

EDBPM: An Event-Driven Business Process
Monitoring Mechanism

Mohammad Ali Fardbastani
School of Computer Engineering

 Iran University of Science and Technology (IUST)
Tehran, Iran

fardbastani@iust.ac.ir

Farshad Allahdadi

School of Computer Engineering
 Iran University of Science and Technology (IUST)

Tehran, Iran
allahdadi@comp.iust.ac.ir

Mohsen Sharifi*
School of Computer Engineering,

Iran University of Science and Technology (IUST),
Tehran, Iran

msharifi@iust.ac.ir

Received: 2 July, 2017 - Accepted: 8 January, 2018

Abstract—Many process-aware organizations need to monitor the execution of their Business Processes (BP).
Changes in BP execution can be reported as events while real-time detection of event patterns from such events can
help the monitoring of model-execution conformance or business activities. Complex Event Processing (CEP)
techniques can detect event patterns that are specified as CEP rules. Given the high rate of events and numerous
number of complex rules, existing CEP-based solutions are not scalable. We present a novel scalable Event Driven
Process Monitoring Mechanism (EDBPM) using distributed CEP. Events are partitioned by process instance
identifier and the events of each partition is dispatched to a compute node. As such, the processing load of BP
monitoring is distributed adaptively to compute nodes in a load balanced manner. Using a prototyped
implementation of EDBPM we show that EDBPM scales well horizontally, i.e. increases in throughput are nearly
linear when the number of compute nodes increases. Compared to CPU and memory balancing in a general purpose
distributed CEP-based solution, EDBPM keeps the CPU load doubly balanced and does balance the memory too,
which is lacking in similar solutions.

Keywords-Business Process Management, Business Process Monitoring, Complex Event Processing, Scalability, Load
Balancing

I. INTRODUCTION
All deficiencies of a complex system cannot be

resolved and not all violations of its behavioral
constraints can be predicted during design and

* Corresponding Author

development of the system. On the other hand, the full
behavior of a system is observable and all of its
deficiencies and violations are detectable only at
runtime. Keeping track of a system’s behavior and
interaction of the system with its environment and also

Volume 10- Number 2 – Spring 2018 (33 -44)

interactions between its components during operation is
called runtime monitoring [1]. One of the most
important issues in most organizations is the monitoring
of their business processes. Therefore, most of the
proposed monitoring frameworks are developed for
Business Process (BP) monitoring [1]. The main types
of monitoring in a Business Process Management
System (BPMS) are Business Activity Monitoring
(BAM) [2], Service Level Agreements (SLA)
violations monitoring [3] and execution-model
conformance monitoring [4, 5].

The state changes of objects within the context of a
BPMS are represented by events [6]. In a computing
system, an event is produced, processed and stored as a
data object [7]. Events may contain some attributes
such as happening time, corresponding process
instance, activity and user identifiers [8, 9]. Therefore,
in a BPMS, an event set may be larger or equal in
cardinality to its corresponding generated log set.

Using event aggregation, correlation and pattern
detection, notable changes in Key Performance
Indicators (KPI), execution status according to SLAs
and execution deviations from models could be
investigated. To the best of our knowledge, the best
technology for such a monitoring in a real-time or
almost real-time manner is Complex Event Processing
(CEP) and the researchers of the BPM domain have not
introduced any better solution [1, 8, 10, 11]. Therefore,
CEP has been used widely in recent related works such
as the works reported in [2, 12–17]. The result of CEP
may trigger a reactor or even pro-actor system and can
be visualized as notifications or graphs to show a
detected issue, its root causes and its degree of
importance [8, 18]. Furthermore, the result of CEP
could be a feedback for the activities of running
processes [19] and even a rule tuning system that
modifies monitoring rules according to the current
status of the system [11].

In general, CEP solutions abstract the behavior of a
system by extracting high-level information from
lower-level system events in a real-time or almost real-
time manner [7]. This event abstraction is done through
event aggregation, correlation, and pattern detection.
Therefore, the best way for (almost) real-time event
pattern detection through BP execution monitoring and
extracting higher-level information (e.g. fraud detection
from financial transaction logs) is the CEP deployment.

Nowadays, organizations have complex processes
and high rates of process instance generation through
concurrent process executions. So CEP systems are
faced with high rates of input events and numerous
complex rules, and performance, scalability, and low
latency have become big challenges in BP monitoring
[20]. In other words, for sound (Definition 9, defined in
Section 5) and real-time operation of a CEP system,
efficient load distribution and sufficient resource
allocation are the biggest challenges.

The first step towards enhancement of BP
monitoring using CEP is to optimize the generation of
monitoring rules (queries on the generated events).
Most existing research works such as those reported in
[3–5, 21] have focused on optimized CEP rule
generation. However, there is no work on the scalability

of the processing of BP monitoring rules. Therefore, a
better solution for scalable BP monitoring using CEP is
needed in addition to general solutions proposed for
Distributed CEP (DCEP) such as [2, 22]. In other
words, a proper integration of a CEP system in a
specific domain such as BPM leads to better
performance.

In this paper, we present a novel Scalable Business
Process Monitoring Mechanism (EDBPM) using CEP
for isolated process instances that scales out the BP
monitoring via distribution of the processing load on a
set of compute nodes. The main attributes of EDBPM
that make it novel include:

• Balancing the load of multiple resource types
among multiple compute nodes

• Elasticity (the ability of runtime addition /
removal of compute nodes)

• Adaptability with process instance generation
rates (input event rates)

• CEP engine independence

• Heterogeneity support (compute nodes and/or
CEP engines running on nodes)

We have organized the rest of the paper as follows.
Section 2 presents related works. Section 3 highlights
our motivation by outlining an important application of
BP monitoring. Section 4 explains the performance
challenge that is addressed by EDBPM. Section 5
present a formal specification of the problem to be
resolved by EDBPM. Section 6 presents the EDBPM in
detail. Section 7 reports the results of our experiments
with a prototype implementation of EDBPM and
Section 8 concludes the paper.

II. RELATED WORK
Some previous works such as [23] had focused on

offline conformance checking or pre-mortem and non-
real-time processing of events that persist in a database
such as HBase [19]. These works are not suited to
monitoring of systems whose generated events should
be processed in real-time manner.

The first step in the enhancement of performance of
BP monitoring systems using CEP is optimization of
rule generation. For example in [3, 4] resource
utilization is improved by reduction of complexity of
rules. In such solutions, the workload of the system is
assumed constant and known while the process instance
generation and activities have dynamic nature and one
cannot predict the workload of a real organization.
Some other works, have tried to reduce monitoring
rules for monitoring of a process. For example
Backmann et al. [5] have used RPST [24] for workflow
fragmentation and generated fewer number of rules
from the workflow tree, and another work [25] has tried
to improve this rule generation for the monitoring of
choreography. Optimization of resource utilization is
not enough when a BPMS generates high rates of input
events and there are a high number of monitoring rules
for many complex business processes.

On the other hand, general-purpose DCEP
mechanisms could be used to deal with the challenges.
Some generic distributed CEP mechanisms have been

Volume 10- Number 2 – Spring 2018 34

proposed that by dispatching input events [26, 27] or
partitioning CEP rules [28, 29], distribute the
processing load among different compute nodes. These
mechanisms include many simplifying assumptions
and preprocessing to balance the load and handle
dependencies of CEP nodes, resulting in high
processing and communication overheads.

To the best of our knowledge, no approach is
proposed for integrating a CEP engine cluster and a
BPMS to monitor its processes. EDBPM provides a
scalable CEP mechanism for monitoring of business
processes. It partitions the generated events by a BMPS
and distributes processing load of the events among a
cluster of CEP nodes.

III. SAMPLE APPLICATION: CONFORMANCE
MONITORING

There are two types of BP models, normative and
descriptive. Normative models show the constraints
that a BP should comply with it at runtime. They are
used to influence reality. Descriptive models are used
to capture or predict reality by using process mining
[30]. On the other hand, all changes in a BPMS are
logged as a set of sequences of events called traces [9].
These logs could be processed in two ways. The first is
post-mortem or offline that only considers logs of
terminated process instances. The second is pre-mortem
or online processing that refers to the log processing of
running or alive process instances [30].

The online processing of logs to detect deviations of
processes from their normative models is called
compliance monitoring. Compliance monitoring is the
processing of the logs of a BPMS, in order to detect any
violations in the constraints (defined as rules) of the
processes. These constraints may correspond to various
aspects, e.g. behavior profiles [4] or even non-
functional requirements such as security [31].

Offline cross-checking between descriptive and
normative model and logs and quantification of
discrepancies between the log and the model is called
conformance checking [32]. In conformance checking,
discrepancies between the normative model and the
logs refer to the deviation in the process execution
while discrepancies between the descriptive model and
the logs refer to model insufficiency and necessity of
promotion of the model. If a model is not fit, it should
be extended and if an extra behavior (that never occurs
in reality) exists in the model, it should be pruned [9].

We call real-time crosschecking between the
descriptive model and the normal model and logs and
quantification of discrepancies as conformance
monitoring. It is more general than compliance
monitoring. In conformance monitoring, execution
control of processes and the descriptive model can be
promoted using real-time detection of deviations and
model deficiencies. In addition, real-time monitoring in
this context is more specific than online monitoring. In
real-time monitoring, generated events are processed
upon their generation and before they are stored
persistently. Thus same as CEP [33], we do not make a
query on persisted events; queries are applied to input
streams.

IV. PROBLEM STATEMENT
Increased complexity and usage of BPMSs has led

to increases in the rate of process instance generation
and the number of concurrent executing processes and
as a result the rise in the rate of input events.
Consequently, the monitoring of big and complex BPs
needs a high number and more complex CEP rules.
Thus, performance is an important challenge in the
context of BP monitoring using CEP. Most existing
related works have focused on optimizing CEP rule
generation from process models [3, 5, 21]. Furthermore,
the performance and scalability enhancements to CEP
have been studied in general quite independent of
applications (e.g. BP monitoring). In contrast, in this
paper we propose a mechanism that enhances the
performance and scalability of CEP specifically for BP
monitoring application by integrating CEP and BP
monitoring more efficiently.

There are two types of Distributed CEP (DCEP).
The first is EPN [34] that consists of several event
processing agents and each agent processes a particular
part of a rule. Therefore, in an EPN, an agent cannot
process a rule alone because CEP rules are matched
collaboratively by many agents. The second type of
DCEP include systems that are built from a cluster of
CEP engines, wherein each engine can process any rule
independent from the others. In this type of DCEP
systems, the processing load should be distributed on
compute nodes in such a way that each node is only
concerned with a portion of input events [27, 35] and/or
with matching a given subset of CEP rules [36–38].
However, since BP monitoring is stateful in the sense
that the history of previous activities of a process
instance must be available upon processing of a newly
arrived activity of the instance (event), and there are
correlations among processing of rules for a process
instance, general purpose rule partitioning mechanisms
have high communication overheads for sharing the
state of rules among compute nodes. Furthermore, rule
improvement techniques such as refined process
structure tree (RPST) [39] are not suited to these
general purpose CEP mechanisms.

Also according to the stateful nature of CEP and BP
monitoring, load distribution through event dispatching
may lead to false detection of patterns because of event
dependencies. For example, if we have “A occurs
after B” rule and the event dispatcher sends events
of type A to a node and events of type B to another node,
the pattern is never detected.

A couple of solutions can be suggested to eliminate
errors of event pattern detection when using event
dispatching in a DCEP. The first solution would be to
multicast shared events in multiple rules. For example,
in Figure 1, one can think of dispatching events of type
A to the left node, dispatching events of type C to the
right node, and dispatching events of type B to both
nodes. In this solution, event multicasting may waste
network resources. The second solution is to create a
shared memory for partial pattern matches. This can
cause lots of processing overhead while accessing the
shared memory. A better solution would be to partition
events into independent subsets and then dispatch each
part to a separate CEP node. For example, in Figure 1,
events could be partitioned into two parts: (1) events of

Volume 10- Number 2 – Spring 2018

35

type A and events of type B whose x attributes are
greater than 50, and (2) events of type C and events of
type B whose x attributes are less than 50.

Figure1. Event partitioning mechanism

Unfortunately, most existing load balancing
mechanisms do not adapt to load changes that arise due
to changes in input event rate (process instances’ rate)
[36–38]. However due to the dynamic nature of
organizations, it is often required that load balancing be
adaptable to transient changes in the rate of input
events. On the other hand, the workload of BP
monitoring may increase or decrease for a period,
requiring changes to the number of active CEP nodes.
It is thus necessary to provide support for elastic
number of compute nodes at runtime without stopping
BP monitoring.

Another challenge of distributed BP monitoring is
heterogeneity. A computer cluster may well consist of
heterogeneous compute nodes running even different
CEP engines. Therefore, if a proposed mechanism for
scalable CEP supports heterogeneity, it should not
depend on the types of computers and the types of CEP
engines.

In this paper, we propose EDBPM for horizontal
scaling of BP monitoring using CEP. It scales out the
system using adaptable load balancing via runtime
event partitioning that can work elastically on
heterogeneous environments.

V. FORMAL PROBLEM DEFINITION
Before presentation of EDBPM, we formally define

the problem that is addressed by it. Therefore, we define
the process model, the model execution, process
instance, event and related concepts of an event-driven
BPMS hereafter.

Definition 1 (Process Instance). A tuple 𝑃𝑃 =
(𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚,𝐴𝐴𝐴𝐴) is a process instance, wherein 𝑝𝑝𝑝𝑝𝑝𝑝 is a
globally unique identifier for the process instance, 𝑚𝑚
is the process model that 𝑃𝑃 is instantiated from it and
𝐴𝐴𝐴𝐴 is the set of activity instances of the process
instance.

Definition 2 (Event Type). An event type 𝜏𝜏 =
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝛢𝛢𝛢𝛢𝛢𝛢) has a unique identifier, and an
attribute type set. The attribute type set 𝛢𝛢𝛢𝛢𝛢𝛢
specifies the event type has what attributes.

Definition 3 (Event Type Set). The event type set 𝑇𝑇 of
a system is the set of all valid event types of the system.

Definition 4 (Event). Event is an object
𝜀𝜀 = (𝜏𝜏, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑝𝑝𝑝𝑝𝑝𝑝, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) . The event
is an instance of type 𝜏𝜏 ∈ 𝛵𝛵 . It has a unique event
identifier 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , a 𝑝𝑝𝑝𝑝𝑝𝑝 that identifies the event
generated during the execution of a process instance, a
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 that indicates the occurrence time of the
event, and a set of attributes 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 whose numbers and
types conform with the specification of 𝜏𝜏.

Given the stated definitions, we formally define the
problem space of EDBPM in the context of a specified
number of compute nodes for BP monitoring that uses
a specified set of resource types for running CEP
engines.

Definition 5 (System Current Utilization function). If
we have a node set 𝛭𝛭 = {𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑛𝑛} and a CEP
engine runs on each node, and there are 𝑘𝑘 resource
types on each node, the System Current Utilization
(SCU) function Γ(t) denotes the utilization of each
resource at each node at time t

Γ(t) = �
𝛾𝛾11(𝑡𝑡) ⋯ 𝛾𝛾1𝑘𝑘(𝑡𝑡)
⋮ ⋱ ⋮

𝛾𝛾𝑛𝑛1(𝑡𝑡) ⋯ 𝛾𝛾𝑛𝑛𝑛𝑛(𝑡𝑡)
�

wherein 𝛾𝛾𝑖𝑖𝑖𝑖(𝑡𝑡) shows the utilization of resource 𝑗𝑗 at
node 𝑖𝑖 and 0 ≤ 𝛾𝛾𝑖𝑖𝑖𝑖 ≤ 1.

The output of SCU function is a matrix that shows
the utilization of each resource type in each compute
node at any moment in time. The average of each
column of Γ(t) yields the average utilization of each
resource type in the system. System Utilization (SU)
function returns a vector that contains this information.

Definition 6 (System Utilization function). The SU
function Ψ(𝑡𝑡) returns a vector
[𝜓𝜓1(𝑡𝑡),𝜓𝜓2(𝑡𝑡), … ,𝜓𝜓𝑘𝑘(𝑡𝑡)] that denotes the average
resource utilization over all nodes and 𝜓𝜓𝑗𝑗 denotes the
average utilization of resource 𝑗𝑗 at time t.

𝜓𝜓𝑗𝑗(𝑡𝑡) = 1 𝑛𝑛� � 𝛾𝛾𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

We define the load imbalance of each resource type
in the system using the standard deviation.

Definition 7 (System Imbalance function). The System
Imbalance (SI) function 𝛪𝛪(𝑡𝑡) =
[𝜎𝜎1(𝑡𝑡),𝜎𝜎2(𝑡𝑡), … , 𝜎𝜎𝑘𝑘(𝑡𝑡)] denotes the imbalance factor
(IF) of each resource using standard deviation of
utilization of the resource in the system and 𝜎𝜎𝑗𝑗(𝑡𝑡)
shows the standard deviation of resource 𝑗𝑗 at time t.

Volume 10- Number 2 – Spring 2018 36

𝜎𝜎𝑖𝑖(𝑡𝑡) = �1 𝑛𝑛� � (𝛾𝛾𝑗𝑗𝑗𝑗(𝑡𝑡) −𝜓𝜓𝑖𝑖(𝑡𝑡))2
𝑛𝑛

𝑗𝑗=1

Definition 8 (Total System Imbalance). Because
for all resource types of all nodes 0 ≤ 𝛾𝛾𝑖𝑖𝑖𝑖 ≤
1 , we can define Total System Imbalance
(TSI) as the average standard deviation of all
resource types at time t.

𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) = 1
𝑘𝑘� � 𝜎𝜎𝑖𝑖

𝑘𝑘

𝑖𝑖=1
(𝑡𝑡)

Definition 9 (Soundness of CEP). A CEP mechanism
is sound if and only if all occurred complex events are
detected by the mechanism and all detected complex
events by the mechanism have actually been occurred.
In other words, there is no false negative and no false
positive detection when using the mechanism.

Definition 10 (Dynamic Event Partitioning problem).
Suppose CEP engines on all nodes can detect all event
patterns that are defined for conformance checking.
The Dynamic Event Partitioning (DEP) problem can
be resolved by a mechanism that could dynamically
partition the input events in a way that if events of each
part are dispatched to a separate node, all defined
complex events are detected soundly.

Definition 11 (Multiple Resource Load Balanced DEP
problem). If the system works as long as 𝐿𝐿, the DEP
problem should be solved in a way to minimize
1
𝐿𝐿� ∫ 𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡)𝐿𝐿

𝑡𝑡=0 . This is an optimization problem to
minimize the average of the total system imbalance
during the system lifetime.

The stated problem is a complex non-linear
programming like problem. In addition, the
optimization condition depends on dynamic and non-
deterministic conditions at execution time. Therefore,
we should propose a heuristic solution to the problem
using Definition 11.

VI. EDBPM
EDBPM distributes the processing load of BP

monitoring via event partitioning based on process
instance (as event source) and dispatching of each
partition to a CEP node. We assume that the monitoring
of each process instance is independent of others.
Because most of monitoring tasks in a BPMS are the
monitoring of workflows, service level agreements and
some other organizational constraints throughout the
execution of each process instance independent from
execution of the other process instances, similar to the
mechanism in [4], EDBPM does not consider any
relationship between process instances. Therefore, we
cover most of the requirements of BP monitoring.
According to the assumption, when all generated events

of a process instance are dispatched to a CEP node,
there is no need for event multicasting or CEP state
sharing among CEP nodes. In other words, EDBPM
assigns the monitoring of each process instance to a
specified CEP node. Also, we assume all input events
are aligned (alignment issues such as event miss and
redundancy have been discussed in previous works
such as [40]) and homogeneous (event heterogeneity
has been discussed in [15]).

In EDBPM, events are produced, processed and
consumed in 4 layers (Figure 2). Event producers are in
the first layer. BPMSs that are monitored by EDBPM
are the event producers of the system. Any changes in
their activities are reported as events and these events
are the input of the coordinators in the second layer. The
most costly task of coordinators is in the dispatching of
input events. Therefore, we can say they filter the input
events for each CEP node. However, the CEP nodes, in
addition to filtering of the input events according to the
rules, detect complex logical and temporal patterns.
Therefore, we can say, the load of coordinators is very
low in comparison with CEP nodes. Thus, we focus on
load balancing of CEP nodes; each coordinator
subscribes to a subset of event producers and the
cardinality of these subsets is almost equal.

Coordinators dispatch input events and monitor
resource utilizations of CEP nodes. Upon generation of
a new process instance, one of the coordinators that
receives the first event of the instance selects a CEP
node with the least resource utilization among all CEP
nodes to process producing events of the new process
instance and add a new entry in the Dispatching Table
(Definition 12) for this decision. In other words, each
CEP in EDBPM is responsible for monitoring of a
subset of running process instances and all produced
events of each process instance are only dispatched to a
specific CEP node. So collectively, coordinators
balance the loads on CEP nodes using resource
utilization monitoring, event partitioning, and event
dispatching, i.e. provide scalability via load balancing.
Furthermore, EDBPM updates its dispatching decisions
upon new process instance generation and balances the
system load adaptable to changes in the system
workload (i. e., the rates of process instance
generation).

After coordinators dispatch input events to the next
layer, CEP nodes in the third layer process the basic
input events to derive complex events. Each CEP node
runs an independent CEP engine. The running engines
can be homogenous or heterogeneous but they should
have equal monitoring rule sets. Upon derivation of a
complex event by CEP nodes, they send the event to the
consumers in the last layer. Consumers may show the
results in a dashboard, react upon detection of new
situation or even re-process the output of EDBPM for
deriving further information such as inter-process
correlations.

EDBPM supports elasticity, implying that the
number of coordinators and CEP nodes can be changed
at runtime. Because the state of coordinators is stored
in a shared table (Dispatching Table), addition and
removal of coordinators only requires synchronization
with the table and informing the event producers.

Volume 10- Number 2 – Spring 2018

37

When a new CEP node is added, it sends its resource
utilization status to coordinators and coordinators start
to assign a new task to the new CEP node according to
the load-balancing policy. For removing a CEP node,
coordinators stop assigning new monitoring tasks to the
node to be removed and after the termination of all
process instances previously assigned to the node, the
node is removed.

Because all CEP nodes operate independently, to
provide support for heterogeneity in EDBPM, it is
sufficient to implement equivalent rule sets for each
CEP engine.

A. EDBPM Load-Balancing Heuristic Algorithm
Coordinators of EDBPM assign the monitoring of

each process instance to a CEP node. Therefore,
relevant events of a process instance are dispatched to
that CEP node. Such assignments and dispatching
policies are registered in Dispatching Table of
coordinators (Definition 12).

Definition 12 (Dispatching Table). The Dispatching
Table has two columns. Items of the first column are
unique and refer to the identifiers of currently running
process instances. The second column refers to CEP
nodes of the system. Each row determines the
producing events of each running process instance that
should be dispatched to a CEP node.

Any receiving event in coordinators is handled and

dispatched by calling the dispatch function (Figure
3). The function lookups the Dispatching Table for the
process instance id (𝑝𝑝𝑝𝑝𝑝𝑝) of the event. If the
corresponding 𝑝𝑝𝑝𝑝𝑝𝑝 is in the table, coordinator
dispatches the event to the CEP node that is registered
in the looked up row. If not, coordinator adds a new row
to the Dispatching Table for the 𝑝𝑝𝑝𝑝𝑝𝑝 to inform other

coordinators that finding a proper CEP node for
monitoring of the process instance is in progress. To
find a proper node, a resource type with the greatest
value in the current SI vector (the most utilized resource
type among all CEP nodes) is selected. If the kth
resource type is selected, coordinator looks for the node
with the lowest value in the kth column of the current
SCU matrix (the node whose kth resource type is the
least utilized among all nodes). The added row in the
Dispatching Table is updated and the selected CEP
node identifier is added to the row.

B. EDBPM Validation
The proposed dynamic mechanism partitions events

dynamically. Therefore, according to Lemma 1, it is a
valid solution for DEP problem. Also, the mechanism,
based on Lemma 2, leads to minimum network
utilization.

Lemma 1: Our proposed mechanism is a valid
solution to the DEP problem.

Proof: We prove it in three steps. Firstly, the
mechanism is dynamic. Dispatching policy changes
according to process instance generation throughout
conformance checking which is not fixed at the system
startup. Secondly, there is no false positive detection.
This can be proved by contradiction. Suppose a CEP
node receives an event that is matched with a pattern
incorrectly. If this event relates to process instances
whose conformance checking is done by the node, the
match is correct but if the event relates to other process
instances, the dispatcher is not conformant with our
mechanism. Similarly, suppose a CEP node does not
receive an event that causes a mismatch. This means
that an event that is related to an assigned process
instance in the node, did not receive and it is
incompatible with our mechanism. Thirdly, there is no
false negative. This can be proved by contradiction too.

Figure 2. EDBPM Architecture

Volume 10- Number 2 – Spring 2018 38

If a received event does not match with a pattern, it
means that the event relates to the node and there is no
error and if the node does not receive an event and
consequently a pattern does not match, the dispatcher
works incorrectly.

Lemma 2: Our proposed mechanism minimizes
network utilization.

Proof: Because of event partitioning, events are not
duplicated. In addition, because all rules are on all
nodes and all partial matches of a process instance’s
anti-patterns are also on a single node, there is no need
for state sharing over the network.

VII. EVALUATION
To evaluate performance and scalability of

EDBPM, coordinators and the CEP module have been
implemented and tested using different scenarios. In
these scenarios, performance of EDBPM is tested using
different number of compute nodes and variable input
rates of process instances. For evaluating the scalability
of EDBPM, the maximum throughput (Definition 14)
when the number of compute nodes changes were
evaluated. The load balancing of EDBPM for a variable
rate of input process instances was evaluated and
compared with a distributed CEP that is proposed in
[36].

Our application domain was conformance
monitoring and we developed a simulator that can
randomly generate distinct process instances from some
process models. Each activity instance has a random
duration time and each activity has a maximum
duration time. Ninety percent of the generated process
instances were conformant to the process model and
others deviated from their model. Because the count
and the type of deviations were known, result of
experiments are validated to determine the error rate of
detected deviations. The error ratio evaluates the
monitoring system’s functionality that determines the
system throughput.

Experiments were performed using a set of virtual
machines. The specification of the coordinator node
was as follows:

• Operating system: Ubuntu server 14.04

• Processor: 64bit 2 cores

• Memory: 2GB

• JVM: 1.8 Oracle

As mentioned before, the load of coordinators is

very low in comparison with CEP nodes. Therefore we
did not need more than one coordinator in all of the
experiments.

The specification of all CEP nodes was as follows:

• Operating system: Ubuntu server 14.04

• Processor: 64bit single core

• Memory: 2GB

• CEP Engine: Drools Fusion 6.2

• JVM: 1.8 Oracle

A. EDBPM Maximum Throughput
In order to measure the maximum throughput of

EDBPM, different rates of process instances per
second were iteratively injected into the system with a
specified number of compute nodes and the maximum
throughput of the distributed mechanism with that
specified number of compute nodes is evaluated as
defined in Definition 14. High load of the system may
cause event loss (such as CEP engine load shedding,
buffer overflow, network loss) and therefore detection
error.

Definition 13 (Complex Event Detection Error Ratio)
CEDER is the sum of false positive detections
(wrongly detected) and false negative detections
(undetected) over the total number of actually occurred
complex events.

Figure 3. Event Dispatching by Coordinators

Volume 10- Number 2 – Spring 2018

39

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 positive 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐶𝐶𝐶𝐶𝐶𝐶

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶

Definition 14 (Maximum Throughput) Maximum
throughput of a system is considered as the maximum
process instance generation rate such that CEDER of
the system is less than an acceptable threshold.

We repeated our experiments by increasing the
number of compute nodes, starting with one compute
node up to 8 compute nodes. Figure 4 shows the results
of experiments. The results show that the EDBPM
maximum throughput for five different values of
CEDER increases in a near-linear fashion by increases
in the number of CEP compute nodes. This is because
CEP compute nodes work independently on different
sets of process instances and with increases in the
number of CEP nodes, the CEP system can process
events of more process instances concurrently.

B. Evaluating the Load Balancing
In order to evaluate the dynamic load balancing

(load balancing in varying input rates) feature of
EDBPM, we carried out experiments with varying rates
of input using 6 and 8 CEP nodes. Therefore, for each
second of the experiments, input rate were selected
from 1000 to 4000 process instances per second
randomly.

The duration of the experiment was 300 seconds
and we sampled CPU and memory utilization with a
rate of one sample per second. We calculated the
imbalance factor (IF) of CPU (Figure 5-a) and memory
(Figure 5-b) at each second of the experiment according
to Definition 7.

Because of the high rate of events and their small
size, CPU utilization was higher than memory
utilization, while jitters of CPU utilization of nodes
were higher. Therefore, CPU utilization was more
imbalanced on average. We can see in Figure 5 that at
the beginning of the experiment we had a warm-up
period. After warming up, the IF of memory oscillated
more than the IF of CPU. Since the more imbalanced
resource type has higher priority in EDBPM load
balancing, the mechanism tried to balance the load of
CPU and the observed oscillation of CPU utilization
was less than that for memory.

We averaged the sample IFs of CPU and memory
and recorded the average values in Table I. The
imbalance factor shows the distribution of utilization

values of all nodes around the average value and
therefore the balance of the loads. For example, when
evaluated EDBPM with 6 nodes, load of CPUs was
distributed from average load minus 0.073244 till
average load plus 0.073244.

Table I shows the load imbalance of CPU has a little
reduction when the number of nodes is increased. Since
the load balancing of CPU has more priority, the change
in the memory imbalance is near zero.

TABLE I. AVERAGE IF OF CPU AND MEMORY

C. Comparing Load Balance
In our second set of experiments, we compared our

load balancing mechanism with the one proposed by
Isoyama et al. [1]. In these set of experiments, we used
8 compute nodes and a coordinator with the same
specification as in the first set of experiments. We used
8 processes with different instance generation rates and
the same number of conformance monitoring rules. The
total process instance rate was 40000 per second. Load
balancing mechanism that is proposed by Isoyama et al.
is based on the number and similarity of the rules. In
other words, the mechanism tries to balance the number
of rules on each CEP node while the rules with similar
event types are processed in the same CEP node.
However, the required resources for the processing of
each rule may differ from the others because of
differences in the complexity of rules and the rates of
events. Figure 6-a shows that the CPU load of Isoyama
et al. mechanism is more imbalanced than EDBPM.
Thus, some nodes are overrun and have higher CEDER
(Table II). The high CPU utilization of these nodes
increased the processing latency resulting in the
accumulation of events in memory and a growing
memory IF (Figure 6-b).

TABLE II. COMPARATIVE CEDER OF EDBPM AND ISOYAMA
ET AL. MECHANISM

Number of Nodes CPU IF Memory IF

6 0.073244 0.003213

8 0.070753 0.003228

0
2
4
6
8

CE
DE

R
(%

)

Instance Rate (per second)

1 node 2 nodes 4 nodes 6 nodes 8 nodes

Figure 4. EDBPM Throughput

Volume 10- Number 2 – Spring 2018 40

Load Balancing Mechanism CEDER

EDBPM 0.0121859

Isoyama et al. mechanism 0.0275938

VIII. CONCLUSION
In this paper, we proposed a Scalable Business

Process Monitoring Mechanism (EDBPM) for scalable
and distributed monitoring of Business Processes (BPs)
using Complex Event Processing (CEP). In previous
related works, performance of BP monitoring using
CEP was enhanced in two ways. On the one hand, some
researchers have focused on optimizing the CEP rule

generation for BP monitoring but ignored the
processing of these rules. On the other hand, some
others have tried to enhance performance and
scalability of CEP without considering its applications.
In contrast, we have considered an integration of CEP
and BP monitoring by proposing a scalable mechanism

called EDBPM that uses partitioning of input events
based on executing process instances on heterogeneous
platforms to provide adaptable load balancing. We
implemented EDBPM and our experiments showed that
with increasing number of CEP nodes, the throughput
of BP monitoring increased almost linearly. Also, our
experiments showed adaptability and effectiveness of
EDBPM load balancing in variable process instance

Figure 6. Load Balancing of EDBPM. (a) CPU IF (b) Memory IF

Figure 5. Comparative Load Balancing of EDBPM and Isoyama et al. Mechanism. (a) CPU IF (b) Memory IF

Volume 10- Number 2 – Spring 2018

41

generation rates. Finally, we implemented a general
purpose distributed CEP and our experiments showed
better performance of EDBPM in comparison to a
general purposed mechanism proposed by Isoyama et
al [36].

EDBPM can be improved if it includes monitoring
requirements for the correlation of process instances
and inter-organizational relations. For this mean, the
system can get feedback of monitoring of each process
instance to itself to processing correlation of them or the
system uses a multi-level CEP that each process
instance is monitored in the first layer and monitoring
of the correlations is assigned to the next level.

REFERENCES
[1] R. Rabiser, S. Guinea, M. Vierhauser, L. Baresi, and P.

Grünbacher, “A Comparison Framework for Runtime
Monitoring Approaches,” Journal of Systems and Software,
vol. 125, pp. 309–321, 2017.

[2] C. Janiesch, M. Matzner, and O. Müller, “Beyond Process
Monitoring: A Proof-of-Concept of Event ‐driven

Business Activity Management,” Business Process
Management Journal, vol. 18, no. 4, pp. 625–643, 2012.

[3] M. Weidlich, H. Ziekow, A. Gal, J. Mendling, and M.
Weske, “Optimizing Event Pattern Matching Using
Business Process Models,” IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 11, pp.
2759–2773, 2014.

[4] M. Weidlich, H. Ziekow, and J. Mendling, “Optimising
Complex Event Queries over Business Processes Using
Behavioural Profiles,” in Business Process Management
Workshops. BPM 2010. Lecture Notes in Business
Information Processing, Berlin, Heidelberg: Springer,
2011, pp. 743–754.

[5] M. Backmann, A. Baumgrass, N. Herzberg, A. Meyer, and
M. Weske, “Model-Driven Event Query Generation for
Business Process Monitoring,” in Service-Oriented
Computing – ICSOC 2013 Workshops. ICSOC 2013.
Lecture Notes in Computer Science, vol. 8377, Cham:
Springer, 2014, pp. 406–418.

[6] M. zur Mühlen and R. Shapiro, “Business Process
Analytics,” in Handbook on Business Process Management
2, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 137–157.

[7] D. Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise
Systems. Boston: Addison-Wesley, 2002.

[8] L. T. Ly, F. M. Maggi, M. Montali, S. Rinderle-Ma, and W.
M. P. van der Aalst, “Compliance Monitoring in Business
Processes: Functionalities, Application, and Tool-
Support,” Information Systems, vol. 54, pp. 209–234, 2015.

[9] L. Garcia-Banuelos, N. van Beest, M. Dumas, M. La Rosa,
and W. Mertens, “Complete and Interpretable
Conformance Checking of Business Processes,” IEEE
Transactions on Software Engineering, vol. PP, no. 99, pp.
1–1, 2017.

[10] M. Daum, M. Götz, and J. Domaschka, “Integrating CEP
and BPM,” in Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems - DEBS

’12, New York, 2012, pp. 157–166.

[11] R. Mousheimish, Y. Taher, and K. Zeitouni, “The
Butterfly: An Intelligent Framework for Violation
Prediction within Business Processes,” in Proceedings of
the 20th International Database Engineering &
Applications Symposium on - IDEAS ’16, New York, 2016,
pp. 302–307.

[12] J. M. Garro, P. Bazán, and J. Díaz, “Using BAM and CEP
for Process Monitoring in Cloud BPM,” Journal of
Computer Science & Technology, vol. 16, no. 1, pp. 38–46,
2016.

[13] A. Baumgrass, C. Di Ciccio, R. M. Dijkman, M. Hewelt, J.
Mendling, A. Meyer, S. Pourmirza, M. H. Weske, and T.
Y. Wong, “GET Controller and UNICORN: Event-Driven
Process Execution and Monitoring in Logistics,” in
Proceedings of the Demo Session of the 13th International
Conference on Business Process Management (BPM
2015), Innsbruck, 2015.

[14] F. M. Maggi, C. Di Francescomarino, M. Dumas, and C.
Ghidini, “Predictive Monitoring of Business Processes,” in
Advanced Information Systems Engineering. CAiSE 2014.
Lecture Notes in Computer Science, vol. 8484, Cham:
Springer, 2014, pp. 457–472.

[15] S. Bülow, M. Backmann, N. Herzberg, T. Hille, A. Meyer,
B. Ulm, T. Y. Wong, and M. Weske, “Monitoring of
Business Processes with Complex Event Processing,” in
Business Process Management Workshops. BPM 2013.
Lecture Notes in Business Information Processing, vol.
171, Beijing: Springer International Publishing, 2014, pp.
277–290.

[16] C. Cabanillas, C. Di Ciccio, J. Mendling, and A.
Baumgrass, “Predictive Task Monitoring for Business
Processes,” in Lecture Notes in Computer Science, vol.
8659, Cham: Springer, 2014, pp. 424–432.

[17] E. Mulo, U. Zdun, and S. Dustdar, “Domain-Specific
Language for Event-Based Compliance Monitoring in
Process-Driven SOAs,” Service Oriented Computing and
Applications, vol. 7, no. 1, pp. 59–73, 2013.

[18] D. Knuplesch, M. Reichert, and A. Kumar, “A Framework
for Visually Monitoring Business Process Compliance,”
Information Systems, vol. 64, pp. 381–409, 2017.

[19] J. M. Perez-Alvarez, M. T. Gomez-Lopez, L. Parody, and
R. M. Gasca, “Process Instance Query Language to Include
Process Performance Indicators in DMN,” in IEEE 20th
International Enterprise Distributed Object Computing
Workshop (EDOCW), Vienna, 2016, pp. 1–8.

[20] M. R. N. Mendes, P. Bizarro, and P. Marques,
“Benchmarking Event Processing Systems,” in
Proceedings of the first joint WOSP/SIPEW international
conference on Performance engineering - WOSP/SIPEW
’10, New York, 2010, p. 259.

[21] A. Baouab, O. Perrin, and C. Godart, “An Optimized
Derivation of Event Queries to Monitor Choreography
Violations,” in Service-Oriented Computing. ICSOC 2012.
Lecture Notes in Computer Science, vol. 7636, Berlin,
Heidelberg: Springer, 2012, pp. 222–236.

[22] C. Janiesch, M. Matzner, and O. Müller, “A Blueprint for
Event-Driven Business Activity Management,” in Lecture

Volume 10- Number 2 – Spring 2018 42

Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6896 LNCS, Berlin, Heidelberg:
Springer, 2011, pp. 17–28.

[23] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst,
“Scalable Process Discovery and Conformance Checking,”
Software & Systems Modeling, pp. 1–33, 2016.

[24] A. Polyvyanyy, J. Vanhatalo, and H. Völzer, “Simplified
Computation and Generalization of the Refined Process
Structure Tree,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 6551 LNCS,
Berlin, Heidelberg: Springer, 2011, pp. 25–41.

[25] A. Baumgrass, N. Herzberg, A. Meyer, and M. Weske,
“BPMN Extension for Business Process Monitoring,” in
Enterprise Modelling and Information Systems
Architectures (EMISA 2014), Luxembourg, 2014, pp. 85–
98.

[26] M. Hirzel, “Partition and Compose: Parallel Complex
Event Processing,” in Proceedings of the 6th ACM
International Conference on Distributed Event-Based
Systems - DEBS ’12, New York, 2012, pp. 191–200.

[27] F. Nguyen, D. Tovarňák, and T. Pitner, “Semantically
Partitioned Peer to Peer Complex Event Processing,” in
International Symposium on Intelligent Distributed
Computing, vol. 511, F. Zavoral, J. J. Jung, and C. Badica,
Eds. Cham: Springer International Publishing, 2014, pp.
55–65.

[28] O. Saleh, H. Betz, and K.-U. Sattler, “Partitioning for
Scalable Complex Event Processing on Data Streams,” in
East European Conference on Advances in Databases and
Information Systems and Associated Satellite Events,
Ohrid, 2015, pp. 185–197.

[29] C. Inzinger, W. Hummer, B. Satzger, P. Leitner, and S.
Dustdar, “Generic Event-Based Monitoring and Adaptation
Methodology for Heterogeneous Distributed Systems,”
Software: Practice and Experience, vol. 44, no. 7, pp. 805–
822, 2014.

[30] W. M. P. van der Aalst, Process Mining: Discovery,
Conformance and Enhancement of Business Brocesses.
Berlin, Heidelberg: Springer, 2011.

[31] B. Fazzinga, S. Flesca, F. Furfaro, and L. Pontieri, “Online
and Offline Classification of Traces of Event Logs on the
Basis of Security Risks,” Journal of Intelligent Information
Systems, pp. 108–124, 2017.

[32] A. Rozinat and W. M. P. van der Aalst, “Conformance
Checking of Processes Based on Monitoring Real
Behavior,” Information Systems, vol. 33, no. 1, pp. 64–95,
2008.

[33] O. Etzion and P. Niblett, Event Processing in Action.
Greenwich: Manning Publications Co., 2010.

[34] D. Luckham, Event Processing for Business: Organizing
the Real-Time Enterprise. Hoboken: John Wiley & Sons,
2011.

[35] E. Viel and H. Ueda, “Data Stream Partitioning Re-
Optimization Based on Runtime Dependency Mining,” in
IEEE 30th International Conference on Data Engineering
Workshops, Chicago, 2014, pp. 199–206.

[36] K. Isoyama, Y. Kobayashi, T. Sato, K. Kida, M. Yoshida,
and H. Tagato, “A Scalable Complex Event Processing
System and Evaluations of Its Performance,” in
Proceedings of the 6th ACM International Conference on
Distributed Event-Based Systems - DEBS ’12, New York,
2012, pp. 123–126.

[37] Y. Kobayashi, K. Isoyama, K. Kida, and H. Tagato, “A
Complex Event Processing for Large-Scale M2M Services
and Its Performance Evaluations,” in Proceedings of the 9th
ACM International Conference on Distributed Event-Based
Systems - DEBS ’15, New York, 2015, pp. 336–339.

[38] R. Pathak and V. Vaidehi, “An Efficient Rule Balancing for
Scalable Complex Event Processing,” in IEEE 28th
Canadian Conference on Electrical and Computer
Engineering (CCECE), Halifax, 2015, pp. 190–195.

[39] M. Weidlich, H. Ziekow, J. Mendling, O. Günther, M.
Weske, and N. Desai, “Event-Based Monitoring of Process
Execution Violations,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol.
6896 LNCS, Berlin, Heidelberg: Springer, 2011, pp. 182–
198.

[40] W. Song, X. Xia, H.-A. Jacobsen, P. Zhang, and H. Hu,
“Efficient Alignment between Event Logs and Process
Models,” IEEE Transactions on Services Computing, vol.
10, no. 1, pp. 136–149, 2017.

Mohammad Ali Fardbastani
received his B.Sc. and M.Sc.
from University of Tehran in
2010 and 2012 respectively, and
now is a Ph.D. candidate in the
School of Computer Engineering
of Iran University of Science and
Technology (IUST). His
research interests include
Distributed Complex Event

Processing (DCEP) systems, scalable distributed and
parallel High Performance Computing (HPC), and real-
time systems. He is experienced in system-level
development of operating systems, virtualization,
runtime systems, distributed adaptive resource sharing,
and communication middleware for HPCs and DCEPs.

Farshad Allahdadi received
his B.Sc. from University of
Yazd in 2013 and his M.Sc.
from IUST in 2015, and now is
a researcher at Distributed
Systems Lab in the School of
Computer Engineering of Iran
University of Science and
Technology (IUST). His
research interests include

Distributed Complex Event Processing (DCEP)
systems, scalable distributed and parallel High
Performance Computing (HPC), and NoSql Databases.

Volume 10- Number 2 – Spring 2018

43

Mohsen Sharifi received his
B.Sc., M.Sc. and Ph.D. in
Computer Science from the
Victoria University of
Manchester in the United
Kingdom in 1982, 1986, and
1990, respectively. At present he
is a Professor of System Software
Engineering at the School of
Computer Engineering of Iran

University of Science and Technology. He directs a
Distributed Systems research group and laboratory. His
main interest is the development of distributed systems,
solutions, and applications, particularly for use in
various fields of science. He has developed a high
performance scalable cluster solution comprising any
number of homogeneous or heterogeneous COTS
computers for use in scientific applications requiring
high performance, availability and scalability. The
development of a true distributed operating system is on
top of his wish list.

Volume 10- Number 2 – Spring 2018 44

	I. Introduction
	II. Related Work
	III. Sample Application: Conformance Monitoring
	IV. Problem Statement
	V. Formal Problem Definition
	VI. EDBPM
	A. EDBPM Load-Balancing Heuristic Algorithm
	B. EDBPM Validation

	VII. Evaluation
	A. EDBPM Maximum Throughput
	B. Evaluating the Load Balancing
	C. Comparing Load Balance

	VIII. Conclusion
	References

