization aspects: (1) min imizing makespan, 

(2) minimizing costs, and (3) maximizing efficiency  

of resources because of considering the providers  

benefit. In order to obtain the optimal solution for the 

proposed model, Pareto based grey wolf optimizer 

(PGW O) algorithm is proposed. Optimizat ion of 

workflow scheduling in cloud environment are 

considered for three criteria: makespan, cost, and 

efficiency of resources. 

As Figs. 2 and 3 show, a workflow is displayed as 

acyclic d irect graph (DAG) in which each  

computational task is expressed by a node, and each 



data or control correlation is shown by an arc between 

related tasks. 

A workflow is denoted by 𝑊(𝑇, 𝐷) , where 𝑇 =
{𝑡1, 𝑡2, … , 𝑡𝑛} is a set of 𝑛  tasks and 𝐷  is a set of 

directed arcs such as (𝑡𝑖 , 𝑡𝑗, 𝑑𝑎𝑡𝑎𝑖 ,𝑗)  in which task 𝑡𝑖 

is the parent, task 𝑡𝑗  is the offspring and 𝑑𝑎𝑡𝑎𝑖 ,𝑗  

represents the size of the data which needs to be 

transferred from 𝑡𝑖 to 𝑡𝑗. The offspring task cannot be 

executed until all of the parent’s tasks terminate and 

all of the input data are received. Each task of a 

workflow has the following characteristics: 

 Size in terms  of millions instructions and is 

denoted by MI.  

 One or more input files. 

 One or more output files  

A. Objective level extension 

Suppose that a set of tasks 𝑇 is allocated to 𝑉𝑀𝑖 . 
The objective functions and the constraints are 

defined using makespan, cost, and efficiency  

parameters. 

1) Completion time 

The execution time of task tsTS is equal to the 

longest time taken to receive the input data by ts from 

its parents (indicated by t1(ts)) plus its processing time 

(indicated by t2(ts)). Eqs. 3 and 4 show t1 and t2 for 

task ts where 𝐵𝑤̅̅ ̅̅  shows average bandwidth (Mega-bit 

per seconds, Mbps) of virtual machines, size(ts) does 

the task size in million  instructions and speed(VMj) 

does the VM speed in Million Instruction per Second 

(MIPS). The complet ion time of VMj is expressed by 

makspan(VMj) 𝑇𝑡𝑜𝑡𝑎𝑙 −𝑖  which is obtained by Eq. 5. 

The maximum complet ion time of the virtual 

machines is called makespan and obtained by Eq. 6. 

t1(ts)=max (Inp parents(ts)) / 𝐵𝑤̅̅ ̅̅                                   (3)    

t2(ts)=size(tsi) / speed(VMj)                                    (4)  

makespan(VMj) = [t1(tsi)+t2(tsi)], i=1..nj where nj is 

the number of tasks assigned to VMj          (5) 

makespan=  max[makespan(VMj)] , j=1..m where m is  

the number of VMs                                     (6)                                                

The execution time obtained from a solution such 

as 𝑆 should be less than the execution t ime using the 

first come first served (FCFS) algorithm. In  FCFS 

algorithm, tasks are scheduled according to their order 

of arrival. Therefore makespan of task scheduling 

using FCFS algorithm is an upper bound for the 

execution time of 𝑆  where 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑆)  <
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝐹𝐶𝐹𝑆). 

2) Charge 

In this extension, compared to the previous work 

[2], the cost of task execution is considered. In cloud 

computing, clients are charged based on "pay-per-

use" model in which  they are required to pay the 

service providers based on the amount of resources 

they use each time. For each task tsTS, charges: (1) 

processing, storage, and data transfer (indicated by 

c1(ts), c2(ts), c3(ts), respectively) are calculated using 

rates r1 (charge of processing one million instructions 

per second), r2 (the hosted-time of the task  on an 

VM), and r3 (charge of data transfer between the VMs  

measured in megabytes of data per second), 

respectively (Eqs. 7-9). 

c1(ts)=t2(ts)*r1                                                        (7) 

c2(ts)=[t1(ts)+t2(ts)]*r2                                           (8) 

c3(ts)=[output(tschildren) / 𝐵𝑊̅̅ ̅̅ ̅ ]*r3                          (9)                            

  The outpout(tschildren) is the amount of data are 

outputted by children of task ts. Eq . 10 shows the total 

price that each VM charges and Eq. 11 does the 

overall charge. 

charge(VMj)=ci(ts) where i=1..3                        (10) 

chargetotal = charge(VMj) where j=1..m and m is the 

number of VMs                                         (11)                   

The charge of solution a solution, say S should be 

less than the price charged by the GreedyCost 

approach. In the GreedyCost approach, tasks are 

assigned to the most expensive virtual machines, thus 

this cost is an upper boundary, i.e ., charge(s)< 

charge(greedy). 

3) Efficiency 

Efficiency is defined as the number o f instructions 

processed by a VM by the end of its operations. In 

this article, we consider efficiency (Eq. 12) as one of 

the optimization object ives. The total efficiency is the 

average efficiency of all virtual machines (Eq. 13).  

eff(VMj) =  [t2(tsi)] / makespan(VMj) where i=1..nj 

where nj is the number of tasks assigned to 

VMj                                                           (12)    

eff(VMs) = [eff(VMj)] where j=1..m and m is the 

number of VMs                                        (13) 

B. Algorithm level extension 

One of the most recent swarm intelligence  

algorithms, proposed by Mirjalili et al., is the grey 

wolf optimizer (GWO). GWO algorithm is used to 

optimize d ifferent continuous mathematical functions 

with  various dimensions and one or more relative and  

absolute extreme points. The results show that the 

GW O algorithm can find more optimal points 

compared to well-known meta-heuristic algorithms  

such as particle swarm optimizat ion (PSO), 

gravitational search algorithm (GSA), d ifferential 

evolutionary (DE), evolutionary programming (EP), 

evolutionary strategy (ES), and several other 

algorithms. This algorithm avoids dispersion in the 

problem space and appropriately converges to the 

optimal point [5]. So this algorithm can search the 

state space of the problem and find optimal points 

significantly better than PSO algorithm used in [2]. 

1) Grey Wolf Optimizer algorithm 

The GWO algorithm mimics the strategies of 

wolves in hunting. The hunting structure consists of 

three parts: chasing and encircling the prey, harassing 

the prey until it stops moving, and eventually 

attacking the prey. Each wolf as a problem solution in  



the search space has a position vector 𝑊𝑖 =<
𝑤𝑖1 , 𝑤𝑖2, … , 𝑤𝑖𝑛 >  in which 𝑛  indicates the 

dimensions of the problem. The fitness function 

(according to the problem definit ion) is used to assess 

the position of wolves. Regard ing the values of the 

fitness function, the first, second, and third best 

wolves are shown by α, β, and δ, respectively. During  

the hunting (optimizing) process, wolves update their 

position according to the position of α, β, and δ. 

GWO algorithm is depicted in Fig. 4. 

 
Figure 4. GWO algorithm 

The first step of algorithm is in itializing  

population where a population of wolves is created 

(step 1) and the position of each wolf is randomly  

initialized. Then, coefficient vectors 𝐴, 𝐶 , and 𝑎  are 

initialized based on Eqs. 14 and 15 (step 2).  

𝐴 = 2𝑎. 𝑟1⃗⃗⃗ ⃗ − 𝑎                                                        (14) 

𝐶 = 2. 𝑟2⃗⃗⃗ ⃗                                                                 (15) 

Vector 𝐴 has random values in the range [−𝑎, 𝑎] 
that models the divergence. When |𝐴| > 1, the search 

agents (Wolves) are forced  to move away from the 

prey; and when |𝐴| < 1, they are forced to attack the 

prey. Vector 𝐶  includes random values in the range of 

[0,2] which helps the agents avoid trapping in local 

optimum. In  each iterat ion, a decreases linearly from 

2 to 0. 

Having in itializing the coefficients, we compute 

fitness of each search agent (wolf) and select the first, 

second, and third best agents  as α, β, and δ wolves 

(agents) respectively (step 3). The situation of agents 

is modified based on situations of α, β, and δ using 

Eqs. 16, 17 and 18 (step 4) in each rehearsal of the 

algorithm. Then, values of 𝐴 , 𝐶 , and 𝑎  are updated 

(step 5). According to the new situations, the fitness 

value of each agent is computed and agents α, β and δ 

are reselected (steps 5-7). The rehearsal is continued 

till finding the concluding solution as agent α (step 8) 

[5]. 

𝐷⃗⃗⃗α= | C1⃗⃗⃗⃗ .⃗ Xα⃗⃗⃗⃗⃗ − X⃗⃗⃗| ,  𝐷⃗⃗⃗β = |C2⃗⃗⃗⃗ .⃗ Xβ⃗⃗⃗⃗ ⃗ − X⃗⃗⃗| , 

𝐷⃗⃗⃗α= | C3⃗⃗⃗⃗ .⃗ Xδ⃗⃗⃗⃗⃗ − X⃗⃗⃗|                                                       (16) 

𝑋1⃗⃗⃗⃗⃗ = 𝑋⃗𝛼 − 𝐴⃗1. (𝐷⃗⃗⃗𝛼), 𝑋2⃗⃗⃗⃗⃗ =  𝑋⃗𝛽 − 𝐴⃗2. (𝐷⃗⃗⃗𝛽), 

𝑋3⃗⃗⃗⃗⃗ =  𝑋⃗𝛿 − 𝐴⃗3. (𝐷⃗⃗⃗𝛿)                                                   (17) 

𝑋(𝑡 +1)⃗⃗ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =
𝑋1⃗⃗⃗⃗ ⃗+ 𝑋2⃗⃗⃗⃗ ⃗+ 𝑋3⃗⃗⃗⃗ ⃗

3
                                             (18) 

2) GWO using Pareto 

We propose a Pareto based Grey Wolf Optimizer  

(PGW O) based on the basic GWO algorithm in which  

optimal Pareto approach (see Section 2) is used to 

solve multi-objective problems. 

Inspired by the fitness allocation of SPEA2 

algorithm and using an external arch ive, PGW O 

algorithm is developed for solving multi-objective 

problems. 

Strength Pareto Evolutionary Algorithm (SPEA2)  

is one of the well-known evolutionary  algorithms  

based on genetic algorithm. This algorithm is a 

combination of the elit ism and Pareto concepts [9]. 

According to the elitis m concept, the best 

chromosome of each generation is direct ly transmitted 

to the next generation. In SPEA2 algorithm, non-

dominated chromosomes, collected from the 

beginning of execution, are stored in an external 

archive and participate in  the mate selection process. 

Fitness of existing chromosomes in the population 

and archives is obtained based on the number of 

chromosomes they dominate and the number of 

chromosomes they are dominated with. To th is end, 

the current population and archive members are 

combined, and each member is assigned a fitness 𝑆 

based on the solutions it dominate (Eq. 19). Then, 

based on the value 𝑜𝑓 𝑆, fitness 𝑅 of the 𝑖th member 

is calculated (Eq. 20). That is, fitness R is determined  

by the power of its dominators both in the population 

and in the archives. In  other words, the fitness of an  

individual is determined based on the power of all 

members (current population and archives) which  

dominate that indiv idual. We use S and R for wolves 

in our proposed method. 

𝑆(𝑖) = |𝑗| : 

where |j| is card inality of the set, i>j, and j  current  

population  archive                                            (19) 

𝑅(𝑖) = ∑ 𝑆(𝑗)𝑗∈(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛+𝑎𝑟𝑐ℎ𝑖𝑣𝑒),𝑗>𝑖                  (20) 

where notation ‘<‘denotes Pareto dominance. 

3) Solution consideration  

To solve an optimization problem using a meta-

heuristic algorithm, one of the fundamental issues is 

how to represent a solution which is suitable and 

relevant to the problem defin ition. In the task 

scheduling problem, each solution is actually a task-

resource mapping that defines which task is to be 

assigned to which resource. As noted above, GW O is  

developed for continuous problems therefore a wolf 

cannot directly show a mapping. To this end, we 

propose to apply the Smallest Position Value (SPV) 

rule [21] to the wolf position in o rder to determine 

task-resource mapping.  

When GWO algorithm is applied to the scheduling 

problem, the d imensions of the problem is determined  

GWO algorithm steps 

1. init(Xi=1..n)    //population initialization  

2. compute(𝐴, 𝐶 , 𝑎) //based on Eqs. 14 and 15 

3. compute fintness(agents) and call: 

𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿 , the best, second best and third 

best agents (wolves) 

loop 

4. agent (wolf) update its position //based on 

               Eqs. 16-18 

5.  update(𝐴, 𝐶 , 𝑎) 

6.  compute fitness(agents) 

7.  update 𝑋𝛼 , 𝑋𝛽  and 𝑋𝛿  

end loop 

8. return 𝑋𝛼  

 



by the number of tasks. If the number of tasks and 

resources are 𝑛  and m respectively, the  𝑖 th wolf 

position is denoted as the vector 𝑊𝑖 =<
𝑤𝑖1 , 𝑤𝑖2, … , 𝑤𝑖𝑛 >  which is a continuous vector. By  

employing the SPV rule, the continuous position 

vector is converted to the discrete vector 𝑆𝑖 =<
𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑛 >. Finally, the permutation vector 𝑃𝑖 =
< 𝑝𝑖1 , 𝑝𝑖2 , … , 𝑝𝑖𝑛 > , which is in fact the task-resource 

mapping [10], is calcu late for 𝑖th wolf as Eq. 21. In  

other words, each element of the vector 𝑃𝑖 , such as 𝑃𝑖𝑗  

represents a virtual machine identifier on which the jth 

task should be performed. It should be noted that the 

values of objective functions (makespan, cost, and 

efficiency) are calculated using the permutation 

vector. Identifier of v irtual machines starts from 0. 

Table 1 provides an expression of the ith wolf 

(solution) with 8 tasks and 3 resources. 

𝑝𝑖𝑘 = 𝑠𝑖𝑘𝑚𝑜𝑑 𝑚                                                  (21) 

Table 1- Solution illustration 

 
4) Proposed PGWO Algorithm 

The proposed PGWO algorithm is illustrated in Fig.  

5. The algorithm in itiates by constructing a wolf 

population and a null arch ive (steps 1-2). The archive 

is predetermined and is constant during algorithm 

execution. In fact, one difference between the 

proposed PGWO and GW O algorithms is the external 

archive which helps to maintain optimal solutions 

during the algorithm execution. 

As mentioned before, scheduling is a discrete 

problem. Thus, in  order to convert continuous values 

of wolves’ positions into discrete ones, the SPV ru le 

is applied to the position vector to get the permutation 

(mapping) vector (step 3). Then, coefficient vectors 

𝐴, 𝐶 , 𝑎 and are initialized by Eqs. 14 and 15 (step 4). 

In single-objective algorithms, the fitness function 

and the objective function are the same, while, in  

multi-objective functions, various methods are used to 

obtain the fitness of search agents. For each wolf from 

the population, a vector of objective functions defined 

in Section 4-1 is calculated. And fitness of S and R is 

obtained through Eqs. 19 and 20 (steps 5 and 6). In a 

population, wolves with the least fitness of R are 

copied into the archive (wolves with the least R have 

higher fitness), and three of the wolves which have 

the least R are selected from arch ive as α, β and δ  

(steps 7-8). 

In each rehearsal of the algorithm, wolves are updated 

based on the position of α, β , and δ. The SPV  rule is  

applied to position vector of wolves in order to obtain  

permutation (mapping). Coefficient vectors 𝐴, 𝐶 , and 

𝑎 are updated and the objective functions’ vector is  

calculated for the wolves in population. As stated 

above for steps 7-8, fitness of S and R is estimated for 

the population and the archive wolves, respectively 

(steps 9-14). Eventually, PGW O algorithm returns the 

archive which contains non-dominated solutions 

obtained throughout the algorithm execution as the 

final output (Step 15). 

 

V. CASE STUDY 

In order to evaluate the proposed method 

described in Section 4-2, PGWO was implemented 

using the WorkflowSim simulator environment. Then, 

the obtained results were compared with those of 

SPEA2 for two different workflow applications. The 

SPEA2 was selected due to its superior performance 

[3,9] in workflow scheduling compared to well-

known NSGAII and PEAS algorithms. Workflows’ 

features, simulation environment, performance 

indices, and the evaluation of results are presented in 

detail in the following subsections. 

A. Workflow application 

We stated in Section Introduction balanced and 

imbalanced workflows. As Fig. 3 shows, the 

imbalanced workflows: are more complex, have many  

parallel tasks, and require d ifferent types of services. 

In order to evaluate the impact of workflow size 

(based on tasks’ number) on the performance of the 

scheduling algorithm, three different sizes were 

utilized for each workflow: s mall size (almost 50 

tasks), medium size (almost 100 tasks) and large size 

(almost 1000 tasks). 

Task number 1 2 3 4 5 6 7 8 

𝑊𝑖  4.76 7.94 3.27 3.58 3.99 9.45 5.09 6.85 

𝑆𝑖 3 4 5 1 7 8 2 6 

𝑃𝑖  0 1 2 1 1 2 2 0 

PGWO algorithm steps 

1. init (Xi=1..n)          // population initialization, 

2. create(empty archive)  

3. find (permutation)   // using SPV rule and Eq. 21                                   

4. compute(𝐴, 𝐶 , 𝑎)    // using Eqs. 14 and 15 

5. compute fitness(agents) //using Eqs. 6,11and 13 

6. compute fitness( Pareto front agents)                

//using Eqs. 19 and 20 

7. population
𝑏𝑒𝑠𝑡  10 𝑛𝑜𝑛−𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑  𝑎𝑔𝑒𝑛𝑡𝑠
→                        archive   

// copy best 10 non-dominated agents from 

population to archive                                                

8. select(𝑋𝛼 , 𝑋𝛽  and 𝑋𝛿 )   //from archive  

loop  

  agent: 

   9.1.  update(agents’ position) //using Eqs. 16-18  

9.2   find (permutation)//using SPV rule and Eq. 21   

  10. update(𝐴, 𝐶 , 𝑎)  

11.  compute fitness(agents) 

12.  compute fitness(Pareto-agents) 

      //in  population and archive  

13.   population
𝑏𝑒𝑠𝑡  10 𝑛𝑜𝑛−𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑  𝑎𝑔𝑒𝑛𝑡𝑠
→                        archive   

   // copy best 10 non-dominated agents from   

       population to archive                        

14.  Select(𝑋𝛼 , 𝑋𝛽  and 𝑋𝛿 )      // from archive 

end loop 

15. return archive 

Figure 5. The proposed PGWO algorithm 



B. Experiments 

In order to simulate the cloud environment and 

conduct experiments, WorkflowSim toolkit  was used 

[8]. WorkflowSim extends CloudSim to manage 

workflow applications. CloudSim is a well-known 

framework to model and simulate the services and 

infrastructure of cloud computing [22]. However, this  

simulator only  supports workload scheduling 

(workload description was given in Introduction) and 

does not consider the correlat ion between the tasks. 

WorkflowSim extends “CloudSim” to support 

workflows scheduling process [8]. Simulation  

environment consisted of one data center and 20 

virtual machines. The characteristic of virtual 

machines is presented in Table 2. Datacenter features 

(including operating system, VMM arch itecture, and 

so on) and prices of virtual machines (such as storage 

charge, Processing charge, etc.) were considered 

according to the default values in 

WorkflowSimBasicExample1 in  simulation package 

of WorkflowSim, (indicated by org.workflowsim. 

examples.cost). Costs were proportional to those 

proposed by WorkflowSim. We used the Jmetal 

package in CloudSim environment to implement  

SPEA2 algorithm. Jmetal is a Java-based framework 

for mult i-objective optimization using meta-heuristics 

[23]. The parameters settings used for SPEA2 

algorithm (based on [3]) and proposed PGW O 

algorithm are listed in Table 3.  

C. Evaluation of criteria 

Different evaluation criteria have been proposed 

to measure the quality of an optimal Pareto set. In an 

ideal condition, optimal Pareto solutions should be 

accurate, well distributed, and widely spread [24]. In  

this paper, to compare arch ive sets (Pareto optimal) 

obtained from PGWO and SPEA2 algorithms, three 

popular performance indices [17, 24, 25] were 

employed: (1) Attention Quotient (AQ) of two sets, 

(2) Max Extension (ME) and (3) Remoteness 

Dispersal (RD). These indices will be introduced in  

the following subsections.  

Table 2- VM specification  

 0..4 5..9 10..14 15..20 

#Ins(MIPS) 1000 1000 1000 2000 

#CPU 1 1 2 4 

RAM(MB) 512 512 1024 1024 

Store(MB) 10000 10000 20000 20000 

Band(MB/S) 1000 2000 2000 2000 

 

Table 3- parameters setting 

 

1)  Attention Quotient 

This index is used to compare a set of solutions from 

two optimizing algorithms. If P and Q are 2 different  

sets of optimal Pareto in search space, we call 

dom(P,Q) as the number of solutions of the set P 

which were able to dominate the solutions of Q. 

Accept values of Attention Quotient in [0, 1] is  

calculated as Eq. 22. 

dom(P,Q)=|qiQ;  pjP: pi>qj| / |Q|                     (22) 

dom(P,Q)=1 means that all solutions of P  

dominate solutions of Q and dom(P,Q)=0 has reverse 

meaning. Noted that dom(P,Q)1-dom(Q,P). Thus, 

both criteria can be utilized. We have the high 

performance when this index is close to 1. 

2) Max Extension 

Max Extension of a set S is denoted by D, 

showing the distance between boundary solutions. A 

high value of this index, which is calculated as Eq. 

23, indicates the high performance.  

𝐷 = √∑( max
𝑖=1 𝑡𝑜 |𝑆|

𝑓𝑚  
𝑖

𝑀

𝑚=1

− min
𝑖=1 𝑡𝑜 |𝑆|

𝑓𝑚
𝑖 )2 

𝑠𝑘 ∈ 𝑆 𝑎𝑛𝑑  𝑠𝑘 ≠ 𝑠𝑖                                          (23) 

 

where S is the Pareto optimal set, M is the number of 

objectives, and fm is the mth objective function of 

solution 𝑖.  

3) Remoteness Dispersal 

This index denoted by RD, estimates the diversity 

of Pareto optimal set based on distance [23]. For the 

ith solution of optimal set 𝑆, the distance is shown by 

𝑑𝑖  which  is equal to the least absolute difference 

between that solution and the other solutions in the 

direction of each axis  (objective). A s mall value of 

this index ind icates the high performance. The RD 

criterion is calculated as Eq. 24. 

𝑅𝐷(𝑆) = √
1

|𝑆|−1
∑ (𝑑𝑖 − 𝑑̅)

2|𝑆|

𝑖=1
                             (24) 

𝑑𝑖 = 𝑚𝑖𝑛 ∑ |𝑓𝑚(𝑠𝑖) − 𝑓𝑚 (𝑠𝑘)|
𝑀
𝑚=1   

𝑠𝑘 ∈ 𝑆 𝑎𝑛𝑑  𝑠𝑘 ≠ 𝑠𝑖  

where 𝑑̅  is the average of 𝑑𝑖 , M is the number of 

objectives, and 𝑓𝑚(𝑠𝑖) is the mth objective function of 

solution 𝑖.  

D. Performance appraisal 

Once the simulation environment is designed, PGW O 

algorithm and SPEA2 are implemented to schedule 

workflows with the aim of optimizing three 

conflicting objectives, i.e . makespan and cost 

minimizat ion, and resource efficiency maximization. 

We run 10 t imes both PGWO and SPEA2 algorithms  

for two workflows of Epigenomics and Montage (see 

Figs. 2 and 3) in small, medium, and large sizes. In  

each run, performance criteria for obtained archive 

sets were calculated. To compare the performance of 

the proposed PGW O algorithm with SPEA2, the 

average of performance criteria of 10 runs were used. 

Fig. 6 shows performance of PGW O and SPEA2 in  

AQ for Ep igenomics and Montage workflows in  

small, medium, and large sizes . As the figure shows, 

AQ(PGWO,SPEA2) is better than AQ(PGWO,SPEA2) 

Parameter  Value 

Population Size(PGWO, SPEA2) 50,10 

Archive Size (both of them) 10 

#Iteration in PGWO,#Generation in SPEA2 20,100 

Mutation and Crossover Probability(SPEA2) 0.5,0.9 



in small, medium, and large sizes. Th is means that the 

set of optimal solutions obtained by PGWO algorithm 

could dominate those achieved by SPEA2. To  

facilitate the computation of performance indices and 

data display, objective functions of execution time, 

cost, and resource efficiency were divided into 1000. 
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Fig. 6-a. Performance of PGWO and SPEA2 in AQ for 

Epigenomics workflow 
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Fig. 6-b. Performance of PGWO and SPEA2 in AQ for 

Montage workflow 

In comparison with SEPA2, the PGW O algorithm 

enjoys higher value of the Max Extension criterion for 

the Epigenomics workflow in sizes of small, medium, 

and large. This means that PGWO algorithm could  

cover more boundary points in comparison with  

SPEA2 algorithm. However, for the Montage 

workflow, PGW O and SPEA2 algorithms have 

approximately  same the ME criterion in  the small size 

but for workflows of medium size, the PGW O 

algorithm has slightly less value. For large size 

workflows, the PGW O algorithm has higher value. 

Fig. 7 depicts the ME criterion for Epigenomics (Fig. 

7-a) and Montage (Fig. 7-b) workflows in small, 

medium, and large sizes. Clearly, this criterion is  

better for PGWO algorithm than SEPA2 algorithm. 

Thus, it can be concluded that PGWO algorithm 

covers more boundary points. 
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Fig . 7-a. Performance of PGWO and SPEA2 in ME  

for Epigenomics workflow 

The value of RD (indicating the diversity of  

solutions) is s maller in s mall, medium, and large 

sizes: (1) for PGW O in  the Montage workflow and  

(2) for SPEA2 in the Epigenomics workflow. Fig. 8 

shows the RD criterion for the Epigenomics (Fig. 8-a) 

and Montage (Fig. 8-b) workflows. 
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Fig. 7-b. Performance of PGWO and SPEA2 in ME for 

Montage workflow 
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Fig 8-a. Performance of PGWO and SPEA2 in RD for 

Epigenomics workflow 
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Fig. 8-b. Performance of PGWO and SPEA2 in RD for 

Montage workflow 

Generally it can be stated that for workflows with  

balanced structure, PGWO had better performance 

than SPEA2 in terms of AQ, ME and RD. Moreover, 

for workflows with unbalanced structure (Montage), 

PGWO has more performance than SPEA2 in terms  

of AQ and ME (except for medium size). In terms of 

the RD index, SPEA2 has more performance than 

PGWO.  

VI. CONCLUSION 

Scheduling plays a key role in the performance of 
cloud computing systems, because it increases the 

resources performance, reduces response time and 

balances servers’ load. A good scheduling mechanis m 



not only satisfies the user's QoS requirements, but 
also has effective utilization of resources. For users, 

the complet ion of their tasks in  limited time and  
appropriate cost are important. And for service 

providers the efficient use of their VMs is important. 

We proposed a multi-objective wolf optimizer  

using Pareto for scheduling dependent tasks of a 

workflow on VMs of a cloud. Our aims were 
minimizing makespan and cost and maximizing the 

VMs’ efficiency, totally. The WorkflowSim tool was 
used to implement the proposed the PGWO algorithm 

and to evaluate performance. To evaluate the 
performance, a set of PGWO solutions was compared 

with those of SPEA2. Simulation results showed that 

the proposed multi-objective algorithm enjoys a better 
trade-off between three conflicting objectives of 

makespan, cost, and efficiency. 
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