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Abstract— In this paper, we propose to use discretized version of the so-called Enhanced Gaussian Noise (EGN) model 
to estimate the non-linearity effects of fiber on the performance of optical coherent and uncompensated transmission 
(CUT) systems. By computing the power of non-linear interference noise and considering optical amplifier noise, we 
obtain the signal-to-noise (SNR) ratio and achievable rate of CUT. To allocate power of each CUT channel, we consider 
two optimization problems with the objectives of maximizing minimum SNR margin and achievable rate. We show that 
by using the discretized EGN model, the complexity of the introduced optimization problems is reduced compared with 
the existing optimization problems developed based on the so-called discretized Gaussian Noise (GN) model. In addition, 
the optimization based on the disctretized EGN model leads to a better SNR and achievable rate. We validate our 
analytical results with simulations and experimental results. We simulate a five-channel coherent system on OptiSystem 
software, where a close agreement is observed between optimizations and simulations. Furthermore, we measured SNR 
of commercial 100Gbps coherent transmitter over 300 km single-mode fiber (SMF) and non-zero dispersion shifted 
fiber (NZDSF), by considering single-channel and three-channel coherent systems. We observe there are performance 
gaps between experimental and analytical results, which is mainly due to other sources of noise such as transmitter 
imperfection noise, thermal noise, and shot noise, in experiments. By including these sources of noise in the analytical 
model, the gaps between analytical and experimental results are reduced. 

Optical Coherent Transmission Systems, Fiber Non-linear Interference Noise, Power Allocation, Minimum Signal-to-
Noise-Ratio (SNR) Margin, Maximum Achievable Capacity. 
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I. INTRODUCTION  
Recently the emerging Coherent and 

Uncompensated Transmission (CUT) systems in 
optical fibers have attracted much attention [1]. In 
addition, bandwidth variable transponders (BVTs) and 
bandwidth variable wavelength selective switch (BV-
WSS) are other two key components to realize Elastic 
Optical Networks (EONs) based on CUT [2]. Contrary 
to the conventional Dense Wavelength Division 
Multiplexing (DWDM) networks in which fiber 
bandwidth is divided into fixed-grid size channels, in 
EONs bandwidth is divided into fine-grained slices, and 
channel bandwidth is determined based on the 
transmission rate of client. In fact, EONs bring higher 
flexibility and adaptability to long-haul transmission 
systems, by selecting channel bandwidth, modulation 
format, the type of error correction coding, and routing 
based on the network traffic load and physical layer 
status [3]-[5]. It has been shown that modeling the 
effect of fiber impairments on the performance of CUT 
systems used in EONs will increase the efficiency of 
resource allocation algorithms [6-7]. 

Recently, advanced Digital Signal Processing 
(DSP) techniques are being utilized at the receiver (Rx) 
of CUT systems to compensate total dispersion 
accumulated during the transmission. Consequently, 
there is no need to use expensive Dispersion 
Compensating Fibers (DCF). In CUT, the interaction 
among the non-linearity effects and accumulated 
dispersion of fiber leads to higher transmission reach 
[8]. This is due to the fact that fiber dispersion mitigates 
the non-linearity impairments by reducing the 
coherency of non-linear interferences [9]. In addition, 
fiber non-linearity impairments can be mitigated at the 
Rx of CUT by using advanced DSP techniques. 

Estimating the transmission reach of CUT is of 
paramount importance in the design of EONs and 
DWDM networks. To this aim, Signal-to-Noise Ratio 
(SNR) of received signal must be calculated at the end 
of optical path (lightpath), which must be greater than 
the minimum required SNR ( 𝑆𝑆𝑆𝑆𝑅𝑅𝑡𝑡ℎ ) of the used 
modulation format. However, estimating the SNR of 
CUT system is not straightforward and all its linear and 
nonlinear noise sources must be modeled. 

Recently, in [10], [11] an analytical model has been 
introduced to estimate the power spectral density of 
noise generated by the fiber non-linearity effects, which 
is referred to as Gaussian Noise (GN) model. In this 
model, self-phase modulation (SPM), cross-phase 
modulation (XPM), and four-wave mixing (FWM) 
effects are considered as non-linear noise. The SNR of 
CUT at the end of lightpath can be computed based on 
GN model by considering the Amplified Spontaneous 
Emission (ASE) noise generated by Erbium-Doped 
Fiber Amplifiers (EDFA) and non-linear noise of fiber, 
which is referred to as Non-Linear Interference Noise 
(NLIN). 

It has been shown that the GN model overestimates 
NLIN and does not depend on the modulation format of 
CUT system [11]. In [12], authors introduced some 
correction terms to tackle with the overestimation 
problem of GN model and proposed a number of 
parameters which depend on the modulation format of 

CUT system. The model presented in [12] is called 
Enhanced GN (EGN) model, and authors showed by 
extensive simulations that EGN can be used to estimate 
NLIN with an acceptable accuracy. 

In [13], it has been shown that optimizing 
transmission power of CUT systems leads to higher 
achievable rate and SNR (or equivalently longer 
transmission reach). The authors used the discretized 
GN model to optimize the power of CUT DWDM 
system by proposing two optimization problems, with 
the objectives of maximizing the total achievable rate 
or the minimum SNR margin (i.e., the gap between 
SNR and 𝑆𝑆𝑆𝑆𝑅𝑅𝑡𝑡ℎ). 

In this paper, we optimize the transmission power 
of CUT DWDM system by using EGN model instead 
of GN model. We will show that by using EGN model, 
higher SNR and achievable rate are obtained in CUT 
DWDM system. In addition, we propose to use 
discretized EGN model and remove its multi-channel 
interference terms, which reduces the complexity of the 
optimization problem. It is worth mentioning that based 
on the simulation results reported in [12] the accuracy 
of SNR estimation is not degraded by ignoring the 
multi-channel interference terms. 

We compare our analytical results with simulation 
and experimental results. We observe that analytical 
and simulation results are close while there is a gap 
between experiment and analytical results. In order to 
reduce the performance gap between experimental and 
analytical results, we consider the transmitter 
imperfection and other sources of noise, which in turns 
decreases the gap between analytical model and 
experimental results. 

The rest of this paper is organized as follows. In Section 
II, we review EGN model and present its discretized 
version, which is used to estimate SNR of CUT 
systems. In Section III, we present the EGN based 
power optimization problems to maximize minimum 
SNR margin and total achievable rate of CUT DWDM 
systems. In section V, the details of experimental setups 
are explained. Numerical results are presented in 
Section V. Finally, the paper is concluded in Section VI. 

II. DISCRETE EGN MODEL 
It has been shown that nonlinear noise in fibers can 

be expressed as a sum of three types of interferences:   

• Self-channel interference (SCI): It is nonlinear 
interference (NLI) caused by four-wave mixing 
(FWM) occurring among frequency components 
of channel-of-interest (COI).  

• Cross-channel interference (XCI): It is NLI caused 
by FWM occurring among frequency components 
of an interferer channel (INT) and COI.  

•  Multi-channel interference (MCI): It is NLI 
caused by FWM occurring among frequency 
components of three INTs, or two INTs and COI.  

 In EGN-model, each type of interference can be 
expressed as a sum of two terms, a main term which 
represents the interference obtained by GN-model and 
a correction term to remove the Gaussianity assumption 
of the signal and taking into account the 4th and 6th 
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moments of transmitted symbols, which depend on the 
modulation format. 

In most cases, MCI has negligible value and 
considering only SCI and XCI gives almost the 
acceptable value of NLI. Assuming spectral granularity 

f∆  and symbol rate R for channels, SCI of COI with 
center frequency COIf  can be written as [3]: 

(1) ( ) ( ) ( )3
1 2 3Φ Ψ ,EGN

SCI COI COI COIG P f f fκ κ κ = + + 
 

(2) 
( ) ( ) ( )

2 2
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27
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Assuming lumped amplification and identical 
spans, ( )1 2, ,f f fµ  is given by [3] 

(5) 
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In (1)–(5), the integral bounds are 
1 / 2COIb f R= −  and 2 / 2COIb f R= + . 

( )COIs f  is Fourier transform of the pulse used by 
COI, and we assumed to be rectangular with bandwidth 
R  and top value 1/ R . COIP  is power of COI, ΦCOI  
and ΨCOI  are parameters related to the modulation 
assigned to COI given in [12], γ  is fiber non-linearity 
coefficient, α  is optical field fiber loss, 2β  is second 
order fiber distortion, sL  is span length, and sN  is the 
number of spans. 

It is worth mentioning that ( )1 fκ  is the main term 

of SCI, and ( )2 fκ  and ( )3 fκ  are the correction 
terms. Furthermore, XCI in EGN-model can be written 
as [12] 

 

(6) 

( ) ( )2
11 12ΦEGN

XCI COI INT INTG P P f fκ κ = + + 

( ) ( )2
21 22ΦCOI INT COIP P f fκ κ + +   

( ) ( )2
31 32ΦCOI INT COIP P f fκ κ + +   

( ) ( ) ( )3
41 42 43Φ Ψ ,INT INT INTP f f fκ κ κ + + 

 

where INTP  is power of interfering channel (INT), and 

ΦINT  and Ψ INT  are parameters related to modulation 
assigned to INT. In XCI, 1mκ  for 1,.., 4m =  are the 
main terms and the rest are the correction terms. The 
complete set of equations for XCI and values of Φ  and 
Ψ  for different modulations can be found in [11]. The 
main reason behind the definition of discretized EGN 
model is that by using this model we eventually have a 
look-up table in terms of channel index. As a 
consequence, the NLI of each channel is pre-computed 
in vectors and matrices, instead of computing 
integrations of EGN model. 

By ignoring MCI terms, the total NLIN on COI is 
given by 

(7) 
( ) ( ) ( )

( )

3 2 2
1 2 3

1,

3
4

[ , ,

                                   , ]

N
NL

c c c n c n
n n c

n

P P D c P P D c n P P D c n

P D c n
= ≠

= + + +∑   

where Pc and Pn denote the power of channels c and n, 
respectively, and ( )1D c  is the SCI noise in c th 
channel, which is obtained as follows 

(8) ( ) ( ) ( ) ( )
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In addition, 𝐷𝐷2(𝑐𝑐,𝑛𝑛), 𝐷𝐷3(𝑐𝑐,𝑛𝑛), and 𝐷𝐷4(𝑐𝑐,𝑛𝑛) are the 
XCI terms generated by n th channel on c th. These 
terms are obtained as follows 
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In (7)–(11), index c  represents COI with 
( )0 Δ / 2 1 ΔCOIf f f c f= + + − , where 0f  is the  
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lowest available frequency of the fiber and index n  
represents INT with ( )0 Δ / 2 1 ΔINTf f f n f= + + − . 

In order to obtain SNR, in addition to NLIN power, the 
total ASE noise generated by optical amplifiers must be 
computed. The ASE noise of EDFA is given by [14] 

(12) ( )2 1 ,sLASE
c c sP R hf e N Fα= −  

 where h  is the Planck s constant, cR  is baud-rate of 
COI, and F  is the noise figure of EDFA. 

By taking into account both ASE and NLIN, the SNR 
of COI at the receiver is obtained as follows 

(13) .c
c ASE NL

c c

PSNR
P P

=
+

 

In the next section, we present two optimization 
problems to allocate power of each DWDM channel by 
using the above SNR relation which is obtained based 
on the presented discretized EGN model. Henceforth, 
we refer to this model as DC-EGN model. It is worth to 
emphasize that although in the DC-EGN model we 
have ignored MCI terms, however, as shown in [12] 
MCI terms in DWDM systems are negligible. 

III. POWER OPTIMIZATION IN DWDM SYSTEMS 
USING DC-EGN MODEL 

A. Maximizing Minimum SNR Margin 
In this section, we present a power optimization 

problem based on the introduced DC-EGN model with 
the objective of maximizing the minimum achievable 
capacity among channels. Here, we reformulate (13) for 
c th DWDM channel as a function of x  as follows:  

(14) ( ) ( )
c

c ASE NL
c c

xSNR
P P

=
+

x
x

 

where x  denotes the transmission power in which 

1[ ... ]T N
Nx x += ∈ℜx  where N is the number of 

channels, and ( )NL
cP x  is the nonlinear interference in 

c th channel which is estimated based on the DC-EGN 
model given by:  

(15) 

( ) ( ) ( ) ( )

( )

3 2 2
1 2 3

1

3
4

[ , ,

             , ]

N
NL

c c c n c n
n
n c

n

P x D c x x D c n x x D c n

x D c n

=
≠

= + + +∑x

 

The SNR margin of c th channel is defined as 
follows [13]:  

(16) ( ) ( )
,

c
c

req c

SNR
M

SNR
=

x
x  

where ,req cSNR  is the required SNR of c th channel for 
a specific modulation format and coding scheme. The 
min-max problem which is equivalent to maximization 
of minimum SNR margin among channels will be: 

(17) 
11.1: min max ( )cx c

P M −

∈N
x  

where { }1,2,...N=N  denotes the set of the 
channels. The above problem is non-convex and non-
linear. To deal with this problem we inspire the same 
approach proposed in [14]. By using this approach, we 
apply the variable change ( ) , Nexp += ∈ℜx yy . 
Thus, the problem P1.1 is modified as follows  

(18) 
( )( ),

1.2 : min max
n

ASE NL
req c c c

yc

SNR P P e
P

e∈

+ y

y N

 

Figure 1. Experimental setup, (a) single channel and (b) three-channel scenarios 

Volume 11- Number 1 – Winter 2019 (1 -11) 
 

4 



where ( )NL
cP ey  is: 

(19) 
( ) ( ) ( )

( ) ( )

3 2
1 2

1,

2 3
3 4

[ ,

                      , , ]

c c n

c n n

N
y y yNL

c
n n c

y y y

P e D c e D c n

e D c n e D c n

e +

= ≠

+

= +

+ +

∑y

 

 Problem P1.2 is still non-convex. Because 

( )log z  is a monotonic function, then minimizing z  

is equivalent to minimizing ( )log z , thus P1.2 is 
equivalent to:  

(20) 
( )

( )( )
,1.3 : min max

                    

 

 (

req cy c

ASE NL
c c c

P log SNR

l eog P P y

∈
+

+ −y

N  

As expressed in [14], by introducing slack variable
s , P1.3 is equivalent to the following convex problem: 

(21) ,
2 : min

s
P s

y
 

(22) 
( ) ( )( ),s.t.    ( 0ASE NL

req c c c clog SNR log P P e y s+ + − − <=y

 

The inequality constraints of the above problem 
may be in a region where the objective function 
becomes infinite which is not desirable. To tackle this 
issue a barrier function is used and accordingly the 
following twice differentiable convex problem is 
obtained: 

(23) 
( )

( )( )( )
,,

13 : min [

]

req cs
c

ASE NL
c c c

P s loglog SNR
t

log P P e y s

∈

−

− + + +

∑y
N

y

 

for t →∞ . As problems P2 and P3 are convex 
optimization, we can solve them easily by using CVX, 
a well-known optimization tool [15]. 

B. Maximizing Achievable Rate 
 The total achievable rate of all DWDM channels 

are given by:  

(24) ( ) 1
( )

cy

ASE NL
c c c

eC log
P P e∈

 
= + + 
∑ y

N

y  

 For high SNR scenarios, we have 
( ) ( )1log SNR log SNR+ ≈  thus, the problem of 

optimizing sum rate at higher SNRs is given by:  

(25) 
( )( )( )4 : max .ASE NL

c c c
c

P y log P eP
∈

− +∑y N

y

 

which can be solved in the same approach presented in 
the former subsection. 

IV. EXPERIMENTAL SETUP 
We have considered two arrangements to measure 

SNR of commercial optical coherent transceivers over 
three spans of 100 km fibers, and two fiber types (SMF 
and NZDSF) were used for each arrangement. In the 
first arrangement, we have tested a single channel 100 
Gbps coherent transmission system, and in the second 
one, we investigated a three-channel coherent 
transmission system. 

Schematic setups of the experiments are shown in 
Figure 1. In these schematic setups, line card means an 
electronic board encapsulating the client data with rate 
of 100 Gbps and Ethernet framing into OTN framing 
based on the ITU-T G.709 standard [16]. It is worth 
noting that these line cards are known as transponders, 
in which pluggable module, C Form-factor Pluggable 

Figure 2.  Characteristics of transmitted signals of CFP captured by OMA 
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(CFP)1, is used to generate optical coherent signal. We 
have used CFP modules with baud rate of 32 Gbaud/s 
and quadrature phase shift keying (QPSK) modulation. 

Note that in Figure 1, iλ  denotes the wavelength of 
optical transmitter, where 𝜆𝜆1 = 1552.52𝑛𝑛𝑛𝑛 , 𝜆𝜆2 =
1553.33𝑛𝑛𝑛𝑛 , and 𝜆𝜆3 = 1554.13𝑛𝑛𝑛𝑛 . Furthermore, 
Array Waveguide Grating (AWG) WDM multiplexer 
(AWG-MUX) and de-multiplexer (AWG-DMUX) are 
used to multiplex and de-multiplex signals of three 
CFPs, respectively. It should be noted that, although in 
the single-channel scenario AWG-MUX and AWG-
DMUX are not required, we used them to have the same 
optical attenuation in both arrangements. Moreover, we 
used four Erbium-doped fiber amplifiers (EDFAs), 
where i th optical amplifier (OA) is denoted as iOA . In 
all experiments, unless mentioned, the gain of 

1 2 3, ,OA OA OA , and 4OA  are set 18 dB, 25dB, 25dB, 
and 25dB, respectively. 

We have used optical modulation analyzer (OMA) 
to monitor and measure characteristics of CFP output. 
In Fig. 2, a snapshot of the output of OMA is shown. In 
this figure, modulation constellation, I/Q eye pattern, 
and SNR, etc. are shown. We observe that both x- and 
y-polarizations are modulated based on QPSK 
modulation format, and input SNR is about 16.7 dB. 

In order to evaluate non-linearity effects of SMF 
and NZDSF fibers, the transmit power of CFPs is swept 
from -22 dBm to -1 dBm (-3dBm) in single-channel 
(three-channel) scenario. Recorded results are 
presented in the next section. 

V. NUMERICAL RESULTS 

A. Analytical Results 
 In this section, we evaluate the results of 

optimization problems P2 and P4 solved by using CVX 
tool [15]. The considered fiber and other components 
parameters are listed in Table 1.  

Table 1. Considered Parameters in Optimizations 

Parameter Value 
α  0.2 /dB km  

2β  -21.45562 2 /ps km  

Fiber Optic Dispersion 16.75 / .ps nm km  
Optical Frequency 193 THz  

3β  0 
γ  1.31 1( . )W km − . 

Span Length, sL  120 km  

spn  1.77 
Modulation Format PM-QPSK 

Required SNR (all channels) 8.45 dB 
Baud Rate 27.5 Gbaud/sec 

Number of Spans 40 
Number of Channels 30 

 

By solving the optimization problem P2 based on 
the parameters given in Table 1, we obtained optimum 
                                                           
1 Note that C stands for Latin centum (hundred), as CFPs have been 
designed to support data rate of 100Gbps. 

power of each channel in a 30-channel WDM system. 
Figure 3 shows the optimal power allocated for each 
channel and the results of flat power optimization (

x= ×x I ) . As can be seen, the central channel has 
higher transmitted power, because (as it was illustrated 
by DC-EGN and GN results) the central channel has 
high non-linear noise w.r.t. other channels, and to 
compensate its NLIN, higher power is allocated to this 
channel. We also observe that in case of variable power 
per channel index, the power of each channel is a 
concave function which is maximized in the central 
channel. It is also inferred that DC-EGN model needs 
1.5 dBm of transmit power however, DC-GN model 
needs 1 dBm. 

 
Figure 3. Results of power allocation by solving P2 based 

on either DC-EGN or GN models. 

The power optimization based on the DC-EGN 
allocates higher power than the GN counterparts, which 
reveals that the DC-EGN based optimization can reach 
higher rate Figure 4 shows the average achievable rate 
per channel obtained by solving the rate maximization 
problem expressed in section III, where we observe that 
by using the DC-EGN model, higher rate per channel is 
achieved. This is due to the fact that the GN model 
overestimates NLIN and as a result it allocates lower 
power per channel which leads to lower SNR and 
achievable rate. 

 

 
Figure 4. Results of power allocation by solving  

P4 based on both DC-EGN and GN models. 
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To have a better understanding of the results of the 
DC-EGN model versus the GN one, in Figure 5 we 
show the achievable rates obtained by solving P4, 
where we observe that the DC-EGN based optimization 
achieves higher spectral efficiency (in terms of bit rate 
per hertz). For example, in case of 10 channels, the 
achieved rate is 12.95 bps/Hz while for GN-based 
model it is 12.78 bps/Hz. 

In order to compare the complexity of optimization 
problems based on DC-EGN and GN models, we have 
recorded the number of equality constraints and 
variables of each optimizations, reported by CVX tool. 
In Table 2, the number of equality constraints and 
variables are shown for different number of WDM 
channels. As can be seen, the DC-EGN based 
optimizations have less variables and equality 
constraints which highlighting its lower computational 
complexity.   

Figure 6 represents SNR versus channel index 
obtained by solving P4 for two scenarios in which one 
of them considers an equal power for all channels and 
the other one finds the power of each channel 
individually during the optimization. As can be seen, 
the optimization based on the DC-EGN model leads to 
higher SNR. For instance, in case of flat power for DC-
EGN model, we reach 8.8 dB while for DC-GN model 
the SNR value is 8.1 dB; which shows 0.7 dB 
improvement in SNR. 

 
Figure 5. Comparison of Capacities Achieved by Solving 

P4 using DC-EGN and GN model 

A. Simulation Results 
 In what follows, we validate the results of 
optimizations by comparing them with the results of 
simulations. To this aim, we considered a 110 Gbps 
CUT system based on the Polarization Multiplexed 
Quadrature Phase Shift Keying (PM-QPSK) 
modulation format which has been simulated in the 
OptiSystem software. It is worth mentioning that in our 
experimental setup, we only had transceivers with PM-
QPSK modulation format, thus to have consistent 

comparisons between simulation and experimental 
results, here we only implemented PM-QPSK. 
 

 
Figure 6. SNR Comparison of Solving P4 with DC-EGN 

and GN Models 

  We considered a 5-channel WDM system and 
recorded bit-error-rate (BER) of the central channel 
(third channel). The baud rate of each channel is 27.5 
Gbaud/sec and channel spacing is 100 GHz. In the 
simulation setup, the BER of the desired channel (third 
channel) is computed by counting error bits, which are 
determined by comparing transmitted and detected bits 
at the output of receiver. 

By sweeping the number of spans sN , we recorded 
BER and plotted it as a function of transmit power, as 
shown in Figure 7. It is clear that at lower transmit 
power the fiber is in linear regime; nonetheless, at 
higher transmit power the fiber non-linearity becomes 
dominant, and as a result, we have a point in which the 
BER achieves its minimum value which is occurred at 
an optimal power. In addition, with the growth of 
number of spans, sN  the total NLIN increases, and as a 
result, BER is degraded. 

To obtain the SNR of simulated WDM system, we 
considered the following theoretical BER formula for 
PM-QPSK [13]:  

(26) ( )1 erfc 0.5 ,
2

BER SNR= ×  

where erfc(.) denotes error function. By using (26) we 
can find the SNR as follows:  

(27) ( )12 erfc 2 ,SNR BER−= × ×  

where ( )1erfc .−  is the inverse function of ( )erfc . . By 
using (27), the SNR of simulations are obtained by 
using recorded BERs. 

In Figure 8, the estimated SNR of simulations is 
depicted. It is observed that by increasing sN , SNR is 
degraded. In addition, the optimal power of third 
channel which maximizes the SNR is around 2 dBm. 

Table 2. Number of Equality Constraints and Variables in Optimization Problems Based on DC-EGN and GN Models 
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To compare the simulation results with output of the 
proposed optimization problems, we considered the 
same setting as the simulations, and allocated power of 
a 5-channel WDM system by solving problem P2. 

 
Figure 7. BER of third channel in the simulated 5-channel 

WDM System with 110 Gbps rate per channel 

 In next step, we obtained the results of power 
allocation with the objective of maximizing minimum 
SNR margin for the 5-channel WDM system. 
Interestingly, we observed that the optimal power of 
third channel for the case of flat power optimization is 
approximately 2.2 dBm which is in accordance with the 
simulation setting is close to the simulation results, 
which demonstrates the practical applicability of the 
proposed optimizations. 

 
Figure 8. SNR of third channel in the simulated 5-channel 

WDM system with 110 Gbps rate per channel. 

B. Experimental Results 
We have recorded SNR of coherent 100 Gbps 

system according to the two arrangements explained in 
Section IV. All results are obtained by recording reports 
of CFP which are available through the equipment 
management system (EMS) software. It is worth noting 
that we could not use OMA to measure SNR at the 
output of three spans. This is due to the fact that there 
is not any equalization module at the input of OMA to 
compensate fiber dispersion, thus, received signal at 
OMA cannot be analyzed. Consequently, we have used 
loop-back connection (i.e., received signal is loop 
backed to the RX of the CFP sending the input signal) 
as shown in Figure 1. 

In Figure 9, measured SNRs for SMF in both 
arrangements (single-channel and three-channel) are 

shown versus the transmit power of CFP. We observe 
that with the increase of input power the non-linearity 
effects of SMF are dominated, which degrade SNR. As 
expected, three-channel scenario has a lower SNR at 
higher power, because XCI noise are appeared in this 
scenario. Note that in order to compare optimal power 
of experiments with analytical models, we have to plot 
results versus input power of the first span which is the 
output of 1OA . 

 
Figure 9. Recorded SNR for NZDSF versus TX power of 

CFP. 

 
Figure 10. Recorded SNR for SMF versus out power of first 

optical amplifier (OA1). 

It is worth mentioning that in the three-channel 
scenario output power of CFPs were limited to -5dBm, 
because, for higher input power the total input power 
of 1OA  exceeds 0 dBm, which saturate optical 
amplifiers. Thus, in order to increase output power of

1OA , we have considered a new test case, referred to 

as test 2, in which the gain of 1OA  is increased to 25 
dB. In Figure 10, we have plotted results of Figure 9, 
with respect to output power of 1OA  and added results 
of test 2. Note that in this figure test 1 means that the 
gain of   is 18 dB. We observe that by increasing the 
gain of   we could measure the non-linearity effect of 
SMF at higher powers. Results show that the optimum 
power in the single-channel and three-channel 
scenarios are +8.6 dBm and +7.3 dBm, respectively.   

Volume 11- Number 1 – Winter 2019 (1 -11) 
 

8 



 
Figure 11. Recorded SNR for SMF versus TX power of 

CFP. 

In Figure 11, SNRs of single-channel and three-
channel scenarios for NZDSF are shown versus the 
transmit power of CFP. We observe that the results of 
NZDSF and SMF (as shown in Figure 9) have the same 
trend, unless in the NZDSF cases we have a lower SNR 
than the SMF scenarios. In order to have a better 
comparison, in Figure 12 we have shown the results of 
SMF and NZDSF versus the output power of 1OA  
(input power of first span).  

In Figure 12, we observe that the maximum SNR of 
single-channel scenario in SMF is 1 dB higher than 
NZDSF, and in the three-channel scenario this gap is 
reduced to 0.5 dB. The optimum powers in which we 
obtain maximum SNR in the single-channel and three-
channel scenarios for SMF and NZDSF are +8.6 dBm, 
+7.3 dBm, +4.8 dBm, and +4.8 dBm, respectively. In 
addition, we observe that the SNR degradation with the 
increase of the number of channels in SMF is more than 
NZDSF. 

 
Figure 12. Comparing SNR of SMF and NZDSF versus 

output power of OA1. 

 In order to measure the power of intermediate 
spans, we have recorded input and output powers of 
each optical amplifiers which are presented in Table 3. 
In this table, output power is the power of amplified 
input signal and ASE noise. In Table 3, the results of 
single-channel scenario for SMF are reported. These 
results for the case of three-channel in SMF are 
presented in Table 4. In both tables we observe that the 
difference of output and input powers (which equals to 
the gain of optical amplifier) is not fixed. In order to 
validate the correctness of our results, we have plotted 
the differences of input and output powers of all optical 
amplifiers versus transmit power of CFP (input power 
of the system).  

 

 

 

 

Table 3. Recorded Input/Output Powers at Optical Amplifier for the Case of Single-Channel SMF Experiment 

Table 4. Recorded Input/Output Powers at Optical Amplifier for the Case of Three-Channel SMF Experiment 
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In Error! Reference source not found., gains of 
all optical amplifier based on the measured input and 
output powers are shown. Note that we have set the gain 
of 1OA  to 18 dB and the gains of 2OA , 3OA , and 4OA  
to 25 dB, via EMS software. Results indicate that there 
is approximately 0.2± dB fluctuation around the set 
values in the EMS. These fluctuations are acceptable, 
because, the amplification gain of optical amplifiers is 
slightly affected with the random behavior of ASE 
noise. 

In Figure 13, the analytical (EGN model) and 
experimental results are compared for the three-channel 
scenario. We observe that there are large gaps between 
EGN and experimental results. This is due to the fact 
that there are other sources of noise in the experimental 
setup which are not included in the EGN model. By 
using the following relation, we can improve the 
accuracy of the EGN model (inspired form Eq. (80) in 
[10]). 

(28) 
1

1 1noiseEGN TX

EGN input

SNR

SNR SNR

− =
+

 

where EGNSNR  is the SNR obtained from EGN 
model, and inputSNR  denotes the input SNR indicating 
imperfection of transmitter and other sources of noise. 
In Figure 13, the computed 

noiseEGN TXSNR −  for inputSNR
= 16.7dB are shown. Note that we have measured the 
value of inputSNR  by using OMA as shown in Figure 2.  

We observe that by considering (28), the gaps 
between analytical and experimental results are 
reduced. However, the closeness between analytical 
and experimental results is only for the pseudo-linear 
region (i.e., around the optimum power of EGN model), 
and for high-nonlinear region, the performance gap is 
increased. It is worth noting that this finding is in 
agreement with the results of [9], [10]. 

 
Figure 13. Comparing experimental and analytical results of 

the three-channel scenario. 

VI. CONCLUSION 
In this paper, the problem of power allocation in 

optical coherent and uncompensated transmission 
system has been investigated. Two optimization 

problems have been introduced with the objective of 
maximizing minimum SNR margin and achievable 
rate, in which SNR of CUT is estimated based on the 
DC-EGN model. In the DC-EGN model, non-linear 
interferences namely, SCI and XCI on each channel are 
recorded in a lookup table. Then, by considering the 
index number of channels, the NLIN on the channel of 
interest is computed and accordingly SNR is obtained 
by considering the transmission power and optical 
amplifier noise. We evaluated the proposed 
optimization problems and compared them with the 
existing alternatives which are based on the discretized 
GN model. We observed the superiority of the proposed 
optimization problems in terms of computational 
complexity, SNR, and achievable rate. In addition, we 
validated our results with simulations, whereby we 
observed a close agreement between optimization 
results and simulations. In addition, we presented 
results of experimental setups in which we measured 
SNR of commercial single-channel and three-channel 
100 Gbps coherent systems. We investigated the non-
linear effects of SMF and NZDSF, and compared 
experimental results and EGN model. We showed that 
there are large gaps between EGN model and 
experimental results which can be reduced by 
considering other sources of noise such as imperfection 
of transmitter, thermal noise, and shot noise. 
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