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Abstract— LSB matching techniques are widely applied in the field of image steganography. In such algorithms, pixel 

values of each group must be changed in a way that a predefined function of the pixel group matches the secret digit. 

The notational system of the secret digits can be every desired number, as well as the size of the pixel groups. In order 

to preserve the quality of the stego image, it is desired to limit the changes in the pixel groups as much as possible. 

Therefore, optimum strategies must be found to match the function of the pixel group to the secret digit with the least 

possible imposed distortion in terms of mean square error. Having been recently found for pixel pairs, such strategies 

are found for the larger pixel groups by the proposed method in this paper. Among all the strategies providing the 

similar minimum MSE value, the one is chosen that helps to preserve the histogram of the original image. Optimum 

strategies found for all notational systems and pixel group sizes makes the algorithm flexible for various application 

with different payloads, while it improves the similar techniques in terms of both MSE reduction and histogram 

preservation, as is confirmed by the experimental results. 

Keywords: component; adaptive pixel group matching (APGM); exploiting modification direction (EMD); least significant 

beats (LSB) steganography.  
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I. INTRODUCTION 

Steganography is the art of communicating a secret 
message by concealing it into a seemingly normal 
signal without raising any suspect [1], [2]. Due to ease 
of access and manipulation, digital images have 
attracted more interests among all potential carriers. In 
steganography terminology, a digital image is known as 
cover image and stego image before and after data 
embedding respectively. A main category of image 
steganography tries to embed the secret message by 
manipulating the least significant bit(s) (LSB) of the 
cover image.  

 
 Corresponding Author 

The simplest algorithm in this category is LSB 
replacement in which the secret bit replaces the LSB of 
the pixel value. LSB replacement results in the pair of 
values (PoV) defect in the histogram of the stego image 
where the histogram appears in a pairwise format [3] 
LSB matching (LSBM) steganography is proposed to 
overcome the PoV issue by randomly increasing or 
decreasing the pixel value by one if necessary. Later on, 
steganalysis techniques were developed by another 
defect in the histogram of the characteristic function 
(HCF) caused by LSB matching [4], [5]. Recent 
steganalysis techniques work on a large set of features 
extracted from the image rather than focusing on 
specific features or steganographic algorithms [6]-[9]. 



The basis of all steganalysis techniques is to detect 
the distortion imposed to the original image using 
features that efficiently capture it [10], [11]. Therefore, 
steganographic algorithms aim at imposing less 
distortion to the original image according to different 
criteria, without sacrificing the embedding capacity 
[12]. For instance, in LSBM every pixel changes with 
the probability of one half in capacity of one bit per 
pixel. LSB matching revisited (LSBMR) technique 
decreases the probability of change per pixel (PCPP) to 
0.375 keeping the same embedding capacity [13]. For 
this sake, LSBMR functions on the pixel pairs rather 
than individuals. The LSB of the first pixel carries the 
first secret bit, while a function of both pixels carries 
the second bit. In this way, pixels remain more intact 
and the total embedding distortion decreases. This 
probability is further decreased to one-third, with a 
scheme working on a group of three pixels [14]. In this 
scheme, three secret bits are carried by three similar 
functions of three possible pixel pairs. Li et. al. show 
that the probability of change per pixel for LSB 
matching criteria (embedding a capacity of one bit per 
pixel while pixels change by one or remain unchanged) 
finds its lowest boundary of about 0.22 in hypothetical 
case of working on the groups of asymptotically infinite 
pixels [15]. 

There have been other efforts as well to reduce the 
distortion according to other criteria [16]. For example, 
the histogram of pixel values can be used as a 
steganalysis feature [4]. In LSB substitution compatible 
steganography (LSCS), the increasing/decreasing 
randomness of LSBM is exploited to keep the 
histogram of the original image as intact as possible 
[17]. The one-third probability embedding is also 
modified to keep the histogram of the original image as 
intact as possible, in addition to keeping the previous 
feature of lowering the PCPP to one-third [18]. The 
capacity of some other algorithms varies over the entire 
image to conceal more bits in edges or textured regions 
of the image [19]-[21]. Since the human visual system 
(HVS) is less sensitive to the modifications in such area, 
these algorithms reduce the visual distortion according 
to HVS, while keeping the same embedding capacity. 

There exist arbitrary cases of modification both in 
LSBM and LSBMR. While the above-mentioned 
schemes exploit this randomness to keep the histogram 
intact, exploiting modification direction (EMD) scheme 
employs all modification cases for data embedding 
[22]. Consider a pair of pixels, where there are a total 
number of five cases for changing one of them by one 
or keeping them all unchanged. Therefore, a digit in 5-
ary notation (0 to 4) can be embedded in this pair, 
resulting in a capacity of log2(5) /2  bit per pixel 
(bpp). It can be easily shown that the capacity of EMD 
decreases by increasing the size of pixel group. Several 
algorithms have been proposed to improve EMD in 
terms of its capacity or total distortion. For instance, 
diamond encoding (DE) method increases the capacity 
of pairwise EMD by allowing the total change of pixel 
pair up to a certain value [23]. Leng et. al. improved the 
EMD security employing mapping matrix [24]. 
Exploiting HashedWeightage Array improves EMD 
using dynamic weightage array in terms of payload and 
security (EEMDHW) [25]. By reformulation the 
original EMD embedding algorithm, Ke et. al., 

introduce parallel EMD, which improves the 
embedding efficiency and security [26]. In advanced 
EMD (AEMD) edge masking characteristics of human 
visual system is exploited to increase the embedding 
capacity [27]. Adaptive pixel per matching (APPM) 
method [28] shows that the changes offered by DE are 
not optimum in terms of mean square error (MSE) 
distortion imposed to the original image. Moreover, in 
DE embedding, the secret information can be 
embedded only using certain notational systems in form 
of 𝐵 = 2𝑘2 + 2𝑘 + 1for all positive integer values of 
k. Therefore, APPM offers optimum modification 
strategies for embedding digits for all B-ary notational 
systems in pixel pairs. 

Although APPM offers the embedding strategies for 
all B-ary notational system, its functionality is limited 
only to pixel pairs. In this paper, we propose an adaptive 
pixel triple matching (APTM) method that offers the 
best modification strategies on pixel triples for every 
desired notational system. We also show that the 
original APPM algorithm can be extended to enjoy 
additional capabilities of histogram preserving. We call 
this new version of APPM as histogram preserving 
APPM (HP-APPM), and extend the similar idea to the 
proposed APTM algorithm to develop the histogram 
preserving APTM (HP-APTM). Finally, we present the 
general concept of adaptive pixel group matching 
(APGM) and similarly its histogram preserving version 
(HP-APGM). As a result, this paper provides all 
optimal strategies for embedding information in all B-
ary notational systems functioning on every desired size 
of pixel groups. The results show that extending the 
pixel group size helps to reduce the MSE distortion. On 
the other hand, more equivalent optimum embedding 
strategies are available for larger pixel groups that their 
combination helps to preserve the histogram as much as 
possible. Moreover, all B-ary notational systems are 
available for all pixel groups that means the extreme 
payload flexibility of the proposed method. 

II. ADAPTIVE PIXEL PAIR MATCHING 

Functioning on the pixel pairs, adaptive pixel pair 
matching (APPM) is introduced to embed the payloads 
more than one bit per pixel efficiently in terms of mean 
square error (MSE) between the cover and stego image. 
The original pixel pair (𝑥, 𝑦)  is considered as a 
coordinate. Digit 𝑠𝐵 in B-ary notational system is 
embedded in this pixel pair by modifying it into a 
(𝑥′, 𝑦′) coordinate within a predefined neighborhood 
Φ(𝑥, 𝑦)  such that 𝑓(𝑥′, 𝑦′) = 𝑠𝐵 . In this design, 𝑓 
stands for the predefined extraction function in the form 
of 𝑓(𝑥, 𝑦) = (𝑥 + 𝑐𝐵 × 𝑦) 𝑚𝑜𝑑 𝐵 and 𝑐𝐵  is a digit in 
the range of 0 to B-1. 

Every neighborhood Φ(𝑥, 𝑦)  consists of B 
coordinates (𝑥𝑖 , 𝑦𝑖), 𝑖 = 0, … , 𝐵 − 1, where 

 

assuming 𝑓(𝑥𝑖 , 𝑦𝑖) = (𝑥𝑖 + 𝑐𝐵 × 𝑦𝑖) 𝑚𝑜𝑑 𝐵 = 𝑠𝐵 
for a certain i, we will have 𝑓(𝑥𝑖 − 𝑚𝐵, 𝑦𝑖 − 𝑘𝐵) =
𝑓(𝑥𝑖 , 𝑦𝑖) = 𝑠𝐵; m, k ∈ ℤ that means the neighborhood 
Φ(x, y) is not unique. Here we look for a neighborhood 
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that minimizes distortion imposed to the original image 
in terms of MSE, defined as: 

 

For each 𝑐𝐵 from 0 to 𝐵 − 1 the neighborhood with 
minimum distortion can be found. The optimum 𝑐𝐵 
among all is the one that results in the minimum 
𝑀𝑆𝐸Φ(𝑥,𝑦). Finding the optimum 𝑐𝐵, the corresponding 

extraction function and neighborhood set are found 
consequently, as the solution of the optimization 
problem below: 

 

Each pixel pair (𝑥, 𝑦) and its neighborhood Φ(x, y) 
forms a certain shape in the Cartesian coordinates. As a 
general rule, optimization results in picking the most 
concentrated neighborhoods. For instance, consider two 
possible neighborhoods in Fig. 1 for B = 9 and 
corresponding values of 𝑐𝐵1

 and 𝑐𝐵2
. The optimization 

process results in picking the 𝑐𝐵 of the square shape for 
the extraction function, as its corresponding 
neighborhood is more concentrated than the other. It 
can be simply shown that the optimum neighborhood in 
Fig. 1 ensures less MSE than the other. In another 
example, APPM finds c = 5 and a 5 × 5 square as the 
optimum neighborhood for B = 25 as shown in Fig. 2. 
It can be inferred from this figure that APPM gives less 
MSE distortion compared to the diamond encoding 
(DE) method [23] with k = 3 that applies the less 
concentrated shape represented by dashed lines in Fig. 
2. 

Without losing the generality of problem, ΦB(𝑥, 𝑦) 
can be formed around the origin. In this way, (𝑥, 𝑦) is 
transferred to the (0,0)  and its neighbors are shifted 
around it consequently. 

 

 

Fig. 1. Two different Φ(x, y) for B = 9 and two different 𝑐9. 

 

Fig. 2. DE (25) for k = 3 (dashed) and Φ25(𝑥, 𝑦)  (solid). 

 

 

𝑥𝑖 𝑦𝑖 𝑓(𝑥𝑖 , 𝑦𝑖)
= (𝑥𝑖 + 3𝑦𝑖)𝑚𝑜𝑑9 

-1 -1 5 

-1 1 2 

0 -1 6 

0 0 0 

0 1 3 

1 -1 7 

-1 0 8 

1 0 1 

1 1 4 

 

Fig. 3. Neighborhood table and ΦB(𝑥, 𝑦) for B = 9 in APPM. 

 

Hereafter, ΦB(0,0)   means the neighborhood 
around the origin. Therefore, (3) can be restated as: 

 

Considering the M × N cover image and the bit-
stream S, the embedding algorithm is explained in the 
following steps [28]: 

1) Find the minimum B in ⌊𝑀 × 𝑁/2⌋ ≥ 𝑆𝐵.  𝑆𝐵  

represents the S in B-ary notational system and |.| 

denotes cardinality. 

2) Solve (4) to find the optimum 𝛷𝐵(𝑥, 𝑦)  and 𝐶𝐵. 

3) For all values i from 0 to B − 1, record (𝑥𝑖̂, 𝑦𝑖̂)  

in the neighborhood defined by 𝛷𝐵(0,0)  such that 

𝑓(𝑥𝑖̂, 𝑦𝑖̂) = 𝑖 
4) Take a pixel pair (𝑥, 𝑦) of the cover image to  

embed a message digit 𝑆𝐵 . Find the modulus 

distance 𝑑 = (𝑠𝐵 − 𝑓(𝑥, 𝑦))  mod B between 𝑠𝐵 

and f(x, y), then replace (x, y) with (𝑥 + 𝑥̂𝑑 , 𝑦 +
𝑦̂𝑑) 

5) Repeat step 4 to embed all the message digits. 

Etraction process will be implemented simply by 

extracting B-ary digits 𝑠𝐵 = 𝑓(𝑥′, 𝑦′)  from all pixel 

pairs. 

 

 
Fig. 4. Two possible Φ6(x, y) for c = 2 (a), and c = 4 (b). 

 

 

 

 

 

 

 

2 3 4 

8 0 1 

5 6 7 
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𝑥𝑖 𝑦𝑖 𝑓(𝑥𝑖 , 𝑦𝑖)
= (𝑥𝑖 + 3𝑦𝑖)𝑚𝑜𝑑9 

 

𝑥𝑖 𝑦𝑖 𝑓(𝑥𝑖 , 𝑦𝑖)
= (𝑥𝑖 + 3𝑦𝑖)𝑚𝑜𝑑9 

0 0 0 0 0 0 

-1 0 5 -1 0 5 

0 -1 4 0 -1 2 

-1 

1 

-1 

1 
3 

-1 

1 

-1 

1 
3 

0 1 2 0 1 4 

1 0 1 1 0 1 

 

Fig. 5. Corresponding neighborhood tables for cases in Fig. 4 

 

Since APPM works on the pixel pairs, the 

neighborhoods can be represented as two dimensional 

(2D) Cartesian shapes. A hypothetic similar algorithm 

working on the pixel triples results in ΦB(x, y, z)   

which can be presented by 3D shapes. Extending the 

algorithm to the pixel groups larger than three, it would 

not be possible to visualize the neighborhoods. 

Therefore, we introduce a different approach to the 

APPM algorithm. 

In this approach, the optimum neighborhood found 

around the origin is represented by a neighborhood 

table consisting of three columns and B rows rather 

than a shape. The first and second columns denote xi 

and yi values, and their corresponding 𝑓(𝑥𝑖 , 𝑦𝑖) values 

are recorded in the last column. Both neighborhood 

shape and table for B = 9 and 𝑐9 = 3 are sketched in 

Fig. 3. The table representation will be efficient for 

algorithms working on the pixel groups of size three or 

more. 

III. HISTOGRAM PRESERVING ADAPTIVE PIXEL 

PAIR MATCHING 

The optimum 𝑐𝐵 and Φ(x, y) solution is not unique. 

As an instance, both shapes in Fig. 4(a) are the 

solutions for optimization problem with B = 6 and c6 

= 2. Similarly, B = 6 and c6 = 4 gives the solutions 

sketched in Fig. 4(b). All of these four shapes yield the 

similar MSE distortion. In other words, for each 

𝑓(𝑥, 𝑦), there is a degree of freedom for choosing the 

optimum shape. This issue can be well observed in 

neighborhood table representations in Fig. 5. 

According to Fig. 5, whenever 𝑑 = (𝑠𝐵 −
𝑓(𝑥, 𝑦); 𝑐6 = 2) 𝑚𝑜𝑑 6 = 3  happens during the 

message embedding, both pixels can be alternatively 

increased or decreased by one upon our choice. Table 

I summarizes the minimum 𝑐𝐵s and the number of their 

corresponding alternative ΦB(x, y, z) for 2 ≤ 𝐵 ≤ 64. 

This degree of freedom can be exploited for the 

sake of image histogram preservation. We define 

𝐶256×1  change vector that records the number of 

alterations for 256 different pixel values during the 

embedding procedure. C(u) represents the number of 

changes in pixels with value u for 𝑢 = 0, … ,255 due to 

embedding. C is set to 0 at the beginning. Consider the 

pixel pair (𝑥, 𝑦)  and distance 𝑑 = 𝑠𝐵 − 𝑓(𝑥, 𝑦)  mod 

B. Assume that (𝑥𝑑 , 𝑦𝑑)  is found using the 

neighborhood table. Two cases are possible for 

embedding: 

 
 

Above rules show how the number of pixels with 

intensity value u changes in C during embedding. 

Entries in C corresponding to the original and new 

pixel values are decreased and increased respectively. 

The histogram of the original image is preserved if for 

each certain pixel value i, the number of pixels with 

value i remain the same before and after embedding. 

This situation is equivalent to the C = 0 after 

embedding. Therefore, embedding with the lowest 

possible value of 𝐷 = ∑ |𝐶(𝑢)|255
𝑢=0  equals to the most 

preserved possible image histogram. For this sake, 

whenever there exists more than one choice for 

(𝑥𝑑 , 𝑦𝑑), the one is chosen that contributes more in 

decreasing the value of D. The detail of minimizing D 

is similar to [18]. Modifications on the original image 

are divided into two groups: mandatory changes where 

only one choice of (𝑥𝑑 , 𝑦𝑑) is available, and optional 

changes with more than one (𝑥𝑑 , 𝑦𝑑) . Mandatory 

changes are first accomplished, and C is modified 

properly. When more than one (𝑥𝑑 , 𝑦𝑑) is available, 

the optimum is one that compensates the changes 

imposed by the mandatory phase. 

The histogram preserving APPM (HP-APPM) 

algorithm for M × N image and input bit-stream S can 

be explained as below: 

1) Find the minimum B in ⌊𝑀 × 𝑁/2 ⌋ ≥ |𝑆𝐵|. 𝑆𝐵  

represents the S in B-ary notational system and |. | 
denotes cardinality. 

2) Solve (4) to find the optimum 𝛷𝐵(𝑥, 𝑦) and 𝑐𝐵. 

3) For all values i from 0 to B-1, recoed (𝑥̂𝑖 , 𝑦̂𝑖)  

from the neighborhood defined by 𝛷𝐵(0,0) in the 

neighborhood table such that 𝑓(𝑥̂𝑖 , 𝑦̂𝑖) = 𝑖.  There 

might be more than one  (𝑥̂𝑖 , 𝑦̂𝑖) for a certain value 

of 𝑖 = 𝑓(𝑥̂𝑖 , 𝑦̂𝑖). 
4) Take a pixel pair (𝑥, 𝑦) of the cover image to  

embed a message digit 𝑠𝐵. Find the modules distance 

𝑑 = 𝑠𝐵 − 𝑓(𝑥, 𝑦) mod B between 𝑠𝐵 and 𝑓(𝑥, 𝑦). 

5) Find (𝑥𝑑 , 𝑦𝑑) pair in neoghborhood table for  

which 𝑓(𝑥𝑑 , 𝑦𝑑) = 𝑑.  If there is more than one 

(𝑥𝑑 , 𝑦𝑑)  pair, take one which decreases  𝐷 =
∑ |𝐶(𝑢)|255

𝑢=0  as much as possible. Replace (𝑥, 𝑦) 

with (𝑥′, 𝑦′) = (𝑥, 𝑦) + (𝑥𝑑 , 𝑦𝑑)  and update C 

correspondingly. 

6) Repeat steps 4 and 5 until all the message digits 

 are embedded. 

TABLE I.  SOME 𝑐𝐵  VALUES AND THE NUMBER OF THEIR 

CORRESPONDING Φ(X, Y) FOR 2 ≤ B ≤ 64 IN APPM.TABLE I 
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When an overflow or underflow happened, i.e., 

𝑥′ < 0, 𝑦′ < 0, 𝑥′ > 255 or 𝑦′ > 255 is replaced by 

(𝑥′′, 𝑦′′) which is the solution of this optimization 

problem: 

 
In addition to the neighborhood tables for a certain 

𝑐𝐵, there exists a degree of freedom in choosing 𝑐𝐵 for 

a certain B. As a consequence, HP-APPM is 

implemented for the 𝑐𝐵 with more degree of freedom. 

In cases such as Figs. 4(a) and 4(b) where both 𝑐𝐵 

result in the same degree of freedom, the lower value 

is chosen. Similar to the APPM, extraction function sB 

= 𝑓(𝑥′′, 𝑦′′)   helps the receiver to restore the 

embedded bit-stream. 

Both APPM and HP-APPM embedding methods 

are applied on Lena 512×512 gray-scale image for B = 

10. The absolute differences between the histograms of 

the cover and stego images for both methods are 

demonstrated in Fig. 6. From this figure, it can be 

inferred that HP-APPM has managed to efficiently 

compensate the modification imposed to the cover 

image due to APPM data embedding. 

IV. ADAPTIVE PIXEL TRIPLE MATCHING 

Exploiting the degree of freedom in equivalent 2D 

shapes, HP-APPM helps to preserve the original image 

histogram. However, this degree of freedom is limited 

for some B values. For instance, neighborhood set for 

B = 9 is a 3 × 3 square that offers no alternative option. 

Extending the size of pixel group to three increases the 

degree of freedom. This is the motivation behind the 

design of our proposed adaptive pixel triple matching 

(APTM) method. 

The original image is divided into the groups of 

three pixels denoted by (x, y, z) in APTM method. The 

general extraction function follows the below form: 

 

 
 

For the sake of embedding, the pixel triple (x, y, z) 

is modified to (𝑥0, 𝑦0, 𝑧0)  where 𝑓(𝑥0, 𝑦0, 𝑧0) = 𝑠𝐵 . 

𝑐𝐵1
 and 𝑐𝐵2

 find their values within the range of 0 and 

B − 1. There is a neighborhood set ΦB(x, y, z) and a 

coefficient pair 𝐶𝐵 = (𝑐𝐵1
, 𝑐𝐵2

) for each value of B. 

MSE is defined as below: 

TABLE II.  SOME 𝑐𝐵 VALUES AND THEIR CORRESPONDING 

Φ(X, Y) FOR 2 ≤ B ≤ 64 IN APTM.TABLE II 

 

 
Fig. 7. Some of the APTM Optimum Embedding Shapes. 

 
 

 
 

ΦB(x, y, z) and 𝐶𝐵  = (𝑐𝐵1
, 𝑐𝐵2

) are found by solving 

the optimization problem below: 

 

 
Similar to APPM, neighborhoods are found around 

the origin. Some optimum (𝑐𝐵1
, 𝑐𝐵2

) pairs for 3 ≤ B ≤ 

64 are shown in Table II. Some of the optimum 3D 

neighborhood shapes are sketched in Fig. 7. Having the 

optimum neighborhood and 𝑐𝐵 found, the embedding 

and extraction processes will be implemented similar 

to the Section II. 

The theoretical MSE error of DE, APPM and 

APTM under various payloads are compared in Table 

III. Note that DE is applicable only for some specific 

notational systems corresponding to DE parameter k 

ranging from 1 to 10. Equivalent APPM and APTM 

algorithms for these specific payloads are then 

implemented and compared. Aside from the case k = 

1, it is inferred from Table III that APTM exhibits a 

better performance comparing to the DE and APTM in 

terms of MSE. 

TABLE III.  MSE COMPARISON OF DE, APPM AND APTM 

METHODS FOR PRACTICAL DE PAYLOADS 

 

 

 

 

 

 

Volume 13- Number 4 – 2021 (43 -52) 
 
 

47 



TABLE IV.  MSE COMPARISON OF APPM AND APTM METHODS 

FOR PRACTICAL APPM PAYLOADS 

 
 

APPM and APTM algorithms for these specific 

payloads are then implemented and compared. Aside 

from the case k = 1, it is inferred from Table III that 

APTM exhibits a better performance comparing to the 

DE and APTM in terms of MSE. 

Although APPM is not as limited as DE in practical 

bpp payloads, yet it can input only specific bpp values 

with considerable gap among them. Table IV compares 

the MSE performance of APPM and APTM for some 

practical APPM payloads and their equivalent APTM 

systems. However, it can be shown in Section V that 

APTM is much more flexible in terms of input payload 

comparing to APPM. 

In order to experimentally investigate this 

superiority, APPM and APTM are implemented on six 

famous images. 512×512 gray-scale images Lena, Jet, 

Boat, Elaine, Couple and Baboon are used for data 

embedding under the payloads of 426000, 757000 and 

1048000 bits. Message bits are randomly generated 

and embedded via both methods. The MSE between 

the cover and stego images of this test are reported in 

Table V. It can be perceived from this Table that MSE 

improvements up to 0.5 in the APPM method are 

achievable by implementing the APTM embedding 

technique. Like the 2D case, the optimization problem 

in (8) does not have a unique solution. For example, 

there are 24 coefficient pairs for B = 9. Moreover, for 

a certain coefficient pair such as (𝑐𝐵1
, 𝑐𝐵2

) = (2, 3), 

there will be four neighborhood set shown in Fig. 8. 

Therefore, there is more degree of freedom comparing 

to the APPM optimization for B = 9. 

 

Fig. 8. Neighborhood table for B = 9 in APTM. 

Again, this degree of freedom will be exploited for 

the sake of histogram preserving. The change vector C 

is defined and modified similar to Section III. When 

there is more than one option to change a pixel triple, 

the one is chosen that helps in decreasing the value of 

D. Our histogram preserving algorithm which works 

on pixel triples is called histogram preserving APTM 

(HP-APTM). Extending the concepts from 2D to 3D, 

the embedding and extraction processes are very 

similar to those in Section III. 

Histogram preserving improvement of HP-APTM 

to APTM is theoretically evident. APPM, HP-APPM 

and HP-APTM embedding methods are applied on 

Lena 512×512 gray-scale image. HP-APTM is 

implemented for B = 42, while the other two are 

implemented for B = 12 that yields the equivalent bpp 

payload. The absolute differences between the 

histograms of the cover and stego images for all 

methods are demonstrated in Fig. 9. From this figure it 

can be perceived that both histogram preserving 

techniques outperforms APPM. However, histogram 

preserving can be performed more successfully in HP-

APTM comparing to HP-APPM, based on Fig. 9. 

The histogram improvement achieved by HP-

APTM and HP-APPM to APPM can be well presented 

by KullbackLeibler (KL) divergence, as a metric for 

histogram similarity. 

Consider G = {0, 1, . . . 255} as the set of possible 

pixel intensity values. The KL divergence of the cover 

and stego images is calculated as: 

 

Where c(i) and s(i) represent the frequency of the 

pixel value i in the cover and stego images 

respectively. The less value of the KL divergence 

means the more similar histograms for the cover and 

stego images and thus; the more secure algorithm. The 

KL divergence is compared for APPM, HP-APPM and 

HP-APTM data embedded 512×512 gray-scale 

images, and the payload of 470000 bits (1.79 bpp) in 

Table VI. The results confirm that HP-APTM has been  

the most successful in histogram preservation in terms 

of KL divergence. The Lena cover image and stego  
image due to APPM, HP-APPM and HP-APTM data 

embedding. B = 42 in HP-APTM and B = 12 for the other 

two. Images generated in this experiment are shown in 

Fig. 10, in which no visible trace of data embedding is 

perceivable. 

 
Fig. 9. Differences in the cover and stego image histograms for 

Lena 512×512 grey scale  
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V. ADAPTIVE PIXEL GROUP MATCHING 

Based on the concepts used to extend APPM to 

APTM, adaptive pixel group matching is proposed that 

works on groups of k pixels. This algorithm is called 

adaptive pixel group matching (APGM). More degree 

of freedom and thus, better preserved histogram is 

expected with this approach. Moreover, neighborhood 

table is still applicable for k ≥ 4 where the 

neighborhood shapes are not feasible anymore. 

The original image is divided into the groups of k 

pixels in APGM. 𝑃 = [𝑝1, 𝑝2, … , 𝑝𝑘]𝑇  represents a 

group of k pixels. The extraction function follows the 

general form of f(𝑝1, 𝑝2, … , 𝑝𝑘) = 𝑝1 + 𝑐𝐵1
𝑝2 + ⋯ + 

𝑐𝐵𝑘−1
𝑝𝑘 mod B. The pixel group P is modified to P0 

that satisfies 𝑓(𝑃′) =  𝑠𝐵. 𝑃′ denotes the pixel group 

after data embedding. 𝑐𝐵1
, . . ., 𝑐𝐵𝑘−1

 find their values 

within the range of 0 to B − 1. In this case, MSE for a 

certain B, neighborhood set ΦB (P), and coefficient 

vector 𝐶𝐵 = (𝑐𝐵1
, 𝑐𝐵2

, … , 𝑐𝐵𝑘−1
) is defined as: 

 

TABLE VI.  KL DIVERGENCE COMPARISON OF APPM, HP-
APPM AND HP-APTM FOR THE PAYLOAD OF 470000 BITS 

 
 

 
Fig. 10. Lena 512×512 gray-scale cover image (a) and its 

corresponding stego images generated by APPM, HP-APPM and 

HP-APTM at the rate of 1.79 bpp (b)-(d). 

Where ‖. ‖ denotes the Euclidean norm. Therefore, 

ΦB(P) and 𝐶𝐵  will be found by solving the 

optimization problem below: 

 
B(P) is defined around the origin. (11) does not 

necessarily yield a unique solution. Therefore, there 

might be a set of optimum 𝐶𝐵  vectors, with a set of 

optimum neighborhoods for each one of them. As a 

result, a degree of freedom is offered by APGM 

algorithm that can be exploited to propose histogram 

preserving APGM (HP-APGM). Among all possible 

modifications for a pixel group in HP-APGM, the one 

is picked that helps to decrease 𝐷 = ∑ |𝐶(𝑢)|255
𝑢=0 . 

Therefore, the APGM embedding method can be 

summarized as below: 

1) Find the minimum B in ⌊𝑀 × 𝑁/2 ⌋ ≥ |𝑆𝐵|. 𝑆𝐵  

represents the S in B-ary notational system and |. | 
denotes cardinality. 

2) Solve (11) to find the optimum 𝛷𝐵(𝑃) and 𝑐𝐵. 

3) For all values i from 0 to B-1, recoed 𝑃̂𝑖  

from the neighborhood defined by 𝛷𝐵(0)  in the 

neighborhood table such that 𝑓(𝑃̂𝑖) = 𝑖.  There 

might be more than one  𝑃̂𝑖 for a certain value of 𝑖 =
𝑓(𝑃̂𝑖). 
4) Take a pixel group 𝑃 = [𝑝1, … , 𝑝𝑘]𝑇 of the  

cover image to embed a message digit 𝑠𝐵. Find the 

modules distance 𝑑 = 𝑠𝐵 − 𝑓(𝑃) mod B between 𝑠𝐵 

and 𝑓(𝑃). 

5) Find 𝑃𝑑 pair in neoghborhood table for  

which 𝑓(𝑃𝑑) = 𝑑. If there is more than one 𝑃𝑑 pair, 

take one which decreases  𝐷 = ∑ |𝐶(𝑢)|255
𝑢=0  as much 

as possible. Replace 𝑃 with 𝑃′ = 𝑃 + 𝑃𝑑 and update 

C correspondingly. 

6) Repeat steps 4 and 5 until all the message digits 

 are embedded. 

 

In case of overflow or underflow during the 

embedding process, Pˆ 0 is found such that f(Pˆ 0 ) = 

sB and MSE is minimized. In other words, the below 

optimization is solved: 

 

 
Similar to the HP-APTM, the 𝐶𝐵 that offers more 

degree of freedom is picked among the optimized 𝐶𝐵 

vectors found for a certain B. When there are more than 

such optimum vectors with the most degree of 

freedom, the vector with the lower norm is chosen. The 

extraction process is simply implemented by applying 

the extraction function 𝑓(𝑝′) to the pixel groups of the 

stego image. 
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The theoretical results for an MSE comparison 

among different methods are given in Fig. 11. From 

this figure it can be observed that the embedding 

distortion decreases by extending the pixel groups. 

APTM improves the MSE performance of APPM by 

about 0.1 for higher payloads, while its own 

performance is boosted by APGM working on groups 

of four pixels. Another important conclusion about the 

flexibility of the algorithms can be drawn from this 

figure. While the APPM is applicable only for limited 

number of bpp payloads shown by squares, much more 

flexibility for input payload is achievable by APTM 

presented in circles. However, the payload flexibility 

is significantly improved for APGM technique where 

almost all bpp payloads are available, that makes the 

dots in Fig. 11 to look like a continuous line. 

VI. SECURITY ANALYSIS 

A security analysis of the proposed method is 

performed using SPAM [8] and SRM [29] stegnlyzers. 

The results are compared for APPM, HP-APPM and 

HP-APTM techniques. Six thousand 512×512 gray-

scale images from BOWS2 image database [30] are 

used as the training set. All algorithms are 

implemented for 0.1, 0.2 and 0.4 bpp payloads. For 

each pair of applied method and payload, three 

different B values are used for implementation. Since 

the SPAM is originally designed to analyze the ±1 LSB 

techniques, B values above 9 in APPM and 27 in 

APTM that result in more than ±1 modifications are 

avoided. The second order SPAM feature set that is 

based on second order markov features is applied in 

this analysis [8]. The other steganalyzer applied in our 

experiments is the recently proposed and efficient 

SRM stegnalyzer that is based on a rich model 

including numerous diverse sub models [29]. 

The training set consists of 6000 cover images and 

6000 stego images divided uniformly among nine 

different embedding profiles. Thereafter, in order to 

investigate the performance of the trained 

steganalyzer, 1000 cover and 1000 stego images other 

than the training images are used for each embedding 

profile. The ensemble classifier [9] is used to separate 

the cover and stego images according to the SPAM and 

SRM features. The results of the SPAM security 

analysis are summarized in Table VII. Pe = 1 2 (PF P 

+PF N ) represents the error performance of the 

steganalyzer, where PF P and PF N stand for the 

probability of false positive and false negative 

respectively. From this Table, it can be observed that 

SPAM detection is deteriorated about two percent for 

both proposed HP-APPM and HP-APTM methods 

compared to the rival APPM technique. This 

observation confirms the security superiority of the 

proposed method to APPM. 

This superior performance is confirmed through 

SRM steganalysis too. Similar results for the SRM are 

reported in Table VIII. Note that the performance of 

the APPM and the proposed method are almost the 

same at 0.4 bpp payload due to the sophisticated and 

efficient design of the rich model. Normally, data 
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embedding at such high r ates is avoided due to the high 

probability of the detection. From Table VIII it can be 

seen that the differences between the performance of 

the APPM an d the proposed method are meaningful 

for the lower embedding rates. 

TABLE VII.  SPAM ERROR RATE FOR DIFFERENT METHODS 

AND PAYLOADS 

 

TABLE VIII.  SRM ERROR RATE FOR DIFFERENT 

METHODS AND PAYLOADS 

 
 

VII. CONCLUSION 

In this paper, adaptive pixel group matching 

method was proposed for data embedding. In this 

method, a group of pixels is optimally modified such 

that its extraction function matches the embedding 

message. Therefore, the best embedding strategies are 

found for different values of embedding rates and pixel 

group sizes. Whenever there exists more than one 

optimal solution, a combination of them is applied for 

the sake of histogram preservation. The theoretical and 

experimental results confirm that extending the size of 

pixel groups helps to achieve less value for the 

imposed distortion. On the other hand, more equivalent 

optimum embedding strategies are achieved as a result 

of this extension which proper selection among them 

allows us to keep the histogram of the original image 

as intact as possible. 
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