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Abstract—We proposed a model of learning and belief formation in which a group of agents tries to learn the true 

underlying state of the world and make the best possible decisions. Agents with limited computational ability, in addition 

to receiving noisy private signals, observe the decisions of their neighbors. It is well known that Bayesian inference is 

very complex in social observations, especially when agents are unaware of the structure of the social network. In our 

model, the role of knowledge derived from the social observations of each agent is separated from that’s of her private 

observations in the formation of her belief. Thus, to reduce the complexity of Bayesian inference, the processing of social 

observations is approximated using the inferential naivety assumption. With this assumption, agents naively believe 

that each neighbor's decisions are based solely on his or her private observations and that their social interactions are 

ignored. Another important initiative in the proposed model is to eliminate herd behavior by introducing an exponential 

bias and reducing the weight of early social observations compared to recent observations. A number of Monte Carlo 

simulation experiments confirm the features of the proposed model. This includes asymptotic learning of all agents and 

increased learning efficiency in social networks. 
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I. INTRODUCTION  

It is clear that humans are naturally social and 

influence each other's beliefs, choices and behaviors. 

The process of obtaining information and updating 

beliefs in the context of social networks is called social 

learning. Nowadays, with the expansion of online social 

media, people can quickly and easily exchange large 
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amounts of different types of content such as opinions, 

choices and behavior of others anywhere in the world. 

Therefore, engineers, economists, and social scientists 

are interested in studying learning on social media and 

determining how beliefs and behaviors evolve over 

time. Engineers study the social learning in the context 

of distributed signal processing in the wireless sensor 

network for distributed detection or to solve 

mailto:rezaii57@yahoo.com
mailto:setayesh@aut.ac.ir
mailto:mahdipour@srbiau.ac.ir


coordination and consensus problem in control theory 

[1]-[5]. Economists, politicians, and sociologists 

classically try to identify the factors that influence 

people's beliefs to predict and control individual and 

public behavior [6]-[11]. Issues related to the spread of 

misinformation are also another field of study. In 

society, there may be some sources of misinformation 

either by parties that deliberately try to manipulate 

beliefs or because some agents and leaders of society 

are stubborn and they will not change their minds. So, 

it becomes important to understand what kind of 

societies and social structures are "strong" against the 

spreading misinformation, and what can be done to 

strengthen society and make ideas more stable so that 

they are less exposed to manipulation [12]-[15]. 

In this paper, we present a biased inferential 

naivety social learning model (BIN). This paper 

addresses the question of how to reduce the complexity 

of a Bayesian inference on networks and still ensure 

learning for all the agents. It is assumed that a set of 𝑛 

agents interact in the context of a strongly connected 

graph. At each time step 𝑡 , each agent receives a 

private signal from the environment and observes the 

neighbors' decisions at time 𝑡 − 1. The set of private 

signals received from each agent is called private 

information and the set of information received from 

neighbors is called agent social information. Each 

agent has a belief about the true state of the world that 

evolves during the time with receiving new 

information. The decision of each agents is made 

according to her belief in order to maximize the utility 

function. Beliefs are represented by a probability 

distribution on the set of possible states.   

Our first innovation is to reduce the computational 
complexity of Bayesian inference in social 
observations. In the proposed model, the role of 
knowledge obtained from each agent's social 
observations is separated from her private observations. 
In this way, whereas the fully Bayesian inference is 
used for private observations, the social observations 
are approximately inferred using the inferential naivety 
assumption [16]-[17]. According to this assumption, 
agents do not reason about other agents' social 
observations, and neighbors' decisions are considered 
just as a result of observing private signals.  The 
information obtained from the processing of social 
observations combines with private signals to form the 
agent's belief. Our second innovation is to reduce herd 
behavior by underweighting initial social observations 
using exponential bias. Herd behavior occurs when an 
agent does not consider its private observations in 
making decisions. When all agents do the herd behavior 
the information cascade occurs and learning stops [3]. 
Our experiments show that using the BIN model, herd 
behavior reduces, learning continues until all agents 
(even the uninformed ones) learn the truth and the 
learning performance improves. 

The paper is organized as follows. In section 2, the 
social learning models and their characteristics are 
described. In section 3, the main categories of social 

 
1 The expected informativeness of the agent′s private signals is shown by the 

relative entropy of the true state relative to the false state according to the 

learning models are given. In section 4, the notation 
using in our model is introduced. In section 5, the 
Biased Inferential Naivety model is explained. Finally, 
in section 6, a number of Monte Carlo simulation 
experiments confirm the features of the proposed 
model. Experiments show that our model outperforms 
the proposed model without bias, the BWR model, and 
the learning model based only on private observations. 

II. SOCIAL LEARNING MODELS  

In this section, we briefly express the characteristics 

of the social learning models [11]. In social learning 

models, each agent has an Initial view or prior beliefs 

that are the likelihood of each possible state of the 

world. In many studies, it is assumed that all agents 

have the same and non-informative priors, and in some 

papers, the use of empirical probabilities is suggested . 

The next characteristic of social learning model is the 

signal structure. The signal structure determines the 

amount of information the signals generate to identify 

the underlying state for each agent. Usually in social 

networks, agents have different observational abilities 

and some of them get more informative signals1 and are 

called strong agents. These agents can help other agents 

learn faster. On the other hand, for some agents, some 

states may be observationally equivalent to the true 

state. These agents are not able to distinguish the correct 

state in isolation and need gain information from 

society. The information can be obtained from 

observing the other decisions or through 

communicating with others about their beliefs. The 

structure of the social network affects the amount of 

information received by agents through the community 

and is specified in each model of social learning. This 

can be definite or accidental. The method of 

information processing is the most important 

characteristic of a social learning models. It determines 

how each agent incorporates current information with 

the newly received information. In the following 

section, some of the information processing methods 

are briefly introduced.  

III. BAYESIAN AND HEURISTIC MODELS  

Accordingly, social learning models can be divided 
into Bayesian [3], [7], [10], [18], [19] and heuristic 
[20]-[28] categories. In Bayesian models, agents must 
repeatedly apply the Bayesian rule on their private and 
social observations over time. They must infer about the 
global signal structure. This inference will be 
complicated and hard to analysis in complex 
environments with a large number of agents. In the case 
that agents are unaware of the structure of the global 
network, this method will be unusable due to its 
complexity. To avoid the complexity of the Bayesian 
models several heuristic models are proposed in the 
literature.  Decision rules of heuristics are usually 
simple functions. Many of them are imitation based in 
which agents randomly follow the behavior of an 
observed agents or accept a combination of their 
observations. For example, in the famous Degroot's 
model [29], each agent's belief is updated as a convex 

signal structure of that agent. The more informative is the agent's signals, the 

higher is his ability to observe. 
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combination of her neighbors' beliefs. These heuristic 
models have weak theoretical foundations and their 
predictions mostly depend on their specific learning 
rules rather than behavioral assumptions. Another 
group of heuristic models, is called as Bayesian 
heuristic [30]-[32] which is between the Bayesian 
models and the imitation based models. In these 
models, the fully Bayesian inference is simplified by 
using some heuristic assumptions. Therefore, the 
complexity of the fully Bayesian inference is reduced, 
but some features of Bayesian learning are still 
preserved. It seems that people's decision-making is a 
kind of Bayesian heuristic. People tend to behave 
optimally, but because of cognitive characteristics, they 
are satisfied with choices that are good enough instead 
of optimal.  

The Bayesian without recall model (BWR) [25], 
[30]-[32] is a heuristic Bayesian model in which it is 
assumed that for all future time-steps, agents replicate 
the first step of the full Bayesian inference to their 
recent observations from a common prior. We compare 
the BWR model with the BIN model in the simulation 
section. 

The locally Bayesian learning model is another 
heuristic Bayesian model in which each agent extracts 
new information using the full history of observed 
reports in her local network [33]. In this model, it is 
assumed that from the point of view of each agent, her 
local network is the whole network. This model learns 
the truth just in the network that is a social quilt. Also, 
the agents need extra memory to preserve all actions of 
neighbors from the first time. Whereas in our model 
agents learn the truth in all connected networks and no 
need for extra memory. 

IV. THE NOTATION 

In our model, there are 𝑛 agents 𝐴𝑖 , interacting in 

the context of directed graph 𝐺 = (𝑁, 𝐸), refered as 

social network, where 𝑁  corresponds to the agents 

indexed in [𝑛] = {1, 2,⋯ , 𝑛} and 𝐸 ⊆ [𝑛] × [𝑛]  is the 

set of all directed edges. Each edge shows a directed 

interaction between two corresponding agents. The 

neighbors of 𝐴𝑖 , denoted by  𝒩(𝑖) , is the set of all 

agents 𝐴𝑗 such that there exists an edge from 𝐴𝑗 to 𝐴𝑖. It 

is assumed that the agents do not know the global 

structure of the graph 𝐺, but each agent 𝐴𝑖 knows her 

own neighbors. Let the binary space 𝛩 = {0,1} be the 

set of possible states of the world and the unknown true 

state 𝜃𝜖𝛩 chosen by the nature and assume that both 

values of 𝜃  are equaly likely. Suppose that the time 

proceeds in discrete steps and is indexed by 𝑡 ∈
{0,1, … } = ℕ0. For each agent 𝐴𝑖, the set 𝑆𝑖 denotes her 

finite signal space, and conditional on the state of the 

world  𝜃 , the private signal sequence  (𝑠𝑖
𝑡)𝑡∈ℕ0  of the 

agent 𝐴𝑖  is generated identically and independently 

according to a probability mass function  ℓ𝑖(. |𝜃) on 

𝑆𝑖 during the time. The probability mass function 

ℓ𝑖(. |𝜃) depends on the parameter 𝜃 and is refered as 

the signal structure or likelihood function of 𝐴𝑖 . We 

assume that the private signals 𝑠𝑖
𝑡 are also independent 

across the agents and no single signal indicates the 

underlying state. In each time period 𝑡 ∈ ℕ0 , each 

agent 𝐴𝑖, in addition to private observation 𝑠𝑖
𝑡, receives 

the choices of her naighbors at the previouse time 𝑡 −
1. Let 𝛼𝑖

𝑡 ∈ 𝑋, 𝑡 ∈ ℕ denote the action choosen by 𝐴𝑖 in 

time 𝑡, where 𝑋 = {0,1} is the same action space of all 

agents 𝐴𝑖 , 𝑖 ∈ [𝑛].  

V. A BIASED INFERENTIAL NAIVETY MODEL 

As mentioned before, an agent's belief about the true 

state of the world is represented by a probability 

distribution on 𝛩. Let 𝛽𝑖
𝑡 be the 𝐴𝑖 's belief in true state 

𝜃 = 1  at time 𝑡  that is refined based on all the 

information that has been available to her by the time 𝑡. 
After forming a belief, 𝐴𝑖 chooses her action according 

to a decision rule maximizing her expected payoff. The 

decision rule deterministically or randomly maps the 

agent's belief to the action space. According to our 

deterministic decision rule, at the time 𝑡, if  𝛽𝑖
𝑡 ≥ 1 2⁄  

then 𝐴𝑖  choose the decision 𝛼𝑖
𝑡 = 1, and otherwise 

choose 𝛼𝑖
𝑡 = 0. Now assume that 𝐼𝑖

𝑡: = {𝑠𝑖
0:𝑡 , 𝛼𝒩(𝑖)

0:𝑡−1} is 

the set of all information available to 𝐴𝑖 up to time step 

t, where 𝑠𝑖
0:𝑡 is the history of private signals observed 

by 𝐴𝑖 in the time steps 𝑜, 1, … , 𝑡 and 𝛼𝒩(𝑖)
0:𝑡−1 denotes the 

decisions made by 𝐴𝑖 's neighbors in the time 

steps 0, 1, … , 𝑡 − 1. We respectively call them as the 

private and social observations of 𝐴𝑖  up to time 𝑡 . 

Using the Bayesian rule and the fact that (𝑠𝑖
𝑡)𝑡∈ℕ0 are 

generated independently and are also independent 

of 𝛼𝒩(𝑖)
0:𝑡−1 , 𝛽𝑖

𝑡 is formulated as  

𝛽𝑖
𝑡 = 𝑝(𝜃 = 1|𝐼𝑖

𝑡) = 𝑝(𝜃 = 1|𝛼𝜘(𝑖)
0:𝑡−1, 𝑠𝑖

0:𝑡)

=
𝑝(𝜃 = 1, 𝑠𝑖

0:𝑡|𝛼𝜘(𝑖)
0:𝑡−1)

𝑝(𝑠𝑖
0:𝑡|𝛼𝜘(𝑖)

0:𝑡−1)

=
𝑝(𝑠𝑖

0:𝑡|𝛼𝜘(𝑖)
0:𝑡−1, 𝜃 = 1)𝑝(𝜃 = 1|𝛼𝜘(𝑖)

0:𝑡−1)

∑ 𝑝(𝑠𝑖
0:𝑡|𝛼𝜘(𝑖)

0:𝑡−1, 𝜃 = 𝑘)𝑝(𝜃 = 𝑘|𝛼𝜘(𝑖)
0:𝑡−1)𝑘∈{0,1}

=
𝑝(𝑠𝑖

0:𝑡|𝜃 = 1)𝜋𝑖
𝑡

𝑝(𝑠𝑖
0:𝑡|𝜃 = 1)𝜋𝑖

𝑡 + 𝑝(𝑠𝑖
0:𝑡|𝜃 = 0)(1 − 𝜋𝑖

𝑡)

=
1

1 + ℛ𝑖
𝑡 1 − 𝜋𝑖

𝑡

𝜋𝑖
𝑡

 
 

(1) 

 where  

ℛ𝑖
𝑡 =

ℓ𝑖(𝑠𝑖
0:𝑡|𝜃 = 0)

ℓ𝑖(𝑠𝑖
0:𝑡|𝜃 = 1)

=

{
 
 

 
 ℛ𝑖

𝑡−1 ×
ℓ𝑖(𝑠𝑖

𝑡|𝜃 = 0)

ℓ𝑖(𝑠𝑖
𝑡|𝜃 = 1)

,        𝑡 ≥ 1

ℓ𝑖(𝑠𝑖
0|𝜃 = 0)

ℓ𝑖(𝑠𝑖
0|𝜃 = 1)

,                     𝑡 = 0

 

(2) 

is the product of likelihood ratio of the private 

signals 𝑠𝑖
0:𝑡 , and  𝜋𝑖

𝑡 = 𝑝(𝜃 = 1|𝛼𝒩(𝑖)
0:𝑡−1),  refered as 

𝐴𝑖 's social belief, represents the Bayesian belief on 𝜃 =
1 based on all of her social observations up to time 𝑡. In 

other words, the result of all social interactions has been 

summarized in the content of social belief  𝜋𝑖
𝑡 , and 

according to (1), it is considered as a prior distribution 

to determine the posterior belief  𝛽𝑖
𝑡 . In the proposed 

model, as the role of social and private observations in 
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the belief formation are separated, it would be possible 

to tune their impact independently. Thus, unlike the 

Bayesian method, agents can behave differently under 

the same conditions. In the real world, individuals are 

also different in decision making. For example, an 

individual can be a leader and have more trust in her 

own observations or, can be a follower and give more 

credit to others. Now using Bayesian rule the social 

belief of 𝐴𝑖 at time 𝑡 is updated as  

𝜋𝑖
𝑡 =

𝜎𝑖,1
𝑡−1𝜋𝑖

𝑡−1

𝜎𝑖,1
𝑡−1𝜋𝑖

𝑡−1 + 𝜎𝑖,0
𝑡−1(1 − 𝜋𝑖

𝑡−1)
, 

 

(3) 

where  𝜎𝑖,𝑘
𝑡 = 𝑝(𝛼𝒩(𝑖)

𝑡 |𝜃 = 𝑘, 𝛼𝒩(𝑖)
0:𝑡−1), 𝑘 ∈ {0,1} 

denotes the probability that  𝐴𝑖 's neighbors make 

decisions 𝛼𝒩(𝑖)
𝑡   conditional on 𝛼𝒩(𝑖)

0:𝑡−1 and on the true 

state 𝜃 = 𝑘 ∈ {0,1}. To compute 𝜎𝑖,𝑘
𝑡 , 𝐴𝑖  should 

estimate the possible information set ℐ𝑖,𝑗
𝑡  which is the 

set of all signals contained in 𝑆𝑗 that could lead to the 

decision 𝛼𝑗
𝑡  from 𝐴𝑖 's point of view, for all 𝐴𝑗  , 𝑗 ∈

𝒩(𝑖). The initial social belief 𝜋𝑖
0 represents 𝐴𝑖 's bias 

on 𝜃 = 1, but we assume that 𝜋𝑖
0 = 1 2⁄   for all 𝑖𝜖[𝑛], 

which means that all prior beliefs are interior [34]. Each 

agent has to extract possible information sets that lead 

to the decisions 𝛼𝒩(𝑖)
𝑡 .  At the first step, each agent 𝐴𝑖 

observes her signal  𝑠𝑖
0  that is generated with her 

likelihood function ℓ𝑖(. |𝜃) and forms her initial belief 

𝛽𝑖
0 according to the Bayesian formula  

𝛽𝑖
0 =

𝜋𝑖
0ℓ𝑖(𝑠𝑖

0|𝜃 = 1)

𝜋𝑖
0ℓ𝑖(𝑠𝑖

0|𝜃 = 1) + (1 − 𝜋𝑖
0)ℓ𝑖(𝑠𝑖

0|𝜃 = 0)
. 

 

(4) 

Then, each 𝐴𝑖 makes her first decision 𝑥𝑖
0. At any 

time step 𝑡 ≥ 1 each agent receives decisions made by 

her neighbors at the previous time and observes her 

private signal. Subsequently, at each time step 𝑡, each 

agent 𝐴𝑖 's information set is extended with realized 

signal 𝑠𝑖
𝑡 and also with (𝛼𝑗

𝑡−1)
𝑗∈𝒩(𝑖)

.  

At the second step,  the information set of   𝐴𝑖  is 

𝐼𝑖
1 = {𝑠𝑖

0, 𝑠𝑖
1, 𝛼𝒩(𝑖)

0 } . Each  𝐴𝑖  calculates her social 

belief 𝜋𝑖
1 based on her first social observations 𝛼𝒩(𝑖)

0  

using (3). As the first decisions of agents are taken only 

on the basis of their own private signals, the probability 

of each neighbor's decision is independent on others 

decisions and we have 

𝜎𝑖,𝑘
0 = ∏ 𝑝(𝛼𝑗

0|𝜃 = 𝑘), 𝑘 ∈ {0,1}.

𝑗∈𝒩(𝑖)

 
(5) 

 Then, in order to estimate the possible information 

set ℐ𝑖,𝑗
0 , it is enough to divide each neighbor's signal 

space into two parts  𝑆𝑗
1 and  𝑆𝑗

0 , where  𝑆𝑗
1  (resp.  𝑆𝑗

0 ) 

contains the signals observed by 𝐴𝑗 which led to making 

the decision 𝑥𝑗
0 = 1 (resp. 𝑥𝑗

0 = 0). Hence, we have  

ℐ𝑖,𝑗
0 = {

𝑆𝑗
1      𝛼𝑗

0 = 1,

𝑆𝑗
0      𝛼𝑗

0 = 0.
 

(6) 

Considering (4) and our decision rule, the sets 𝑆𝑗
1 and 

𝑆𝑗
0 [30] will be as 

 
2 An agent  𝐴𝑖  makes herd behavior at time 𝑡 if she makes 

decision without considering her private signal, i.e., 

𝑆𝑖
1 = {𝑠 ∈ 𝑆𝑖: ℓ𝑖(𝑠|𝜃 = 1)𝜋𝑖

0

≥ ℓ𝑖(𝑠|𝜃 = 0)(1 − 𝜋𝑖
0)}  

And  𝑆𝑖
0 = 𝑆𝑖\𝑆𝑖

1. (7) 

Hence for each 𝑗 ∈ 𝒩(𝑖) we have 

𝜎𝑖,𝑘
1 = ∏ (∑ ℓ(𝑠𝑗|𝜃 = 𝑘)𝑠𝑗∈𝑆𝑗

1 )
𝛼𝑗
0(𝛼𝑗

0+1) 2⁄

×𝑗∈𝒩(𝑖)

(∑ ℓ(𝑠𝑗|𝜃 = 𝑘)𝑠𝑗∈𝑆𝑗
0 )

1−𝛼𝑗
0

,  

(8) 

where 𝑘 ∈ {0,1}. 
By computing 𝜋𝑖

1 from (3) and ℛ𝑖
1 from (2), the 𝐴𝑖 's 

belief  𝛽𝑖
1 is determined using (1) and the second action 

 𝛼𝑖
1  is taken. 

At the third step, 𝐴𝑖 's information set is extended 

by {𝑠𝑖
2, 𝛼𝒩(𝑖)

1 }. Since for each 𝑗 ∈ 𝒩(𝑖), 𝛼𝑗
1 depends on 

both 𝐴𝑗 's private signals and 𝐴𝑗 's neighbors' decisions at 

first step, to compute 𝜎𝑖,𝑘
1 , each agent 𝐴𝑖, in addition to 

estimating the possible information set of her neighbors 

should also estimate the possible information set of the 

neighbors of her neighbors.  It is clear that as time goes 

by, this inference should be made for the neighbors at 

the longer paths on the social network. Since agents 

observe only their own immediate neighbors' decisions 

and are not aware of the general structure of the social 

network, fully Bayesian inference will be very 

complicated.  

The inferential naivety assumption [16] is used for 

inferring the social observation to reduce the 

complexity of the Bayesian inference. According to the 

inferential naivety assumption, agents naively believe 

that the decisions of neighbors in all times are just due 

to their private observations and they ignore that their 

neighbors also have social interactions that may 

influence their decisions (Fig. 1).  

Therefore, for all 𝑡 ≥ 1, we have 

𝜎𝑖,𝑘
𝑡 = ∏ (∑ ℓ(𝑠𝑗|𝜃 = 𝑘)𝑠𝑗∈𝑆𝑗

1 )
𝛼𝑗
𝑡(𝛼𝑗

𝑡+1) 2⁄

×𝑗∈𝒩(𝑖)

(∑ ℓ(𝑠𝑗|𝜃 = 𝑘)𝑠𝑗∈𝑆𝑗
0 )

(1−𝛼𝑗
𝑡)
.  

(9) 

where 𝑘 ∈ {0,1}. 

According to [17] using the inferential naivety 

assumption, the probability of herd behavior2 in dense 

graphs increases. It is because the agents do not 

consider the repetition of the information and place too 

much weight on early signals. If these early signals are 

inaccurate, the learning may never happen at all. To 

eliminate this kind of herd behavior, we use the biased 

Bayesian inference [35] with an exponential bias in 

determining the social beliefs, so the formula (3) 

becomes as 

𝜋𝑖
𝑡 =

𝜎𝑖,1
𝑡−1(𝜋𝑖

𝑡−1)𝐵𝑓

𝜎𝑖,1
𝑡−1(𝜋𝑖

𝑡−1)𝐵𝑓 + 𝜎𝑖,0
𝑡−1(1 − 𝜋𝑖

𝑡−1)𝐵𝑓
, 

 

(10) 

where 𝐵𝑓 is the exponential bias on the prior 

probability that is called forgotten bias. If 0 < 𝐵𝑓 < 1, 

𝑝(𝛼𝑖
𝑡 = 1|  𝛼𝒩(𝑖)

0:𝑡−1, 𝑠𝑖
0:𝑡) = 𝑝(𝛼𝑖

𝑡 = 1|  𝛼𝒩(𝑖)
0:𝑡−1, 𝑠𝑖

0:𝑡−1). 
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then the prior distribution will be flatter than the 

original one and whatever social observations get older, 

it will have less impact on the 𝜋𝑖
𝑡. So, the influence of 

early signals decreases over time and as a result, the 

herd behavior is also reduced. If the forgotten bias is 

determined for each agent separately, each agent could 

have its own behavior and two agents with the same 

information setting may make different decisions. 

In the Bayesian without recall model also, the first 

step of Bayesian inference is repeated for further steps 

but using the BWR each agent at each step uses the 

most recent observations and ignores previous 

observations. These observations that are neglected in 

the BWR model (especially the history of private 

signals) are informative and the performance of model 

improve by using all observations. In our model, all 

history of social observations is used and all private 

observations are processed without any approximation. 

We compare the BWR model with our model in 

simulation section. The result show that the BWR 

method can lead to a lack of learning or even a failure 

to reach consensus in many situations even in rich 

information settings but the BIN model led to learning. 

It is noteworthy that since in our model, social beliefs 

and likelihood ratios are recursively updated as in 

equations (2) and (3), there is no need for extra memory 

to keep track of observations and the amount of 

memory remains constant over time. 

VI. SIMULATION 

In this section, we illustrate some features of the 
proposed model, by Monte Carlo simulations. The 
performance of the proposed model  )BIN ( is compared 
with the following three models: 

- Individual Learning (IL): In this model, agents do 
not have any social interaction and just learn through 
their private observations. Comparison of BIN with IL 
confirms that learning occurs much faster using social 
observations and the proposed model. 

- Inferential Naivety (IN): In this model, agents' 
beliefs are updated using equations (1), (2), (3) and (7) 
(the forgetting bias is considered 𝐵𝑓 = 1).  Comparison 

of BIN with IN confirms that in our model, using 
forgotten bias reduces the herd behavior. 

 - Bayesian without Recall (BWR): This model is 
implemented according to [30, Sec. III]. Experiments 
show that with the BWR model, the probability of 
correct consensus is very low and even in many cases 
consensus does not occur. But in our model, the correct 
consensus is reached in all cases. 

In our simulations, the number of agents is 𝑛 = 10, 
each agent at each time slot receives a random signal 
according to her likelihood function ℓ𝑖(. |𝜃1) . Our 
intention of belief is the belief that the true state of the 
world is 𝜃 = 1. The expected value of agents' beliefs in 
each time slot is calculated by Monte Carlo method as 
the average of 2000 trials and each trial takes 6000 time 
slots.  In BIN model, in all experiments we set 𝐵𝑓 =
0.95. We test efficiency of mentioned models in four 
different combinations of the agents' observational 
ability and the social networks' structure. In the first 

experiment, all agents are weak except two of them. 
Agents interact in directed connected graphs. In the 
second experiment, the same agents as in the first 
experiment interact in dense connected graphs. In the 
third experiment, all the agents are weak and interate in 
dense connected graphs. In the fourth experiment, all 
agents are strong and interact in directed connected 
graphs.  
The results of experiments are represented by six types 
of figures, which are explained below . 

-The observational ability of each agent: These 
figures show the evolution of the expected belief of 
each agent using IL method, up to time 𝑡 =  400 . 
Because, using the IL method, agents' beliefs evolve 
only on the basis of private signals, the expectation used 
with IL is a good option for displaying observational 
abilities (In Fig. 2, 𝐴2 has low observational ability and 
𝐴1 has high observational ability) 

-The evolution of society's belief: These figures 
represent, the average of all agents' expected beliefs 
over time, using IL, IN and BIN models. So, the growth 
of society's expected belief can be compared in three 
models. For example, in all experiments, the BIN curve 
grows faster than the IL curve that indicates social 
learning using the BIN is more efficient than individual 
learning using IL. 

-The evolution of each agent's expected belief using 
IL, IN and BIN models: In these figures, the evolution 
of each agent’s expected belief using three models is 
shown separately in ten sub plots. Each plot shows the 
impact of learning models on the evolution of each 
agent's belief. For example, in Fig.4, using the BIN 
model, interaction with weak agents does not 
negatively affect the ability of strong agents A1, A10 .  

-The probabilities of consensus on the correct 
decision, consensus on the wrong decision and lack of 
consensus using IL, IN and BIN models: These bar 
diagrams represent the ratio of the number of reaching 
consensus on correct decision (respectively for 
consensus on the incorrect decision and failing to reach 
a consensus) to the total number of 2000. In many 
applications, such as distributed detection systems, 
which aim to gather scattered information between 
agents, lack of consensus is better than the wrong 
consensus. 

-The histograms of decisions in time slots 300, 
3000, 6000: These figures represent the histograms of 
decisions of all agents in the time slots 𝑡 = 300, 𝑡 =
3000 and 𝑡 = 6000 using IN and BIN. These figures 
confirm the continuous increasing the number of 
correct decisions in society using the BIN method and 
also the occurrence the herd behavior using the IN 
model. 

Now, in the following, four experiments are 
described in more details. 

- First experiment:  This experiment confirms that 
using the BIN model, there is no herd behavior and that 
all agents learn the truth. In this experiment the agents 
with observational abilities as in Fig. 2, interact in a 
connected graph. All agents except 𝐴1  and 𝐴10  have 
weak observational abilities. Both agents are moderate 
but the agent 𝐴10 is stronger than 𝐴1.  

In Fig. 3  it is clear that the expected value of 
society's belief using IN increases for a while then 
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remains stable. This indicates that herding occurs for all 
agents and learning stops. On the other hand, using the 
proposed model, the expected belief increases steadily 
and its curve is higher than the expected belief using IL.  

In Figure 4, we see that for each agent, the belief 
curve using BIN is higher than the belief curves using 
IN and IL, and also its slope is higher. It is also clear 
that using the BIN model, the weak agents' beliefs with 
higher social interactions have a higher growth rate. For 
example, both 𝐴5  and 𝐴6  are weak, but since the 
information that agent 𝐴5 receives from the society is 
more than that of agent 𝐴6, the growth of her BIN belief 
is much higher than her IL belief.  

In Fig. 5 using the BIN method, the probability of 
consensus on the wrong decision is zero because the 
herd behavior does not happen. The probability of 
failing to reach a consensus is due to the wrong 
decisions made by weak agents who have not had 
enough time to gather information. Using IN, the 
consensus is almost reached, but more than half of them 
are the wrong consensus. According to [16] and [17], 
some of the agents receive incorrect initial signals and 
due to the occurrence of the herd behavior, ultimately 
all agents choose the wrong decision.  

The second row in Fig. 6 shows that in the BIN, the 
number of correct decision increase over time, and 
learning continues over time until the complete 
confidence is attained. But the first row shows that in 
the IN model, the decisions of the agents do not change 
with receiving the new observations, and learning stops 
very early.  

- Second experiment: The results show that in the 
BIN mode, learning performance is greatly improved 
by increasing social interactions. In this experiment, the 
agents of the first experiment interact in a dense 
connected graph. Figure 7 shows that in the BIN model, 
the expected value of society's belief increases to 1 with 
a steeper slope than the one of the previous experiment. 
Figure 8 shows that in the BIN model, due to the 
increase in social interactions, all agents, either weak or 
strong, reach full belief very soon. By comparing Fig. 9 
and Fig. 5, it is obvious that in experiment 2, the number 
of times in which convergence does not occur has 
decreased. By comparing Fig. 6 with 10, it is clear that 
in the second experiment, the number of correct 
decisions have grown more rapidly over the time.  

- Third experiment: This experiment confirms that 
even when all agents are weak, our model works well 
and the dispersed information is gathered efficiently. In 
this experiment, all agents are weak. They interact in a 
dense connected graph. Figs. 11-15 confirm that using 
the BIN all weak agents learn true so fast. In Figs. 12 
and 13, it can be seen that using BIN, learning does not 
stop and the average belief of society and of each agent 
steadily increase to belief 1. Comparing Figs. 12 and 13 
with Figs. 7 and 8 show that the higher is the number of 
weak agents, the longer it takes for the society to a 
consensus on the correct decision. In Fig. 14, the small 
probability of the wrong consensus is due to time 
constraints. Figure 15 also confirms the continuous 
learning and the lack of herd in the BIN model. 

Fourth experiment: This experiment compare the 
BWR model with the BIN model. In this experiment, 

all agents have strong observable abilities (Fig. 16) and 
interact in connected graph. In such a rich environment, 
It is expected that an efficient learning model perform 
well and detect the correct situation quickly. Figure 17 
shows that the performance of IN, IL, BIN is very good 
but the performance of BWR model is very poor. Since, 
in the BWR model, agents ignore their previous 
observations and just consider the last ones. These 
observations that are neglected in BWR (especially the 
history of private signals) are informative and useful. In 
our model all observations is used recursively. Table. 1 
shows the probabilities of consensus on the correct 
decision, consensus on the wrong decision and the 
absence of consensus using BWR and BIN in all 
experiments. It confirm the weakness in the learning 
and even in the agreement on a same decision. 

 

Fig. 2. The observational ability of each agent using the IL (Exp.1). 

 

Fig. 3.  Evolution of each agent's expected belief using IL, IN and 
BIN (Exp.1). 

 

Fig. 4. Evolution of each agent's expected belief using IL, IN and 
BIN (Exp.1). 

 

Fig. 5. Probabilities of consensus on the correct decision, consensus 
on the wrong decision and lack of consensus using IL, IN and BIN 
(Exp.1). 
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Fig. 1. At each time step, each agent receives a private signal from the true state Ө and observes the neighbors' decisions at time 𝑡 − 1. 
According to the inferential nativity assumption, each agent 𝐴𝑖 naively believe that the decisions of her neighbors 𝐴𝑗 and 𝐴𝑘 are just due to 

their signals and ignore the their social interaction. 

 

 

Fig. 6. Histograms of decisions in time slots 300, 3000, 6000 
(Exp.1). 

 

Fig. 7. Evolution of society's belief using IL, IN and BIN (Exp.2). 

 

Fig. 8. Evolution of each agent's expected belief using IL, IN and 
BIN (Exp.2). 

Fig. 9. Probabilities of consensus on the correct decision, consensus 
on the wrong decision and lack of consensus using IL, IN and BIN 

(Exp.2). 

… 
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Fig. 10. Histograms of decisions in time slots 300, 3000, 6000 
(Exp.2). 

 

Fig. 11. The observational ability of each agent using the IL (Exp.3). 

 

Fig. 12. Evolution of society's belief using IL, IN and BIN (Exp.3). 

 

Fig. 13. Evolution of each agent's expected belief using IL, IN and 
BIN (Exp.3). 

 

Fig. 14. Probabilities of consensus on the correct decision, consensus 
on the wrong decision and lack of consensus using IL, IN and BIN 
models (Exp.3). 

 

Fig. 15. Histograms of decisions in time slots 300, 3000, 6000 
(Exp.3).. 

 

Fig. 16. The observational ability of each agent using the IL (Exp.4). 

 

Fig. 17. Probabilities of consensus on the correct decision, consensus 
on the wrong decision and lack of consensus using IL, IN, BIN and 
BWR (Exp.4). 
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TABLE I.  PROBABILITIES OF CONSENSUS ON THE CORRECT 

DECISION, CONSENSUS ON THE WRONG DECISION AND LACK OF 

CONSENSUS. 

 BWR model BIN model 

Cons. 

on 

correct 

Cons. 

on 

wrong 

No 

Cons. 

Cons. 

on 

correct 

Cons. 

on 

wrong 

No 

Cons. 

Exp1 0.0 0.0 1 0.92 0.0 0.08 

Exp2 0.0 0.03 0.97 1.0 0.0 0.0 

Exp3 0.44 0.56 0.0 0.94 0.01 0.05 

Exp4 0.01 0.0 0.99 1.0 0.0 0.0 
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