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Abstract—Software evolution and continuous changes make maintenance difficult, reducing the quality of software 

structure and architecture. To cope with this challenge, re-modularization is used to promote the modular structure of 

software system by the re-grouping of software elements. In this paper, the proposed method recognizes various 

dependencies in terms of an objective function unlike what has been stated in some other methods. In this method, a 

search-based many-objective fitness function is proposed to formulate re-modularization as an optimization problem. 

The results of the proposed method have been compared to the effects of four other methods based on MQ and NED. 

The results show the proposed method improved re-modularization remarkably compared to others in terms of both 

MQ and NED criteria especially for smaller software. Therefore, the proposed method can be effective in redefining 

real-world applications. 
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I. INTRODUCTION  

A good modular design of a large and complex 
software system is a desirable feature. Although most 
software systems are designed and developed 
modularly at first, modularity is degraded over time. 
This degradation makes future evolution hard. Software 
maintenance is a crucial process to cope with 
continuously changing software and ensure that 
software is preserved in its life cycle [1][2]. One of the 
important activities to better understand a software 

 
 Corresponding Author 

system for maintenance and development is 
modularization [3]. The purpose of modularization is to 
partition system elements in clusters, subsystems or 
modules automatically [4][3] so that in the obtained 
system the external connection (i.e., the relationship 
between the components of two separate clusters) is 
minimum, while the internal connection (i.e., the 
connection between the cluster components) is 
maximized. The modular structure helps to develop the 
software by replacing the necessary elements into the 
modules without significantly impacting the complete 
system [5].  
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Figure 1.  The general schema of software modularization process [7]

 

Software clustering is a modularization technique 
that modularizes different artifacts into the module with 
more similar artifacts than other modules [6]. Figure 1 
shows the general schema of software modularization 
process. 

As shown in this figure, modularization involves 
three steps: source code analysis using analyzer tools 
and dependency graph creation, software 
modularization based on the graph using 
modularization algorithms, and labeling and displaying 
the obtained modules [8].  

During software evolution and continuous changes, 
its structure is often modified, moving it away from the 
original design and reducing its quality [9]. Therefore, 
re-modularization is a necessary procedure as a re-
grouping process of software elements at the modular 
level to improve the modular structure of software 
system [10]. 

In this regard, different methods have been 
proposed in the field of software re-modularization. 
However, the main challenge in this field is the lack of 
methods aimed at recognizing various types of 
dependencies. Investigating one type of dependencies 
makes the method useful in an limited aspects of re-
modularization. Therefore, in this paper, we propose a 
new method considering various types of structural 
dependencies. In addition, there is a need to model 
objective functions in terms of various dimensions of 
the structural relationships that can guide the 
optimization process towards an acceptable 
modularization solution for developers. Therefore, in 
this paper a new search-based method is proposed for 
re-modularization. In this method, a search-based 
many-objective fitness function is proposed to 
formulate re-modularization as an optimization 
problem where a modified harmony search algorithm is 
used to solve it. To evaluate the proposed method, three 
open source software systems are used: Junit, Java 
Servlet API, and DOM 4J. The results based on two 
popular criteria, MQ and NED show the efficiency of 
the proposed method in re-modularization in real-world 
software. The rest of the paper is organized as follows. 
In Section II, the problem is defined. In Section III, 
related works are discussed. In Section IV, the proposed 
method is introduced. Experiments and evaluation 
results are presented in Section V, followed by the 
concluding remarks in Section VI. 

II. PROBLEM DEFINITION 

If software maintainers do not have any insight into 
the system design, they may change the source code 
undesirably. This influences the software structure 
quality negatively [11]. On the other hand, it is difficult 
to understand the complexity of relationships between 
various source code components in a software system.  
One way to cope with structural complexity is to cluster 
the relevant processes and data in the same modules or 
classes automatically [4]. In search-based clustering, 
system modularization is considered as a search-based 
optimization problem, in which case it needs to 
introduce an objective function [12].  

Due to software evolution and continuous changes, 
its structure is often modified, moving it away from the 
original design and reducing its quality [9]. Therefore, 
re-modularization is a necessary procedure as a re-
grouping process of software elements at the modular 
level to improve the modular structure of the software 
system [10]. Therefore, modularization and re-
modularization are based on clustering. 

The lack of research aimed at recognizing various 
types of structural dependencies to introduce an 
objective function is the main challenge of re-
modularization.  

Definition (many-objective problem). Many 
objective optimization problems are mathematically 
defined as follows: 

𝐹(𝑀∗) = min(𝐹1(𝑀), 𝐹2(𝑀),… , 𝐹𝑚(𝑀))               () 

Where, 𝑚 is the number of objective functions, 𝐹𝑖 
is an objective function, and 𝑀 is a non-dominated re-
modularization solution. 

III. RELATED WORKS 

Modularization and re-modularization are based on 
clustering which provides easier navigation and 
tracking among software parts [13]. Clustering also 
leads to increased comprehensiveness between 
software elements and software quality. Numerous 
studies have been conducted on search-based module 
clustering.  
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Figure 2.  Classification of search-based software module clustering techniques 

 

Reviewing the proposed methods in search-based 
software module clustering techniques, as mentioned in 
[13] and Figure 2, shows that these methods can be 
categorized into three groups: Mono-objective 
optimization, Multi-objective optimization, and Many-
objective optimization. Mono-objective optimization 
can be addressed by Single-factor module clustering or 
Multi-factor module clustering [14]. In Mono-objective 
optimization, the aim is to find a solution for objective 
function. The advantage of this approach is its low 
processing time. However, the quality of solutions is 
lower than that of other approaches because of 
considering one aspect of the software system [13] 

For a given cluster design vector (𝑐), the optimal 

solution (𝑐∗) is calculated according to the following 
equation [15]. 

𝑓(𝑐∗) = 𝑚𝑖𝑛/max𝑓(𝑐)| 𝑐 ∈ 𝜓                               () 

Where 𝜓  is the set of all feasible clustering 
solutions. 

Multi-objective optimization-based methods can be 
divided into Single-view software module clustering 
and Multi-view software module clustering approaches. 
The purpose of this type of optimization is to find 
several non-dominant solutions for objective functions 
[16]. To formulate and optimize clustering solutions for 
a given cluster design vector (𝑐), the final and optimal 

solution (𝑐∗) can be calculated according to the equation 
below [15]. 

𝑓(𝑐∗) =

{
 
 

 
 min(𝑓1(𝑐), 𝑓2(𝑐), … , 𝑓𝑀(𝑐)

𝑇)      𝑀 > 1

𝑔𝑗(𝑐) ≥ 0                                𝑗 = 1,… , 𝑃

ℎ𝑘(𝑐) = 0                               𝑘 = 1,… , 𝑄

𝑐𝑖
𝐿 ≤ 𝑐𝑖 ≤ 𝑐𝑖

𝑈                          𝑖 = 1,… ,𝑁

                () 

Where 𝑀 is the number of objective functions, 𝑓
𝑖
 is 

the 𝑖th objective function,  𝑃, 𝑄, 𝑐𝑖
𝐿, and 𝑐𝑖

𝑈 represent 
the number of inequality design constraints, the number 
of equality design constraints, the lower bound of the 

decision variable 𝑥𝑖 , and the upper bound of the 

decision variable 𝑥𝑖. 
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 Many-objective optimization approaches are 
classified into Single-view software module clustering 
and Multi-view software module clustering. The 
following equation shows how 𝑓(𝑐∗) is calculated in 
many-objective optimization approaches. 

𝑓(𝑐∗) =

{
 
 

 
 min(𝑓1(𝑐), 𝑓2(𝑐), … , 𝑓𝑀(𝑐)

𝑇)      𝑀 > 3

𝑔𝑗(𝑐) ≥ 0                                𝑗 = 1,… , 𝑃

ℎ𝑘(𝑐) = 0                               𝑘 = 1,… , 𝑄

𝑐𝑖
𝐿 ≤ 𝑐𝑖 ≤ 𝑐𝑖

𝑈                          𝑖 = 1,… ,𝑁

                () 

In many-objective optimization, the aim is to 
optimize more than three design criteria as objective 
functions at the same time [17] while the multi-
objective optimization methods find two or three 
criteria as objective functions, simultaneously. 

The advantages of these approaches include 
producing more accurate solutions in comparison with 
the mono-objective optimization approach and 
improving the estimate of test cycles. In contrast, 
processing time in these approaches is longer than that 
in the first approach [13]. 

• Mono-objective Optimization: Scanniello et 
al. [18] have presented a phased clustering 
approach based on the combination of 
structural and lexical dimensions. Structural 
information is used to decompose the system 
into horizontal layers and lexical similarity is 
employed to group each layer. Patel et al. [19] 
have proposed a clustering method based on 
static and dynamic analysis to identify the 
elements in each cluster. In this paper, the 
researchers used a two-phase clustering 
technique to combine software features with 
structural information to refine these clusters. 

• Multi-objective Optimization: Saeidi et al. 
[12] proposed a search-based method for 
software multi-view clustering. This method 
makes clusters by incorporating knowledge 
from different viewpoints of the system, such 
as the source code and structural dependencies 
within the system. In this research, two 
techniques were used to combine various 
views: a linear combination of objective 
functions and a multi-objective formulation. 
Praditwong et al. [16] proposed two multi-
objective formulations called ECA and MCA 
to investigate several different objectives 
including cohesion and coupling for software 
module clustering. In this paper, a two-archive 
Pareto optimal genetic algorithm was used to 
solve the formulations. Barros [20] proposed a 
multi-objective search-based clustering for 
software modularization. In this method, ECA 
formulation [16] was used and simplified. In 
[21], the software module clustering problem 
was solved by a new modularization quality 
measure based on similarity. Huang et al. 
presented this measure to automatically 
navigate optimization algorithms to find a 

suitable partition of software systems by 
considering both global modules and edge 
directions. The optimization algorithms used in 
paper were hill-climbing algorithm, genetic 
algorithm, and multi-agent evolutionary 
algorithm. In [22], the researchers focused on 
space and time constraints of existing 
modularization and clustering algorithms. To 
solve these problems, Teymourian et al. 
proposed a new and fast technique performing 
operations on the dependency matrix and 
extracting other matrices based on a set of 
features. This algorithm is appropriate for both 
small and large-sized applications. Khalilipour 
et al. [23] proposed a new algorithm for object-
oriented code re-modularization. In this paper, 
different types of invocations between classes 
and objects such as synchronous, one-way, or 
asynchronous were considered in the 
clustering. The researchers claimed the 
proposed method could decrease waiting times 
for service invocations by parallel services 
running and response times by transferring 
these services to new clusters. Prajapati [24] 
proposed a search-based modularization 
method to improve the software package 
structure from various perspectives. The 
researcher used different strategies to introduce 
harmony search algorithm and objective 
functions based on the nature of the software 
package.  

• Many-objective Optimization: In [25], 
Bavota et al. proposed an automated clustering 
method that considered hidden information in 
the source code and structural dependencies to 
improve cohesion between the classes into a 
package. Naseem et al. [26]  proposed a 
cooperative clustering technique for software 
modularization. This method used some 
similarity criteria during the hierarchical 
clustering process for both binary and non-
binary features.  Pourasghar e al. [6] proposed 
a new modularization technique called GMA 
based on the graph. One of the criteria used in 
this paper to compute similarity between 
software elements was the depth of 
relationships. Using this criterion led the 
algorithm to use graph-theoretic information. 
Bavota et al. [27] proposed a new technique for 
automatic re-modularization of packages using 
both structural and semantic measures to 
decompose a package into smaller and more 
cohesive ones. 

As mentioned before, unlike previous methods in 
this paper, various types of structural dependencies are 
considered to propose a more accurate re-
modularization method. Therefore, by investigating 
these three approaches and their advantages and 
shortcomings, this paper proposes a many-objective 
optimization based algorithm. In this method, 4 
objective functions are proposed to optimize for re-
modularization. 
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Figure 3.  General structure of RMMOF method

IV. RMMOF: THE PROPOSED RE-MODULARIZATION 

METHOD BASED ON MANY-OBJECTIVE FUNCTION 

The purpose of RMMOF method is to receive 
object-oriented software system and re-modularize it to 
improve the modular structure of the software system 
and maintain its quality. As mentioned before, to 
achieve this aim, various types of dependencies are 
used in the form of a search-based many-objective 
fitness function. The general structure of the proposed 
method is shown in Figure 3. As shown in this figure, 
RMMOF method includes 5 steps. In the first step, the 
structural information of the software system source 
code is extracted from the object-oriented software 
system. In the second step, using extracted structural 
information from the first step, each type of 
relationships between the classes is weighted, as 
different types of relationships are effective in the 
proposed method. In the third step, a structural coupling 
metric is calculated that shows the structural coupling 
strength between software system classes. The 
measured values between the classes are saved in an 
n×n matrix where n implies the number of classes [28]. 
In the fourth step, re-modularization metrics are 
formulated by 4 objective functions: (1) to maximize 
total intra coupling of the modules index, (2) to 
minimize the total coupling inter modules index, (3) to 
maximize the isolated packages index, and (4) to 
maximize the packages size index. In this step, the 
software re-modularization problem is formulated as an 
optimization one based on many-objective search. In 
the last step, this problem is solved by Harmony 
algorithm-based method called MHS and the re-
modularized object-oriented software system is the 
output of the proposed method. 

A. Structural information extraction 

As shown in Figure 3, in this phase, the object-
oriented software system is the input and the output is 
structural information (SI). In the software re-
modularization process, source code entities are 
grouped and clustered into the set of modules based on 
their connecting properties. Modularity principles have 
a relationship with source code entities connections 
[28]. The software entities can connect with each other 
with zero or more types of relationships. Some 
researchers have considered one of them to re-
modularize software systems, but when just one type of 
structural relationships is considered, re-modularization 
is often limited to especial aspects. Therefore, to 
propose a more accurate re-modularization method, 
improve the modular structure of software system and 
maintain its quality, there is a need to use various types 
of structural relationships in the software re-
modularization approach. One of the characteristics of 
the proposed method in this paper (RMMOF) is to use 
a combination of different examples of various types of 
structural relationships with their relative strengths. In 
the RMMOF method, to re-modularize an object-
oriented software system, structural connectivity inter 
packages must be minimized and intra cohesion of the 
packages must be maximized.  

In this paper, we use 8 types of structural 
relationships as in [28], which are applied and 
considered in some software architecture modeling 
tools [29][30], to achieve a structural coupling metric in 
the third step. Therefore, in this step, these eight 
relationships are extracted as structural information. 

• Extends (EX): an extend relationship implies 
that a specialized class extends another general 
class. 

Structural information 

extraction 

Weighing the relationships 

between classes 

Calculating coupling strength 

between classes  

Applying Harmony algorithm 

Many-objective formulation 

Object-oriented 

software system 

Re-modularized 

object-oriented 
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• Has parameter (HP): in this type of 
relationship, a class has a method with a 
parameter that is of another class type. 

• Reference (RE): this relationship implies that a 
class makes an instance from another class and 
makes reference to the attributes of the second 
class using this instance. 

• Calls (CA): in this relationship, a class makes 
an instance from another class and invokes the 
methods of that class using this instance. 

• Implement (IM): this relationship implies that 
one of the classes realizes or implements one or 
more functions of another class. 

• Is- of- Type (IT): if a class is the type of an 
instance attribute of another class, this 
relationship exists between two classes.  

• Return (RT): this relationship exists between 
two classes if a class has a method that returns 
an object of another one.  

• Throws (TH): when a method in a class throws 
an exception object to an exception handler 
method, and the handler method exists in 
another class.  

B. Weighting the relationship between classes 

As shown in Figure 3, SI is the input of this phase 
and the classes with weighted relationships between 
them (CWR) are the output. Most coupling metrics 
have been introduced based on one especial type of 
relationships, while the presence of more than one type 
of relationship can help to present a more accurate 
metric for re-modularization. On the other hand, some 
metrics that utilize multiple types of relationships do 
not consider the difference in their relative importance 
and effectivities [25][31][16][17][10][28].  

As mentioned before, according to the proposed 
method, the objective functions are modeled and 
formulated based on different dimensions of structural 
relationships. This formulation can guide the 
optimization process to achieve an acceptable re-
modularization solution. Therefore, to introduce a 
coupling metric, the relative weights are specified for 
each type of relationships. To reach this goal, an 
approach proposed in some studies like 
[28][32][33][34] is used in this paper. 

In this approach, weighting depends on the numbers 
of inter-module and intra-module samples for each type 
of relationships. Equation 5 shows the weighting 
method for each of the relationships in one software 
system. 

𝑤𝑟
𝑖

= {

10                                 𝑁𝑅𝐼𝑁 ≠ 0 ∧ 𝑁𝑅𝑂𝑈𝑇 = 0 

1                                 𝑁𝑅𝐼𝑁 = 0 ∧ 𝑁𝑅𝑂𝑈𝑇 = 0

𝑅𝑜𝑢𝑛𝑑(0.5 + 10 ×
𝑁𝑅𝐼𝑁

𝑁𝑅𝐼𝑁 + 𝑁𝑅𝑂𝑈𝑇
 )       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

() 

Where 𝑤𝑟  is the weight of the 𝑟 th type of 

relationship, 𝑖 is a specific software system,  𝑁𝑅𝐼𝑁 is the 
number of inter-module samples for a specific type of 

relationships (𝑟 ), and 𝑁𝑅𝑂𝑈𝑇  is the number of intra-
module samples for a specific type of relationships.  

As it is possible that there are more than one 
software system (𝑛) with good quality, they need to be 
averaged, as shown in Equation 6. 

𝑤𝑟 = ∑ 𝑤𝑟
𝑖 𝑛⁄𝑛

𝑖=1                                                        () 

Figure 4 shows an example of 3 modules and five 
classes with different relationships (cohesion or 
connection). 

 

Figure 4.  An example of 3 modules and five classes with different 

relationships [28] 

C. Calculating coupling strength between classes 

As indicated in Figure 3, the input of this phase is 
CWR and the outputs are the classes with the coupling 
strength calculated between them (CCCS). The strength 
of coupling between classes refers to the 
interdependence between them that affects software 
system testability and maintenance. Therefore, the 
strength of coupling influences software quality 
directly [10]. As mentioned in the previous section, 
different types of relationships have different weights. 
Consequently, in this paper we use the weighted term 
frequency inverse document frequency coupling 
scheme (WTFIDF) to calculate the structural coupling 
strength (SCS) between classes. In this method, we 
utilize calculated weights mentioned in the previous 
section for 8 types of structural relationships extracted 
in section 4.1. The results show that WTFIDF has better 
performance than other methods as the re-modulation 
solutions produced by this method are more reliable and 
cover more aspects than other schemes [28].  

Equation 7 shows how to calculate the strength of 
coupling between two classes based on WTFIDF. 

𝑆𝐶𝑆𝑊𝑇𝐹𝐼𝐷𝐹(𝑐𝑖 , 𝑐𝑗) =
∑ 𝑤𝑟×𝑛𝑟(𝑐𝑖,𝑐𝑗)𝑟∈𝑅

∑ ∑ 𝑤𝑟×𝑛𝑟(𝑐𝑘,𝑐𝑗)𝑟∈𝑅
|𝑐|
𝑘=1

× log
|𝐶|

𝑛𝐶𝑗
+

 
∑ 𝑤𝑟×𝑛𝑟(𝑐𝑗,𝑐𝑖)𝑟∈𝑅

∑ ∑ 𝑤𝑟×𝑛𝑟(𝑐𝑘,𝑐𝑖)𝑟∈𝑅
|𝑐|
𝑘=1

× log
|𝐶|

𝑛𝐶𝑖
                           (7)          

Where 𝑐𝑖 and 𝑐𝑗 are two classes, 𝐶 is the set of all 

classes, |𝐶| is the number of all classes in 𝐶, 𝑅 is the set 
of relationship types (𝑟), 𝑛𝑐𝑖  is the number of classes 
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related to 𝑐𝑖, 𝑤𝑟 is the weight of relationship type 𝑟, and 
𝑛𝑟(𝑐𝑖 , 𝑐𝑗) is the number of samples of relationship type 

𝑟 from 𝑐𝑖 to 𝑐𝑗 [28].  

D. Many-objective formulation 

In this phase, the input is CCCS and the output is 
the many-objective formulated re-modularization 
problem (MOFP). To navigate the search-based re-
modularization algorithm for better re-modularization, 
it needs to be formulated. As mentioned before, in this 
paper, four objectives are investigated to obtain a re-
modularization method. Therefore, in this part, Pareto 
optimization is used to study multiple objectives. This 
method determines if a solution is better than another 
one or not. In the Pareto optimization method, each set 
of objectives lead to a different many-objective formula 
for the problem [16]. Equation 1 shows how to 
determine re-modularization solution (M*). 

It is important to have more than one non-
dominated re-modularization solution. Therefore, to 
determine the best solution, the following equation 
needs to be established between the better solution (M1) 
and another one (M2) [16]. Pareto optimization search 
finds a set of non-dominated re-modularization 
solutions in this set.  

𝐹(𝑀1) > 𝐹(𝑀2)  ⟺ ∀𝑖. 𝐹𝑖(𝑀1)
≥ 𝐹𝑖(𝑀2)  ∧  ∃𝑖. 𝐹𝑖(𝑀1)
> 𝐹𝑖(𝑀2)                                          (8) 

In this paper, as mentioned before, the structural 
aspects of software systems are considered. The 
purpose of the proposed method is to re-modularize 
object-oriented classes into the package automatically.  
The main feature of this re-modularization is software 
connection reduction and software cohesion increase. 
To achieve this goal, we use four objective functions: 
TotalIntraCoupling as in [10], TotalInterCoupling, 
IsolatedPackageIndex and MaxMinDifferent. These 
functions are explained in Equations 9-13, respectively. 

𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑡𝑟𝑎𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔

=∑𝐼𝑛𝑡𝑟𝑎𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔(𝑃𝑘)                          (9)

𝑛

𝑘=1

 

Where, 

𝐼𝑛𝑡𝑟𝑎𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔(𝑃𝑘)

=  
∑ ∑ 𝑆𝐶𝑆(𝑐𝑖 , 𝑐𝑗∀ 𝑐𝑗 ∈𝑃𝑘 ,𝑐𝑖≠𝑐𝑗

)∀ 𝑐𝑖 ∈𝑃𝑘 

∑ ∑ 𝑆𝐶𝑆(𝑐𝑖 , 𝑐𝑗)
|𝑐|
𝑗=1

|𝑐|
𝑖=1

                     (10) 

Where k is the number of packages.  

𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔

= 1 − (  
𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑡𝑟𝑎𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 

∑ ∑ 𝑆𝐶𝑆(𝑐𝑖 , 𝑐𝑗)
|𝑐|
𝑗=1

|𝑐|
𝑖=1

)                           (11) 

𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑑𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐼𝑛𝑑𝑒𝑥
= 1

− ( 
𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑁𝑢𝑚𝑏𝑒𝑟 

𝑎𝑙𝑙𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑁𝑢𝑚𝑏𝑒𝑟
)                          (12) 

𝑀𝑎𝑥𝑀𝑖𝑛𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡

= {

0                                     𝑚𝑎𝑥𝑃𝑎𝑐𝑘𝑎𝑔𝑒 = 𝑚𝑖𝑛𝑃𝑎𝑐𝑘𝑎𝑔𝑒 = 1   

1 − (
𝑚𝑎𝑥𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑠𝑖𝑧𝑒 − 𝑚𝑖𝑛𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑠𝑖𝑧𝑒

𝑚𝑎𝑥𝑃𝑎𝑐𝑘𝑎𝑔𝑒
)  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

  (13)  

To evaluate a re-modularization solution, 
multiplicative aggregate fitness function is used based 
on the four-quality metrics: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = TotalIntraCoupling 
× TotalInterCoupling 
× IsolatedPackageIndex 
×  MaxMinDifferent                   (14) 

E. Applying Harmony Search Algorithm 

As shown in Figure 3, MOFP is the input in this 
phase and the output is re-modularized object-oriented 
software system. Harmony search (HS) algorithm is a 
population-based meta heuristic method [35]. This 
algorithm uses random search where the decision 
variables do not need to be initialized [10]. Figure 5 
shows the flowchart of HS algorithm. 

HS algorithm is used in different fields. Some 
instances are presented in Figure 6. In this paper, this 
algorithm is applied for software re-modularization.HS 
algorithm involves 6 steps [37]: (1) encoding the 
optimization problem and initializing the algorithm 
parameters, (2) initializing the harmony memory, (3) 
improvising a new harmony, (4) updating the harmony 
memory, (5) recording the best solution in HM, and (6) 
investigating the termination criterion. In this paper, a 
modified HS algorithm called MHS that supports 
unusual discrete optimization problem is used based on 
HSBRA [10] as a re-modularization method. This is 
because the main algorithm is usually suitable for 
continuous optimization problems while the re-
modularization problem is an unusual discrete 
optimization problem [10].  

To apply the HS algorithm, in the first step of this 
algorithm (initializing the algorithm parameters), 
HMCR and PAR are introduced as the following 
Equations: 

𝐻𝑀𝐶𝑅(𝑔𝑛) =
(𝑔𝑛 + 1)

𝑁𝐼
                                            (15) 

𝑃𝐴𝑅(𝑔𝑛) =
𝑔𝑛

𝑁𝐼
 × 𝑒

−ln((
𝑔𝑛+1
𝑁𝐼 )×𝑔𝑛)

                       (16) 

Where 𝑔𝑛  and 𝑁𝐼  are generation number and 
maximum number of improvisations, respectively.  

In improvising a new harmony step, to select the 
value of the decision variable from the values stored in 
the harmonic memory, the main idea in this paper is to 
use the best solutions in the harmony memory and 
improve them. Therefore, instead of randomly selecting 
the decision variables from the harmony memory, the 
vector with maximum fitness is first extracted from 
solutions vectors in the harmony memory. Then, 
dimension 𝑗  is presented as dimension 𝑗  in the new 
solution. This operation is applied to all decision 
variables of the new decision solution with probability 
HMCR. 
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Figure 5.  Flowchart of HS algorithm [36] 

 

Figure 6.  Applications of HS algorithm in different fields [36]

In the proposed method, in addition to the vectors in 
the harmony memory, the best vectors in the harmony 
memory can increase the performance of re-
modularization.    

To create a new value for the decision variable 𝑗,  
the basis of the work is to reduce the number of 
individual packages (the packages with one class) or 

packages with less than five classes. This increases 
evaluation criteria NED and MQ. According to the 
proposed method, after extracting the vector with 
maximum fitness, the number of individual packages or 
packages with less than five classes in the vector is 
calculated. If there are different individual packages (or 
with less than five classes), the maximum coupling 
strength between class 𝑗 and the classes in individual 
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packages (or with less than five classes) is computed. If 
this number is zero, the proposed system chooses one 
of the values of the decision variable in the set of 
{1,2,…,p} (p is the number of packages with 10% 
classes of all classes in the software systems) as the 
value of the  decision variable 𝑗 in the new solution. 
Otherwise, class  𝑗 in the new solution is placed in an 
individual package with which it has maximum 
connection.  This operation is applied to all decision 
variables of the new solution with the probability of 1-
HMCR.  

Using this method reduces the number of individual 
packages and the connections between the packages, 
but increases cohesion. Consequently, MQ is increased, 
the number of individual packages is reduced, the 
number of classes in the package is increased, and NED 
is improved.  

To replace the decision variable (𝑐𝑗
𝑛𝑒𝑤 ) with its 

neighbor, according to the MHS method, the first class 
with maximum SCS compared to  𝑐𝑗

𝑛𝑒𝑤 is extracted and 

replaced with 𝑐𝑗
𝑛𝑒𝑤. If there is no class that is connected 

with 𝑐𝑗
𝑛𝑒𝑤, the value of decision variable is set to one of 

the values in {1,2,…n}(n is total number of classes) 
randomly. These operations are applied to 𝑐𝑗

𝑛𝑒𝑤  with 

the probability PAR and 𝑐𝑗
𝑛𝑒𝑤is not changed with the 

probability 1-PAR. The computational procedure of the 
proposed MHS is summarized in Figure 7 in the form 
of a pseudo code. 

V. EXPERIMENTS 

This section includes four main subsections. In the 
first part, the data set used in this paper for testing the 
proposed system is explained. In the second part, the 
evaluation criteria are introduced. In the third part, the 
parameters in the algorithms used and their values are 
expressed. In the last part, the results of the proposed 
system testing are provided. In this part, the results 
obtained are analyzed and compared with the results of 
other methods based on the evaluation criteria. 

A. Dataset 

In this research, a software set is used as dataset. 
The features of these software systems are expressed in 
Table 2. The software systems are java language source 
codes and open sources. These software systems have 
been widely used by some researchers to evaluate their 
proposed methods like [10][28][17][20][38]. As shown 
in Table 1, the super classes and packages number in 
each software is different from others and are in wide 
ranges. These features were extracted by STAN tool. 
The general schemes of the software systems used are 
shown in Figures 8-10. 

TABLE I.  THE CHARACTERISTICS OF THE SOFTWARE 

SYSTEMS USED 

Packages 

number 

Super 

classes 

number 

Version 
Software 

System 

6 47 3.8.1 Junit 

4 63 2.3 
Java Servlet 

API 

16 170 1.5.2 DOM 4J 

Algorithm: MHS Algorithm 

Step1: Set Parameters: HMS, HMCR, PAR 

Step2: Initialize Harmony Memory (HM) 

 𝐹𝑜𝑟 (𝑖 = 1  𝑡𝑜 𝐻𝑀𝑆) 𝑑𝑜 //HMS is the size of harmony memory 

        𝐼𝑓 (𝑖 <=  𝐻𝑀𝑆/2) 𝑡ℎ𝑒𝑛 

                          𝐹𝑜𝑟 (𝑗 = 1  𝑡𝑜 𝑛) 𝑑𝑜 //n is the total number of classes 

      𝑐𝑗
𝑖 ← 𝑅𝑎𝑛𝑑𝑖𝑛𝑡(𝑈𝐵𝑖 − 𝐿𝐵𝑖)/*select random integer value between 𝑈𝐵𝑖 =   𝑛    𝑎𝑛𝑑  𝐿𝐵𝑖 = 0*/ 

  𝐸𝑛𝑑 𝑓𝑜𝑟 

       𝐸𝑙𝑠𝑒 

                           𝐹𝑜𝑟 (𝑗 = 1  𝑡𝑜 𝑛) 𝑑𝑜 // n is the total number of classes 

                                𝑐𝑗
𝑖 ← 𝑅𝑎𝑛𝑑𝑖𝑛𝑡(𝑈𝐵𝑖 − 𝐿𝐵𝑖) /*select random integer value between 𝑈𝐵𝑖 = (𝑛 ∗ 10)/100    𝑎𝑛𝑑  𝐿𝐵𝑖 = 0 */ 

  𝐸𝑛𝑑 𝑓𝑜𝑟 

     𝐸𝑛𝑑 𝑖𝑓 

    𝑓(𝑐𝑖) = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑐𝑖)  

           𝐸𝑛𝑑 𝑓𝑜𝑟 

Step3: Improvisation harmony 𝑐𝑛𝑒𝑤 

 𝐹𝑜𝑟 (𝑗 = 1  𝑡𝑜  𝑛 ) 𝑑𝑜  //n is the total number of classes 

        𝐼𝑓 ( 𝑟1 < 𝐻𝑀𝐶𝑅) 𝑡ℎ𝑒𝑛  //𝑟1 is a uniform random number in the range of [0,1] 

  𝑐𝑗
𝑛𝑒𝑤 = 𝑐𝑗

𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 , 𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 ∈ (1,… , 𝐻𝑀𝑆)  

  𝐼𝑓 ( 𝑟2 < 𝑃𝐴𝑅) 𝑡ℎ𝑒𝑛  //𝑟2 is a uniform random number in the range of [0,1]  

                𝑐𝑗
𝑛𝑒𝑤 =  𝐺𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟(𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠, 𝑗) //𝑐𝑗

𝑛𝑒𝑤 is replaced by its neighbor 

      

             𝐸𝑛𝑑 𝑖𝑓 

      𝐸𝑙𝑠𝑒 

  𝑐𝑗
𝑛𝑒𝑤 = 𝐺𝑒𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠) 

     𝐸𝑛𝑑 𝑖𝑓 

 𝐸𝑛𝑑 𝑓𝑜𝑟 

 𝑓(𝑐𝑛𝑒𝑤) = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑐𝑛𝑒𝑤) //Perform fitness computation  

Step4: Update the Harmony memory 

 𝐼𝑓 (𝑓(𝑐𝑛𝑒𝑤) > 𝑓 (𝑐𝑤𝑜𝑟𝑠𝑡)) 𝑡ℎ𝑒𝑛 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝐻𝑀 𝑎𝑠 𝑐𝑤𝑜𝑟𝑠𝑡 = 𝑐𝑛𝑒𝑤 

Step5: 𝑅𝑒𝑐𝑜𝑟𝑑 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝐻𝑀 

Step6: 𝐼𝑓 (𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎) 𝑡ℎ𝑒𝑛  

                𝑒𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝐻𝑀  

           𝑒𝑙𝑠𝑒  

               𝑟𝑒𝑡𝑢𝑟𝑛 step3  

Figure 7.  The computational procedure of the proposed MHS 
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Figure 8.  The general scheme of Junit software 

 

Figure 9.  The general scheme of Java Servlet API software 

 

Figure 10.  The general scheme of DOM 4J software
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B. Evaluation Criteria 

In the field of re-modularization, there are standard 
criteria to test different methods. Therefore, to 
investigate the performance of the proposed method 
and evaluate it, in addition to the multiplicative 
aggregate fitness function obtained from four objective 
functions, two evaluation criteria MQ [4] and NED [39] 
are used in the present paper. 

Modularization quality (MQ) tradeoffs between 
inter-connectivity and intra-connectivity [4]. To 
calculate MQ, Cluster Factor (CF) needs to be obtained 
for each cluster (i). Equation 17 shows how CF is 
calculated. 

𝐶𝐹𝑖 = {

0                                     𝜇𝑖 = 0
2𝜇𝑖

2𝜇𝑖 +∑ (𝜀𝑖,𝑗 + 𝜀𝑗,𝑖)
𝑘
𝑗=1
𝑖≠𝑗

  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         (17) 

Where 𝑖 and 𝑗 are two different clusters and 𝑘 is the 
clusters number, 𝜇𝑖  is the intra-cluster coupling 
strength of 𝑖 cluster (it means intra edges of cluster 𝑖), 
𝜀𝑖,𝑗  and   𝜀𝑗,𝑖 are coupling strengths for the relation that 

originates in cluster 𝑖 and terminates in cluster 𝑗, and  
coupling strength for the relation that originates in 
cluster 𝑗 and terminates in cluster 𝑖, respectively. 

MQ is obtained from the sum of  𝐶𝐹𝑖 for all clusters 
in the software (Equation 18). 

𝑀𝑄 = 𝑆𝑢𝑚𝑖=1
𝑘 𝐶𝐹𝑖                                                       (18) 

More MQ shows better re-modularization.  

Software re-modularization must not create very 
small or large modules, as they are not normal and lead 
to increased connections between packages and 
reduced package cohesion. Therefore, Non-Extreme 
Distribution (NED) criteria measure the extremity of 
module distribution. NED is introduced in Equation 19. 

𝑁𝐸𝐷 =
∑ |𝑀𝑖|
𝑘
𝑖=1,𝑀𝑖 𝑛𝑜𝑡 𝑒𝑥𝑡𝑟𝑒𝑚𝑒

𝑛
         

𝑀𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑖𝑓  5 < |𝑀𝑖| < 1.5 × |𝑀𝑚𝑎𝑥| 

                                                                               (19) 

Where |𝑀𝑖| is the size of module 𝑖, 𝑘 is the modules 
number, 𝑛 is the number of all classes in the system, 
|𝑀𝑚𝑎𝑥| is the size of the largest module in the current 
organization of software modules.  

C. Parameters Settings 

To evaluate our method, we have compared it with 
three popular methods, HSBRA [10], GA and HC. But 
before comparison, it needs to justify the parameters of 
each algorithm. To set them, we have followed previous 
research like [10][16][40][41][42]. Table 2 shows the 
parameters and their values used in this paper. In 
addition, we choose the number of fitness evaluations 
(NFE) for fair comparison amongst meta-heuristic 
algorithms. For all the three considered algorithms, we 
set 𝑁𝐹𝐸 = 20000 as stopping criteria. To achieve this 
purpose, HMS is set to 50  and the number of 

improvisations is set to 400.    In RMMOF, HMS is set 
to 20 and the number of improvisations is set to 1000 
for HSBRA. For the GA algorithm, population size and 
the number of generations are set to 20  and 1000 , 
respectively. Finally, in the HC algorithm, the number 
of iterations is set to 20000.  

TABLE II.  PARAMETERS VALUES OF DIFFERENT ALGORITHMS 

TABLE III.  A
LGORITHM 

TABLE IV.  P
ARAMETER 

TABLE V.  S
YMBOL 

TABLE VI.  V
ALUE 

RMMOF 

Harmony 

Memory Size 
HMS 50 

Harmony 

Memory 

Consideration 

Rate 

HMCRmin 0.7 

HMCRmax 0.99 

Pitch 

Adjustment 

Rate 

PARmin 0.01 

PARmax 0.99 

Number of 

Improvisation 
NI 400 

HSBRA 

Harmony 

Memory Size 
HMS 20 

Harmony 

Memory 

Consideration 

Rate 

HMCRmin 0.7 

HMCRmax 0.99 

Pitch 

Adjustment 

Rate 

PARmin 0.01 

PARmax 0.99 

Number of 

Improvisation 
NI 1000 

GA 

Crossover 

Probability 
Pcr 0.80 

Mutation 

Probability 
Pmt 0.15 

Population 

Size 
PS 20 

Number of 

Generation 
NG 1000 

HC 
Number of 

Iteration 
NI 20000 

 

D. Experiments Results 

To evaluate the proposed method, two tests have 
been designed and run. In Test 1, the effect of different 
meta-heuristic algorithms on re-modularization in 
RMMOF method is investigated based on MQ and 
NED. In this test, in addition to comparing various 
meta-heuristic algorithms, MHS algorithm is run on 3 
different datasets. In Test 2, the proposed method 
RMMOF is compared with the methods proposed in 
[10] based on Fitness, MQ and NED. 

1) Test 1: the effect of different meta-heuristic 

algorithms in RMMOF on re-modularization based on 

Fitness, MQ and NED 
In this part, the effects of the proposed meta-

heuristic algorithm MHS, GA and HC on re-
modularization are investigated. The purpose of this test 
is to investigate the performance of re-modularization 
using different meta-heuristic algorithms based on the 
criteria introduced in the previous subsection. Figures 
11-13 show the result of this test in different systems. 
To examine the proposed method in different systems 
and find the application in which this method has the 
highest efficiency, the experimental results of the MHS 
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are also reported based on different software systems, 
as shown in Figure 14.  

 

Figure 11.  The result of Test1 on Junit system 

 

 

Figure 12.  The result of Test1 on Java Servlet API system 

 

 

Figure 13.  The result of Test1 on DOM 4J system 

 

Figure 14.  The result of Test1 on MHS 

Discussion  
As shown in Figure 11, the proposed method MHS 

has better performance than others based on MQ, NED 
and Fitness on Junit system.  This means that using 
Harmony search-based algorithm with the proposed 
changes enhances the efficiency of re-modularization 

and decreases extreme modules. Therefore, in this 
algorithm, the fitness obtained from the four proposed 
objective functions is also remarkably higher. In 
contrast, using GA and HC reduces the NED to a great 
extent. This means that the size of the modules created 
is very heterogeneous and different from each other. As 
for the other criteria, the results obtained from using 
these two algorithms are approximately similar. By 
investigating the formulations of the three criteria and 
their values for each algorithm, we observed that if both 
MQ and NED are high, Fitness criteria are enhanced. 
However, if the algorithm has less efficiency based on 
MQ and NED, Fitness is reduced.  

As shown in Figure 12, the value of MQ in the 
proposed method is higher compared to others, while 
the values of NED and Fitness in the three algorithms 
on Java Servlet API system are approximately similar. 
In addition, these results show that the proposed method 
has a much poorer performance on the Java Servlet API 
system than Junit. However, the performances of GA 
and HC on Java Servlet API system and Junit are almost 
the same.   

According to Figures 11 and 12, it seems that HC 
and GA are not able to distribute the classes with a 
homogenous size based on Junit and Java Servlet API 
which are small applications in terms of size.   

As shown in Figure 13, the performance of the 
proposed method based on the three criteria is better 
compared to others on DOM 4J system. The 
performance of GA and HC is approximately similar. It 
is clear that the proposed method has been able to re-
modularize the system (MQ) better than reducing the 
size of modules (NED). 

By considering all three figures, it can be concluded 
that the proposed method has a better performance on 
all three datasets than others and MHS algorithm is 
more suitable on the first dataset (Junit system) among 
these three datasets. The results are shown in Figure 14.  

As explained before, to compare the results of Test 
1 in MHS based on different systems, the results in 
Figure 14 show that the proposed algorithm has the best 
performance on Junit based on all the proposed criteria. 
This indicates that the proposed method is suitable for 
the small applications. The reason for obtaining a 
higher MQ and NED on DOM 4J compared to Java 
Servlet API, despite the smaller size of Java Servlet 
API, is the type of dependencies in Java Servlet API 
software. 

2) Test 2: the comparison between the proposed 

re-modularization method RMMOF and the methods 

proposed in [10] based on MQ and NED 
To evaluate the proposed method, we should 

compare it with other similar methods. Therefore, in 
this part, the proposed method (RMMOF) is compared 
with the 4 methods proposed in [10]. In [10], four 
Harmony search-based re-modularizations have been 
proposed based on linear and exponential changes in 
Harmony Memory Consideration Rate (HMCR) and 
Pitch Adjusting Rate (PAR).  Figures 15 and 16 show 
the results of these comparisons based on MQ and 
NED.  
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Figure 15.  The result of Test2 based on MQ 

 

 

Figure 16.  The result of Test2 based on NED 

Discussion 
As shown in Figure 15, the proposed method has the 

best MQ on Junit, Java Servlet API and DOM 4J 
systems, while RMMOF has the best result on DOM 4J 
among the three data sets. As shown in this figure, the 
improvement of the proposed method in comparison to 
other methods is more obvious on Junit system. Among 
the proposed methods in [10], HSBRA3 has the best 
MQ on all the three systems. In HSBRA3, HMCR is 
changed linearly and PAR is changed exponentially 
during the improvisation. The important difference 
between RMMOF and HSBRA is the use of modified 
harmony algorithm (MHS) and using the proposed 
fitness function with four different and effective 
objective functions. These improvements seem to lead 
to better results in terms of MQ. What is clear in this 
figure is that the improvement rate of the proposed 
method on small applications is more evident as 
compared to the methods proposed in [10].  

As indicated in Figure 16, the results of applying 
RMMOF on re-modularization are better compared to 
others. Applying the proposed improvements also has 
positive impacts on NED. In this test, HSBRA3 has 
better performance compared to the other methods 
proposed in [10].   

It seems using various structural relationships and 
suitable relative weights for them helps to maximize the 
total intra coupling of the modules and minimize the 
total coupling inter modules. In addition, using MHS 
algorithm as a meta-heuristic algorithm and new fitness 
function is effective to obtain the best MQ and NED.      

VI. CONCLUSION 

Although most software systems are designed and 
developed modularly at first, modularity is degraded 
over time. Re-modularization is used to improve the 
modular structure of software system. In this paper, the 
proposed method recognizes various dependencies in 
terms of an objective function. In this method, a search-
based many-objective fitness function is proposed to 
formulate re-modularization as an optimization 
problem. To solve these objective functions, a helpful 
harmony-based algorithm called MHS has been used. 
The experiments and comparison results have shown 
the efficiency of the proposed method in re-
modularization compared to other methods.  
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