
Software Re-Modularization Method Based on

Many-Objective Function

Mohammad Reza Keyvanpour

Department of Computer Engineering

Faculty of Engineering

Alzahra University

Tehran, Iran

Keyvanpour@alzahra.ac.ir

Zahra Karimi Zandian
Data Mining Lab

Department of Computer

Engineering

Faculty of Engineering

Alzahra University

Tehran, Iran

Fatemeh Morsali
Data Mining Lab

Department of Computer

Engineering

Faculty of Engineering

Alzahra University

Tehran, Iran

Received: 2 December 2022 – Revised: 7 February 2023 - Accepted: 15 March 2023

Abstract—Software evolution and continuous changes make maintenance difficult, reducing the quality of software

structure and architecture. To cope with this challenge, re-modularization is used to promote the modular structure of

software system by the re-grouping of software elements. In this paper, the proposed method recognizes various

dependencies in terms of an objective function unlike what has been stated in some other methods. In this method, a

search-based many-objective fitness function is proposed to formulate re-modularization as an optimization problem.

The results of the proposed method have been compared to the effects of four other methods based on MQ and NED.

The results show the proposed method improved re-modularization remarkably compared to others in terms of both

MQ and NED criteria especially for smaller software. Therefore, the proposed method can be effective in redefining

real-world applications.

Keywords: Software, Re-modularization, Many-objective function, Elements dependencies, Clustering, Search-based

algorithm.

Article type: Research Article

© The Author(s).

Publisher: ICT Research Institute

I. INTRODUCTION

A good modular design of a large and complex
software system is a desirable feature. Although most
software systems are designed and developed
modularly at first, modularity is degraded over time.
This degradation makes future evolution hard. Software
maintenance is a crucial process to cope with
continuously changing software and ensure that
software is preserved in its life cycle [1][2]. One of the
important activities to better understand a software

 Corresponding Author

system for maintenance and development is
modularization [3]. The purpose of modularization is to
partition system elements in clusters, subsystems or
modules automatically [4][3] so that in the obtained
system the external connection (i.e., the relationship
between the components of two separate clusters) is
minimum, while the internal connection (i.e., the
connection between the cluster components) is
maximized. The modular structure helps to develop the
software by replacing the necessary elements into the
modules without significantly impacting the complete
system [5].

https://orcid.org/0000-0003-2115-9099
https://orcid.org/0000-0003-1928-2442

Figure 1. The general schema of software modularization process [7]

Software clustering is a modularization technique
that modularizes different artifacts into the module with
more similar artifacts than other modules [6]. Figure 1
shows the general schema of software modularization
process.

As shown in this figure, modularization involves
three steps: source code analysis using analyzer tools
and dependency graph creation, software
modularization based on the graph using
modularization algorithms, and labeling and displaying
the obtained modules [8].

During software evolution and continuous changes,
its structure is often modified, moving it away from the
original design and reducing its quality [9]. Therefore,
re-modularization is a necessary procedure as a re-
grouping process of software elements at the modular
level to improve the modular structure of software
system [10].

In this regard, different methods have been
proposed in the field of software re-modularization.
However, the main challenge in this field is the lack of
methods aimed at recognizing various types of
dependencies. Investigating one type of dependencies
makes the method useful in an limited aspects of re-
modularization. Therefore, in this paper, we propose a
new method considering various types of structural
dependencies. In addition, there is a need to model
objective functions in terms of various dimensions of
the structural relationships that can guide the
optimization process towards an acceptable
modularization solution for developers. Therefore, in
this paper a new search-based method is proposed for
re-modularization. In this method, a search-based
many-objective fitness function is proposed to
formulate re-modularization as an optimization
problem where a modified harmony search algorithm is
used to solve it. To evaluate the proposed method, three
open source software systems are used: Junit, Java
Servlet API, and DOM 4J. The results based on two
popular criteria, MQ and NED show the efficiency of
the proposed method in re-modularization in real-world
software. The rest of the paper is organized as follows.
In Section II, the problem is defined. In Section III,
related works are discussed. In Section IV, the proposed
method is introduced. Experiments and evaluation
results are presented in Section V, followed by the
concluding remarks in Section VI.

II. PROBLEM DEFINITION

If software maintainers do not have any insight into
the system design, they may change the source code
undesirably. This influences the software structure
quality negatively [11]. On the other hand, it is difficult
to understand the complexity of relationships between
various source code components in a software system.
One way to cope with structural complexity is to cluster
the relevant processes and data in the same modules or
classes automatically [4]. In search-based clustering,
system modularization is considered as a search-based
optimization problem, in which case it needs to
introduce an objective function [12].

Due to software evolution and continuous changes,
its structure is often modified, moving it away from the
original design and reducing its quality [9]. Therefore,
re-modularization is a necessary procedure as a re-
grouping process of software elements at the modular
level to improve the modular structure of the software
system [10]. Therefore, modularization and re-
modularization are based on clustering.

The lack of research aimed at recognizing various
types of structural dependencies to introduce an
objective function is the main challenge of re-
modularization.

Definition (many-objective problem). Many
objective optimization problems are mathematically
defined as follows:

𝐹(𝑀∗) = min(𝐹1(𝑀), 𝐹2(𝑀),… , 𝐹𝑚(𝑀)) ()

Where, 𝑚 is the number of objective functions, 𝐹𝑖
is an objective function, and 𝑀 is a non-dominated re-
modularization solution.

III. RELATED WORKS

Modularization and re-modularization are based on
clustering which provides easier navigation and
tracking among software parts [13]. Clustering also
leads to increased comprehensiveness between
software elements and software quality. Numerous
studies have been conducted on search-based module
clustering.

Volume 16- Number 1 – 2024 (28 -41)

29

Figure 2. Classification of search-based software module clustering techniques

Reviewing the proposed methods in search-based
software module clustering techniques, as mentioned in
[13] and Figure 2, shows that these methods can be
categorized into three groups: Mono-objective
optimization, Multi-objective optimization, and Many-
objective optimization. Mono-objective optimization
can be addressed by Single-factor module clustering or
Multi-factor module clustering [14]. In Mono-objective
optimization, the aim is to find a solution for objective
function. The advantage of this approach is its low
processing time. However, the quality of solutions is
lower than that of other approaches because of
considering one aspect of the software system [13]

For a given cluster design vector (𝑐), the optimal

solution (𝑐∗) is calculated according to the following
equation [15].

𝑓(𝑐∗) = 𝑚𝑖𝑛/max𝑓(𝑐)| 𝑐 ∈ 𝜓 ()

Where 𝜓 is the set of all feasible clustering
solutions.

Multi-objective optimization-based methods can be
divided into Single-view software module clustering
and Multi-view software module clustering approaches.
The purpose of this type of optimization is to find
several non-dominant solutions for objective functions
[16]. To formulate and optimize clustering solutions for
a given cluster design vector (𝑐), the final and optimal

solution (𝑐∗) can be calculated according to the equation
below [15].

𝑓(𝑐∗) =

{

 min(𝑓1(𝑐), 𝑓2(𝑐), … , 𝑓𝑀(𝑐)

𝑇) 𝑀 > 1

𝑔𝑗(𝑐) ≥ 0 𝑗 = 1,… , 𝑃

ℎ𝑘(𝑐) = 0 𝑘 = 1,… , 𝑄

𝑐𝑖
𝐿 ≤ 𝑐𝑖 ≤ 𝑐𝑖

𝑈 𝑖 = 1,… ,𝑁

 ()

Where 𝑀 is the number of objective functions, 𝑓
𝑖
 is

the 𝑖th objective function, 𝑃, 𝑄, 𝑐𝑖
𝐿, and 𝑐𝑖

𝑈 represent
the number of inequality design constraints, the number
of equality design constraints, the lower bound of the

decision variable 𝑥𝑖 , and the upper bound of the

decision variable 𝑥𝑖.

Factor per

Partition

Formulation

Factor per Edge

Formulation

Factor per

Cluster

Formulation

Linear

Combination of

Single-objectives

Multi-objective

Search-based

Software Module

Clustering

Mono-objective

Optimization

Multi-objective

optimization
Many-objective

Optimization

Multi-factor

module

Clustering

Single-view

Software Module

Clustering

Multi-view

Software Module

Clustering

Single-factor

Module

Clustering

Single-view

Software Module

Clustering

Multi-view

Software Module

Clustering

Maximizing

Cluster

Equal-size

Cluster

Extended

Maximizing

Cluster

Extended Equal-

Size Cluster

Volume 16- Number 1 – 2024 (28 -41)

30

 Many-objective optimization approaches are
classified into Single-view software module clustering
and Multi-view software module clustering. The
following equation shows how 𝑓(𝑐∗) is calculated in
many-objective optimization approaches.

𝑓(𝑐∗) =

{

 min(𝑓1(𝑐), 𝑓2(𝑐), … , 𝑓𝑀(𝑐)

𝑇) 𝑀 > 3

𝑔𝑗(𝑐) ≥ 0 𝑗 = 1,… , 𝑃

ℎ𝑘(𝑐) = 0 𝑘 = 1,… , 𝑄

𝑐𝑖
𝐿 ≤ 𝑐𝑖 ≤ 𝑐𝑖

𝑈 𝑖 = 1,… ,𝑁

 ()

In many-objective optimization, the aim is to
optimize more than three design criteria as objective
functions at the same time [17] while the multi-
objective optimization methods find two or three
criteria as objective functions, simultaneously.

The advantages of these approaches include
producing more accurate solutions in comparison with
the mono-objective optimization approach and
improving the estimate of test cycles. In contrast,
processing time in these approaches is longer than that
in the first approach [13].

• Mono-objective Optimization: Scanniello et
al. [18] have presented a phased clustering
approach based on the combination of
structural and lexical dimensions. Structural
information is used to decompose the system
into horizontal layers and lexical similarity is
employed to group each layer. Patel et al. [19]
have proposed a clustering method based on
static and dynamic analysis to identify the
elements in each cluster. In this paper, the
researchers used a two-phase clustering
technique to combine software features with
structural information to refine these clusters.

• Multi-objective Optimization: Saeidi et al.
[12] proposed a search-based method for
software multi-view clustering. This method
makes clusters by incorporating knowledge
from different viewpoints of the system, such
as the source code and structural dependencies
within the system. In this research, two
techniques were used to combine various
views: a linear combination of objective
functions and a multi-objective formulation.
Praditwong et al. [16] proposed two multi-
objective formulations called ECA and MCA
to investigate several different objectives
including cohesion and coupling for software
module clustering. In this paper, a two-archive
Pareto optimal genetic algorithm was used to
solve the formulations. Barros [20] proposed a
multi-objective search-based clustering for
software modularization. In this method, ECA
formulation [16] was used and simplified. In
[21], the software module clustering problem
was solved by a new modularization quality
measure based on similarity. Huang et al.
presented this measure to automatically
navigate optimization algorithms to find a

suitable partition of software systems by
considering both global modules and edge
directions. The optimization algorithms used in
paper were hill-climbing algorithm, genetic
algorithm, and multi-agent evolutionary
algorithm. In [22], the researchers focused on
space and time constraints of existing
modularization and clustering algorithms. To
solve these problems, Teymourian et al.
proposed a new and fast technique performing
operations on the dependency matrix and
extracting other matrices based on a set of
features. This algorithm is appropriate for both
small and large-sized applications. Khalilipour
et al. [23] proposed a new algorithm for object-
oriented code re-modularization. In this paper,
different types of invocations between classes
and objects such as synchronous, one-way, or
asynchronous were considered in the
clustering. The researchers claimed the
proposed method could decrease waiting times
for service invocations by parallel services
running and response times by transferring
these services to new clusters. Prajapati [24]
proposed a search-based modularization
method to improve the software package
structure from various perspectives. The
researcher used different strategies to introduce
harmony search algorithm and objective
functions based on the nature of the software
package.

• Many-objective Optimization: In [25],
Bavota et al. proposed an automated clustering
method that considered hidden information in
the source code and structural dependencies to
improve cohesion between the classes into a
package. Naseem et al. [26] proposed a
cooperative clustering technique for software
modularization. This method used some
similarity criteria during the hierarchical
clustering process for both binary and non-
binary features. Pourasghar e al. [6] proposed
a new modularization technique called GMA
based on the graph. One of the criteria used in
this paper to compute similarity between
software elements was the depth of
relationships. Using this criterion led the
algorithm to use graph-theoretic information.
Bavota et al. [27] proposed a new technique for
automatic re-modularization of packages using
both structural and semantic measures to
decompose a package into smaller and more
cohesive ones.

As mentioned before, unlike previous methods in
this paper, various types of structural dependencies are
considered to propose a more accurate re-
modularization method. Therefore, by investigating
these three approaches and their advantages and
shortcomings, this paper proposes a many-objective
optimization based algorithm. In this method, 4
objective functions are proposed to optimize for re-
modularization.

Volume 16- Number 1 – 2024 (28 -41)

31

Figure 3. General structure of RMMOF method

IV. RMMOF: THE PROPOSED RE-MODULARIZATION

METHOD BASED ON MANY-OBJECTIVE FUNCTION

The purpose of RMMOF method is to receive
object-oriented software system and re-modularize it to
improve the modular structure of the software system
and maintain its quality. As mentioned before, to
achieve this aim, various types of dependencies are
used in the form of a search-based many-objective
fitness function. The general structure of the proposed
method is shown in Figure 3. As shown in this figure,
RMMOF method includes 5 steps. In the first step, the
structural information of the software system source
code is extracted from the object-oriented software
system. In the second step, using extracted structural
information from the first step, each type of
relationships between the classes is weighted, as
different types of relationships are effective in the
proposed method. In the third step, a structural coupling
metric is calculated that shows the structural coupling
strength between software system classes. The
measured values between the classes are saved in an
n×n matrix where n implies the number of classes [28].
In the fourth step, re-modularization metrics are
formulated by 4 objective functions: (1) to maximize
total intra coupling of the modules index, (2) to
minimize the total coupling inter modules index, (3) to
maximize the isolated packages index, and (4) to
maximize the packages size index. In this step, the
software re-modularization problem is formulated as an
optimization one based on many-objective search. In
the last step, this problem is solved by Harmony
algorithm-based method called MHS and the re-
modularized object-oriented software system is the
output of the proposed method.

A. Structural information extraction

As shown in Figure 3, in this phase, the object-
oriented software system is the input and the output is
structural information (SI). In the software re-
modularization process, source code entities are
grouped and clustered into the set of modules based on
their connecting properties. Modularity principles have
a relationship with source code entities connections
[28]. The software entities can connect with each other
with zero or more types of relationships. Some
researchers have considered one of them to re-
modularize software systems, but when just one type of
structural relationships is considered, re-modularization
is often limited to especial aspects. Therefore, to
propose a more accurate re-modularization method,
improve the modular structure of software system and
maintain its quality, there is a need to use various types
of structural relationships in the software re-
modularization approach. One of the characteristics of
the proposed method in this paper (RMMOF) is to use
a combination of different examples of various types of
structural relationships with their relative strengths. In
the RMMOF method, to re-modularize an object-
oriented software system, structural connectivity inter
packages must be minimized and intra cohesion of the
packages must be maximized.

In this paper, we use 8 types of structural
relationships as in [28], which are applied and
considered in some software architecture modeling
tools [29][30], to achieve a structural coupling metric in
the third step. Therefore, in this step, these eight
relationships are extracted as structural information.

• Extends (EX): an extend relationship implies
that a specialized class extends another general
class.

Structural information

extraction

Weighing the relationships

between classes

Calculating coupling strength

between classes

Applying Harmony algorithm

Many-objective formulation

Object-oriented

software system

Re-modularized

object-oriented

software system

SI

CWR

CCCS

MOFP

Volume 16- Number 1 – 2024 (28 -41)

32

• Has parameter (HP): in this type of
relationship, a class has a method with a
parameter that is of another class type.

• Reference (RE): this relationship implies that a
class makes an instance from another class and
makes reference to the attributes of the second
class using this instance.

• Calls (CA): in this relationship, a class makes
an instance from another class and invokes the
methods of that class using this instance.

• Implement (IM): this relationship implies that
one of the classes realizes or implements one or
more functions of another class.

• Is- of- Type (IT): if a class is the type of an
instance attribute of another class, this
relationship exists between two classes.

• Return (RT): this relationship exists between
two classes if a class has a method that returns
an object of another one.

• Throws (TH): when a method in a class throws
an exception object to an exception handler
method, and the handler method exists in
another class.

B. Weighting the relationship between classes

As shown in Figure 3, SI is the input of this phase
and the classes with weighted relationships between
them (CWR) are the output. Most coupling metrics
have been introduced based on one especial type of
relationships, while the presence of more than one type
of relationship can help to present a more accurate
metric for re-modularization. On the other hand, some
metrics that utilize multiple types of relationships do
not consider the difference in their relative importance
and effectivities [25][31][16][17][10][28].

As mentioned before, according to the proposed
method, the objective functions are modeled and
formulated based on different dimensions of structural
relationships. This formulation can guide the
optimization process to achieve an acceptable re-
modularization solution. Therefore, to introduce a
coupling metric, the relative weights are specified for
each type of relationships. To reach this goal, an
approach proposed in some studies like
[28][32][33][34] is used in this paper.

In this approach, weighting depends on the numbers
of inter-module and intra-module samples for each type
of relationships. Equation 5 shows the weighting
method for each of the relationships in one software
system.

𝑤𝑟
𝑖

= {

10 𝑁𝑅𝐼𝑁 ≠ 0 ∧ 𝑁𝑅𝑂𝑈𝑇 = 0

1 𝑁𝑅𝐼𝑁 = 0 ∧ 𝑁𝑅𝑂𝑈𝑇 = 0

𝑅𝑜𝑢𝑛𝑑(0.5 + 10 ×
𝑁𝑅𝐼𝑁

𝑁𝑅𝐼𝑁 + 𝑁𝑅𝑂𝑈𝑇
) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

()

Where 𝑤𝑟 is the weight of the 𝑟 th type of

relationship, 𝑖 is a specific software system, 𝑁𝑅𝐼𝑁 is the
number of inter-module samples for a specific type of

relationships (𝑟), and 𝑁𝑅𝑂𝑈𝑇 is the number of intra-
module samples for a specific type of relationships.

As it is possible that there are more than one
software system (𝑛) with good quality, they need to be
averaged, as shown in Equation 6.

𝑤𝑟 = ∑ 𝑤𝑟
𝑖 𝑛⁄𝑛

𝑖=1 ()

Figure 4 shows an example of 3 modules and five
classes with different relationships (cohesion or
connection).

Figure 4. An example of 3 modules and five classes with different

relationships [28]

C. Calculating coupling strength between classes

As indicated in Figure 3, the input of this phase is
CWR and the outputs are the classes with the coupling
strength calculated between them (CCCS). The strength
of coupling between classes refers to the
interdependence between them that affects software
system testability and maintenance. Therefore, the
strength of coupling influences software quality
directly [10]. As mentioned in the previous section,
different types of relationships have different weights.
Consequently, in this paper we use the weighted term
frequency inverse document frequency coupling
scheme (WTFIDF) to calculate the structural coupling
strength (SCS) between classes. In this method, we
utilize calculated weights mentioned in the previous
section for 8 types of structural relationships extracted
in section 4.1. The results show that WTFIDF has better
performance than other methods as the re-modulation
solutions produced by this method are more reliable and
cover more aspects than other schemes [28].

Equation 7 shows how to calculate the strength of
coupling between two classes based on WTFIDF.

𝑆𝐶𝑆𝑊𝑇𝐹𝐼𝐷𝐹(𝑐𝑖 , 𝑐𝑗) =
∑ 𝑤𝑟×𝑛𝑟(𝑐𝑖,𝑐𝑗)𝑟∈𝑅

∑ ∑ 𝑤𝑟×𝑛𝑟(𝑐𝑘,𝑐𝑗)𝑟∈𝑅
|𝑐|
𝑘=1

× log
|𝐶|

𝑛𝐶𝑗
+

∑ 𝑤𝑟×𝑛𝑟(𝑐𝑗,𝑐𝑖)𝑟∈𝑅

∑ ∑ 𝑤𝑟×𝑛𝑟(𝑐𝑘,𝑐𝑖)𝑟∈𝑅
|𝑐|
𝑘=1

× log
|𝐶|

𝑛𝐶𝑖
 (7)

Where 𝑐𝑖 and 𝑐𝑗 are two classes, 𝐶 is the set of all

classes, |𝐶| is the number of all classes in 𝐶, 𝑅 is the set
of relationship types (𝑟), 𝑛𝑐𝑖 is the number of classes

Volume 16- Number 1 – 2024 (28 -41)

33

related to 𝑐𝑖, 𝑤𝑟 is the weight of relationship type 𝑟, and
𝑛𝑟(𝑐𝑖 , 𝑐𝑗) is the number of samples of relationship type

𝑟 from 𝑐𝑖 to 𝑐𝑗 [28].

D. Many-objective formulation

In this phase, the input is CCCS and the output is
the many-objective formulated re-modularization
problem (MOFP). To navigate the search-based re-
modularization algorithm for better re-modularization,
it needs to be formulated. As mentioned before, in this
paper, four objectives are investigated to obtain a re-
modularization method. Therefore, in this part, Pareto
optimization is used to study multiple objectives. This
method determines if a solution is better than another
one or not. In the Pareto optimization method, each set
of objectives lead to a different many-objective formula
for the problem [16]. Equation 1 shows how to
determine re-modularization solution (M*).

It is important to have more than one non-
dominated re-modularization solution. Therefore, to
determine the best solution, the following equation
needs to be established between the better solution (M1)
and another one (M2) [16]. Pareto optimization search
finds a set of non-dominated re-modularization
solutions in this set.

𝐹(𝑀1) > 𝐹(𝑀2) ⟺ ∀𝑖. 𝐹𝑖(𝑀1)
≥ 𝐹𝑖(𝑀2) ∧ ∃𝑖. 𝐹𝑖(𝑀1)
> 𝐹𝑖(𝑀2) (8)

In this paper, as mentioned before, the structural
aspects of software systems are considered. The
purpose of the proposed method is to re-modularize
object-oriented classes into the package automatically.
The main feature of this re-modularization is software
connection reduction and software cohesion increase.
To achieve this goal, we use four objective functions:
TotalIntraCoupling as in [10], TotalInterCoupling,
IsolatedPackageIndex and MaxMinDifferent. These
functions are explained in Equations 9-13, respectively.

𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑡𝑟𝑎𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔

=∑𝐼𝑛𝑡𝑟𝑎𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔(𝑃𝑘) (9)

𝑛

𝑘=1

Where,

𝐼𝑛𝑡𝑟𝑎𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔(𝑃𝑘)

=
∑ ∑ 𝑆𝐶𝑆(𝑐𝑖 , 𝑐𝑗∀ 𝑐𝑗 ∈𝑃𝑘 ,𝑐𝑖≠𝑐𝑗

)∀ 𝑐𝑖 ∈𝑃𝑘

∑ ∑ 𝑆𝐶𝑆(𝑐𝑖 , 𝑐𝑗)
|𝑐|
𝑗=1

|𝑐|
𝑖=1

 (10)

Where k is the number of packages.

𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔

= 1 − (
𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑡𝑟𝑎𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔

∑ ∑ 𝑆𝐶𝑆(𝑐𝑖 , 𝑐𝑗)
|𝑐|
𝑗=1

|𝑐|
𝑖=1

) (11)

𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑑𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐼𝑛𝑑𝑒𝑥
= 1

− (
𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑁𝑢𝑚𝑏𝑒𝑟

𝑎𝑙𝑙𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑁𝑢𝑚𝑏𝑒𝑟
) (12)

𝑀𝑎𝑥𝑀𝑖𝑛𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡

= {

0 𝑚𝑎𝑥𝑃𝑎𝑐𝑘𝑎𝑔𝑒 = 𝑚𝑖𝑛𝑃𝑎𝑐𝑘𝑎𝑔𝑒 = 1

1 − (
𝑚𝑎𝑥𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑠𝑖𝑧𝑒 − 𝑚𝑖𝑛𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑠𝑖𝑧𝑒

𝑚𝑎𝑥𝑃𝑎𝑐𝑘𝑎𝑔𝑒
) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13)

To evaluate a re-modularization solution,
multiplicative aggregate fitness function is used based
on the four-quality metrics:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = TotalIntraCoupling
× TotalInterCoupling
× IsolatedPackageIndex
× MaxMinDifferent (14)

E. Applying Harmony Search Algorithm

As shown in Figure 3, MOFP is the input in this
phase and the output is re-modularized object-oriented
software system. Harmony search (HS) algorithm is a
population-based meta heuristic method [35]. This
algorithm uses random search where the decision
variables do not need to be initialized [10]. Figure 5
shows the flowchart of HS algorithm.

HS algorithm is used in different fields. Some
instances are presented in Figure 6. In this paper, this
algorithm is applied for software re-modularization.HS
algorithm involves 6 steps [37]: (1) encoding the
optimization problem and initializing the algorithm
parameters, (2) initializing the harmony memory, (3)
improvising a new harmony, (4) updating the harmony
memory, (5) recording the best solution in HM, and (6)
investigating the termination criterion. In this paper, a
modified HS algorithm called MHS that supports
unusual discrete optimization problem is used based on
HSBRA [10] as a re-modularization method. This is
because the main algorithm is usually suitable for
continuous optimization problems while the re-
modularization problem is an unusual discrete
optimization problem [10].

To apply the HS algorithm, in the first step of this
algorithm (initializing the algorithm parameters),
HMCR and PAR are introduced as the following
Equations:

𝐻𝑀𝐶𝑅(𝑔𝑛) =
(𝑔𝑛 + 1)

𝑁𝐼
 (15)

𝑃𝐴𝑅(𝑔𝑛) =
𝑔𝑛

𝑁𝐼
 × 𝑒

−ln((
𝑔𝑛+1
𝑁𝐼)×𝑔𝑛)

 (16)

Where 𝑔𝑛 and 𝑁𝐼 are generation number and
maximum number of improvisations, respectively.

In improvising a new harmony step, to select the
value of the decision variable from the values stored in
the harmonic memory, the main idea in this paper is to
use the best solutions in the harmony memory and
improve them. Therefore, instead of randomly selecting
the decision variables from the harmony memory, the
vector with maximum fitness is first extracted from
solutions vectors in the harmony memory. Then,
dimension 𝑗 is presented as dimension 𝑗 in the new
solution. This operation is applied to all decision
variables of the new decision solution with probability
HMCR.

Volume 16- Number 1 – 2024 (28 -41)

34

Figure 5. Flowchart of HS algorithm [36]

Figure 6. Applications of HS algorithm in different fields [36]

In the proposed method, in addition to the vectors in
the harmony memory, the best vectors in the harmony
memory can increase the performance of re-
modularization.

To create a new value for the decision variable 𝑗,
the basis of the work is to reduce the number of
individual packages (the packages with one class) or

packages with less than five classes. This increases
evaluation criteria NED and MQ. According to the
proposed method, after extracting the vector with
maximum fitness, the number of individual packages or
packages with less than five classes in the vector is
calculated. If there are different individual packages (or
with less than five classes), the maximum coupling
strength between class 𝑗 and the classes in individual

Power

engineering

Scheduling Medical Data mining Agriculture

Image

processing
Manufacturing

and designing

Health care Astronomy

Water resource

management

Communication

system

Applications of HS

Volume 16- Number 1 – 2024 (28 -41)

35

packages (or with less than five classes) is computed. If
this number is zero, the proposed system chooses one
of the values of the decision variable in the set of
{1,2,…,p} (p is the number of packages with 10%
classes of all classes in the software systems) as the
value of the decision variable 𝑗 in the new solution.
Otherwise, class 𝑗 in the new solution is placed in an
individual package with which it has maximum
connection. This operation is applied to all decision
variables of the new solution with the probability of 1-
HMCR.

Using this method reduces the number of individual
packages and the connections between the packages,
but increases cohesion. Consequently, MQ is increased,
the number of individual packages is reduced, the
number of classes in the package is increased, and NED
is improved.

To replace the decision variable (𝑐𝑗
𝑛𝑒𝑤) with its

neighbor, according to the MHS method, the first class
with maximum SCS compared to 𝑐𝑗

𝑛𝑒𝑤 is extracted and

replaced with 𝑐𝑗
𝑛𝑒𝑤. If there is no class that is connected

with 𝑐𝑗
𝑛𝑒𝑤, the value of decision variable is set to one of

the values in {1,2,…n}(n is total number of classes)
randomly. These operations are applied to 𝑐𝑗

𝑛𝑒𝑤 with

the probability PAR and 𝑐𝑗
𝑛𝑒𝑤is not changed with the

probability 1-PAR. The computational procedure of the
proposed MHS is summarized in Figure 7 in the form
of a pseudo code.

V. EXPERIMENTS

This section includes four main subsections. In the
first part, the data set used in this paper for testing the
proposed system is explained. In the second part, the
evaluation criteria are introduced. In the third part, the
parameters in the algorithms used and their values are
expressed. In the last part, the results of the proposed
system testing are provided. In this part, the results
obtained are analyzed and compared with the results of
other methods based on the evaluation criteria.

A. Dataset

In this research, a software set is used as dataset.
The features of these software systems are expressed in
Table 2. The software systems are java language source
codes and open sources. These software systems have
been widely used by some researchers to evaluate their
proposed methods like [10][28][17][20][38]. As shown
in Table 1, the super classes and packages number in
each software is different from others and are in wide
ranges. These features were extracted by STAN tool.
The general schemes of the software systems used are
shown in Figures 8-10.

TABLE I. THE CHARACTERISTICS OF THE SOFTWARE

SYSTEMS USED

Packages

number

Super

classes

number

Version
Software

System

6 47 3.8.1 Junit

4 63 2.3
Java Servlet

API

16 170 1.5.2 DOM 4J

Algorithm: MHS Algorithm

Step1: Set Parameters: HMS, HMCR, PAR

Step2: Initialize Harmony Memory (HM)

 𝐹𝑜𝑟 (𝑖 = 1 𝑡𝑜 𝐻𝑀𝑆) 𝑑𝑜 //HMS is the size of harmony memory

 𝐼𝑓 (𝑖 <= 𝐻𝑀𝑆/2) 𝑡ℎ𝑒𝑛

 𝐹𝑜𝑟 (𝑗 = 1 𝑡𝑜 𝑛) 𝑑𝑜 //n is the total number of classes

 𝑐𝑗
𝑖 ← 𝑅𝑎𝑛𝑑𝑖𝑛𝑡(𝑈𝐵𝑖 − 𝐿𝐵𝑖)/*select random integer value between 𝑈𝐵𝑖 = 𝑛 𝑎𝑛𝑑 𝐿𝐵𝑖 = 0*/

 𝐸𝑛𝑑 𝑓𝑜𝑟

 𝐸𝑙𝑠𝑒

 𝐹𝑜𝑟 (𝑗 = 1 𝑡𝑜 𝑛) 𝑑𝑜 // n is the total number of classes

 𝑐𝑗
𝑖 ← 𝑅𝑎𝑛𝑑𝑖𝑛𝑡(𝑈𝐵𝑖 − 𝐿𝐵𝑖) /*select random integer value between 𝑈𝐵𝑖 = (𝑛 ∗ 10)/100 𝑎𝑛𝑑 𝐿𝐵𝑖 = 0 */

 𝐸𝑛𝑑 𝑓𝑜𝑟

 𝐸𝑛𝑑 𝑖𝑓

 𝑓(𝑐𝑖) = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑐𝑖)

 𝐸𝑛𝑑 𝑓𝑜𝑟

Step3: Improvisation harmony 𝑐𝑛𝑒𝑤

 𝐹𝑜𝑟 (𝑗 = 1 𝑡𝑜 𝑛) 𝑑𝑜 //n is the total number of classes

 𝐼𝑓 (𝑟1 < 𝐻𝑀𝐶𝑅) 𝑡ℎ𝑒𝑛 //𝑟1 is a uniform random number in the range of [0,1]

 𝑐𝑗
𝑛𝑒𝑤 = 𝑐𝑗

𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 , 𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 ∈ (1,… , 𝐻𝑀𝑆)

 𝐼𝑓 (𝑟2 < 𝑃𝐴𝑅) 𝑡ℎ𝑒𝑛 //𝑟2 is a uniform random number in the range of [0,1]

 𝑐𝑗
𝑛𝑒𝑤 = 𝐺𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟(𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠, 𝑗) //𝑐𝑗

𝑛𝑒𝑤 is replaced by its neighbor

 𝐸𝑛𝑑 𝑖𝑓

 𝐸𝑙𝑠𝑒

 𝑐𝑗
𝑛𝑒𝑤 = 𝐺𝑒𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠)

 𝐸𝑛𝑑 𝑖𝑓

 𝐸𝑛𝑑 𝑓𝑜𝑟

 𝑓(𝑐𝑛𝑒𝑤) = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑐𝑛𝑒𝑤) //Perform fitness computation

Step4: Update the Harmony memory

 𝐼𝑓 (𝑓(𝑐𝑛𝑒𝑤) > 𝑓 (𝑐𝑤𝑜𝑟𝑠𝑡)) 𝑡ℎ𝑒𝑛 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝐻𝑀 𝑎𝑠 𝑐𝑤𝑜𝑟𝑠𝑡 = 𝑐𝑛𝑒𝑤

Step5: 𝑅𝑒𝑐𝑜𝑟𝑑 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝐻𝑀

Step6: 𝐼𝑓 (𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎) 𝑡ℎ𝑒𝑛

 𝑒𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝐻𝑀

 𝑒𝑙𝑠𝑒

 𝑟𝑒𝑡𝑢𝑟𝑛 step3

Figure 7. The computational procedure of the proposed MHS

Volume 16- Number 1 – 2024 (28 -41)

36

Figure 8. The general scheme of Junit software

Figure 9. The general scheme of Java Servlet API software

Figure 10. The general scheme of DOM 4J software

Volume 16- Number 1 – 2024 (28 -41)

37

B. Evaluation Criteria

In the field of re-modularization, there are standard
criteria to test different methods. Therefore, to
investigate the performance of the proposed method
and evaluate it, in addition to the multiplicative
aggregate fitness function obtained from four objective
functions, two evaluation criteria MQ [4] and NED [39]
are used in the present paper.

Modularization quality (MQ) tradeoffs between
inter-connectivity and intra-connectivity [4]. To
calculate MQ, Cluster Factor (CF) needs to be obtained
for each cluster (i). Equation 17 shows how CF is
calculated.

𝐶𝐹𝑖 = {

0 𝜇𝑖 = 0
2𝜇𝑖

2𝜇𝑖 +∑ (𝜀𝑖,𝑗 + 𝜀𝑗,𝑖)
𝑘
𝑗=1
𝑖≠𝑗

 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (17)

Where 𝑖 and 𝑗 are two different clusters and 𝑘 is the
clusters number, 𝜇𝑖 is the intra-cluster coupling
strength of 𝑖 cluster (it means intra edges of cluster 𝑖),
𝜀𝑖,𝑗 and 𝜀𝑗,𝑖 are coupling strengths for the relation that

originates in cluster 𝑖 and terminates in cluster 𝑗, and
coupling strength for the relation that originates in
cluster 𝑗 and terminates in cluster 𝑖, respectively.

MQ is obtained from the sum of 𝐶𝐹𝑖 for all clusters
in the software (Equation 18).

𝑀𝑄 = 𝑆𝑢𝑚𝑖=1
𝑘 𝐶𝐹𝑖 (18)

More MQ shows better re-modularization.

Software re-modularization must not create very
small or large modules, as they are not normal and lead
to increased connections between packages and
reduced package cohesion. Therefore, Non-Extreme
Distribution (NED) criteria measure the extremity of
module distribution. NED is introduced in Equation 19.

𝑁𝐸𝐷 =
∑ |𝑀𝑖|
𝑘
𝑖=1,𝑀𝑖 𝑛𝑜𝑡 𝑒𝑥𝑡𝑟𝑒𝑚𝑒

𝑛

𝑀𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑖𝑓 5 < |𝑀𝑖| < 1.5 × |𝑀𝑚𝑎𝑥|

 (19)

Where |𝑀𝑖| is the size of module 𝑖, 𝑘 is the modules
number, 𝑛 is the number of all classes in the system,
|𝑀𝑚𝑎𝑥| is the size of the largest module in the current
organization of software modules.

C. Parameters Settings

To evaluate our method, we have compared it with
three popular methods, HSBRA [10], GA and HC. But
before comparison, it needs to justify the parameters of
each algorithm. To set them, we have followed previous
research like [10][16][40][41][42]. Table 2 shows the
parameters and their values used in this paper. In
addition, we choose the number of fitness evaluations
(NFE) for fair comparison amongst meta-heuristic
algorithms. For all the three considered algorithms, we
set 𝑁𝐹𝐸 = 20000 as stopping criteria. To achieve this
purpose, HMS is set to 50 and the number of

improvisations is set to 400. In RMMOF, HMS is set
to 20 and the number of improvisations is set to 1000
for HSBRA. For the GA algorithm, population size and
the number of generations are set to 20 and 1000 ,
respectively. Finally, in the HC algorithm, the number
of iterations is set to 20000.

TABLE II. PARAMETERS VALUES OF DIFFERENT ALGORITHMS

TABLE III. A
LGORITHM

TABLE IV. P
ARAMETER

TABLE V. S
YMBOL

TABLE VI. V
ALUE

RMMOF

Harmony

Memory Size
HMS 50

Harmony

Memory

Consideration

Rate

HMCRmin 0.7

HMCRmax 0.99

Pitch

Adjustment

Rate

PARmin 0.01

PARmax 0.99

Number of

Improvisation
NI 400

HSBRA

Harmony

Memory Size
HMS 20

Harmony

Memory

Consideration

Rate

HMCRmin 0.7

HMCRmax 0.99

Pitch

Adjustment

Rate

PARmin 0.01

PARmax 0.99

Number of

Improvisation
NI 1000

GA

Crossover

Probability
Pcr 0.80

Mutation

Probability
Pmt 0.15

Population

Size
PS 20

Number of

Generation
NG 1000

HC
Number of

Iteration
NI 20000

D. Experiments Results

To evaluate the proposed method, two tests have
been designed and run. In Test 1, the effect of different
meta-heuristic algorithms on re-modularization in
RMMOF method is investigated based on MQ and
NED. In this test, in addition to comparing various
meta-heuristic algorithms, MHS algorithm is run on 3
different datasets. In Test 2, the proposed method
RMMOF is compared with the methods proposed in
[10] based on Fitness, MQ and NED.

1) Test 1: the effect of different meta-heuristic

algorithms in RMMOF on re-modularization based on

Fitness, MQ and NED
In this part, the effects of the proposed meta-

heuristic algorithm MHS, GA and HC on re-
modularization are investigated. The purpose of this test
is to investigate the performance of re-modularization
using different meta-heuristic algorithms based on the
criteria introduced in the previous subsection. Figures
11-13 show the result of this test in different systems.
To examine the proposed method in different systems
and find the application in which this method has the
highest efficiency, the experimental results of the MHS

Volume 16- Number 1 – 2024 (28 -41)

38

are also reported based on different software systems,
as shown in Figure 14.

Figure 11. The result of Test1 on Junit system

Figure 12. The result of Test1 on Java Servlet API system

Figure 13. The result of Test1 on DOM 4J system

Figure 14. The result of Test1 on MHS

Discussion
As shown in Figure 11, the proposed method MHS

has better performance than others based on MQ, NED
and Fitness on Junit system. This means that using
Harmony search-based algorithm with the proposed
changes enhances the efficiency of re-modularization

and decreases extreme modules. Therefore, in this
algorithm, the fitness obtained from the four proposed
objective functions is also remarkably higher. In
contrast, using GA and HC reduces the NED to a great
extent. This means that the size of the modules created
is very heterogeneous and different from each other. As
for the other criteria, the results obtained from using
these two algorithms are approximately similar. By
investigating the formulations of the three criteria and
their values for each algorithm, we observed that if both
MQ and NED are high, Fitness criteria are enhanced.
However, if the algorithm has less efficiency based on
MQ and NED, Fitness is reduced.

As shown in Figure 12, the value of MQ in the
proposed method is higher compared to others, while
the values of NED and Fitness in the three algorithms
on Java Servlet API system are approximately similar.
In addition, these results show that the proposed method
has a much poorer performance on the Java Servlet API
system than Junit. However, the performances of GA
and HC on Java Servlet API system and Junit are almost
the same.

According to Figures 11 and 12, it seems that HC
and GA are not able to distribute the classes with a
homogenous size based on Junit and Java Servlet API
which are small applications in terms of size.

As shown in Figure 13, the performance of the
proposed method based on the three criteria is better
compared to others on DOM 4J system. The
performance of GA and HC is approximately similar. It
is clear that the proposed method has been able to re-
modularize the system (MQ) better than reducing the
size of modules (NED).

By considering all three figures, it can be concluded
that the proposed method has a better performance on
all three datasets than others and MHS algorithm is
more suitable on the first dataset (Junit system) among
these three datasets. The results are shown in Figure 14.

As explained before, to compare the results of Test
1 in MHS based on different systems, the results in
Figure 14 show that the proposed algorithm has the best
performance on Junit based on all the proposed criteria.
This indicates that the proposed method is suitable for
the small applications. The reason for obtaining a
higher MQ and NED on DOM 4J compared to Java
Servlet API, despite the smaller size of Java Servlet
API, is the type of dependencies in Java Servlet API
software.

2) Test 2: the comparison between the proposed

re-modularization method RMMOF and the methods

proposed in [10] based on MQ and NED
To evaluate the proposed method, we should

compare it with other similar methods. Therefore, in
this part, the proposed method (RMMOF) is compared
with the 4 methods proposed in [10]. In [10], four
Harmony search-based re-modularizations have been
proposed based on linear and exponential changes in
Harmony Memory Consideration Rate (HMCR) and
Pitch Adjusting Rate (PAR). Figures 15 and 16 show
the results of these comparisons based on MQ and
NED.

0

0.5

1

1.5

MQ NED Fitness

MHS GA HC

0

0.1

0.2

0.3

0.4

0.5

0.6

MQ NED Fitness

MHS GA HC

0

0.2

0.4

0.6

0.8

1

MQ NED Fitness

MHS GA HC

0

0.5

1

1.5

MQ NED Fitness

Junit Java Servlet API DOM 4J

Volume 16- Number 1 – 2024 (28 -41)

39

Figure 15. The result of Test2 based on MQ

Figure 16. The result of Test2 based on NED

Discussion
As shown in Figure 15, the proposed method has the

best MQ on Junit, Java Servlet API and DOM 4J
systems, while RMMOF has the best result on DOM 4J
among the three data sets. As shown in this figure, the
improvement of the proposed method in comparison to
other methods is more obvious on Junit system. Among
the proposed methods in [10], HSBRA3 has the best
MQ on all the three systems. In HSBRA3, HMCR is
changed linearly and PAR is changed exponentially
during the improvisation. The important difference
between RMMOF and HSBRA is the use of modified
harmony algorithm (MHS) and using the proposed
fitness function with four different and effective
objective functions. These improvements seem to lead
to better results in terms of MQ. What is clear in this
figure is that the improvement rate of the proposed
method on small applications is more evident as
compared to the methods proposed in [10].

As indicated in Figure 16, the results of applying
RMMOF on re-modularization are better compared to
others. Applying the proposed improvements also has
positive impacts on NED. In this test, HSBRA3 has
better performance compared to the other methods
proposed in [10].

It seems using various structural relationships and
suitable relative weights for them helps to maximize the
total intra coupling of the modules and minimize the
total coupling inter modules. In addition, using MHS
algorithm as a meta-heuristic algorithm and new fitness
function is effective to obtain the best MQ and NED.

VI. CONCLUSION

Although most software systems are designed and
developed modularly at first, modularity is degraded
over time. Re-modularization is used to improve the
modular structure of software system. In this paper, the
proposed method recognizes various dependencies in
terms of an objective function. In this method, a search-
based many-objective fitness function is proposed to
formulate re-modularization as an optimization
problem. To solve these objective functions, a helpful
harmony-based algorithm called MHS has been used.
The experiments and comparison results have shown
the efficiency of the proposed method in re-
modularization compared to other methods.

VII. REFERENCES

[1] V. Lenarduzzi, A. Sillitti, and D. Taibi, “Analyzing forty years
of software maintenance models,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion
(ICSE-C), 2017, pp. 146–148.

[2] M. Gupta, A. Serebrenik, and P. Jalote, “Improving software
maintenance using process mining and predictive analytics,” in
2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2017, pp. 681–686.

[3] A. H. F. Tabrizi and H. Izadkhah, “Software modularization by
combining genetic and hierarchical algorithms,” in 2019 5th
Conference on Knowledge Based Engineering and Innovation
(KBEI), 2019, pp. 454–459.

[4] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R.
Gansner, “Using automatic clustering to produce high-level
system organizations of source code,” in Proceedings. 6th
International Workshop on Program Comprehension.
IWPC’98 (Cat. No. 98TB100242), 1998, pp. 45–52.

[5] L. Mu, V. Sugumaran, and F. Wang, “A hybrid genetic
algorithm for software architecture re-modularization,” Inf.
Syst. Front., vol. 22, no. 5, pp. 1133–1161, 2020.

[6] [6] B. Pourasghar, H. Izadkhah, A. Isazadeh, and S. Lotfi, “A
graph-based clustering algorithm for software systems
modularization,” Inf. Softw. Technol., vol. 133, p. 106469,
2021.

[7] M. Kargar, A. Isazadeh, and H. Izadkhah, “Improving the
modularization quality of heterogeneous multi-programming
software systems by unifying structural and semantic
concepts,” J. Supercomput., vol. 76, no. 1, pp. 87–121, 2020,
doi: 10.1007/s11227-019-02995-3.

[8] A. Isazadeh, H. Izadkhah, and I. Elgedawy, Source code
modularization: theory and techniques. springer, 2017.

[9] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Software
re-modularization based on structural and semantic metrics,”
in 2010 17th Working Conference on Reverse Engineering,
2010, pp. 195–204.

[10] J. K. Chhabra and others, “Harmony search based
remodularization for object-oriented software systems,”
Comput. Lang. Syst. \& Struct., vol. 47, pp. 153–169, 2017.

[11] B. S. Mitchell and S. Mancoridis, “On the automatic
modularization of software systems using the bunch tool,”
IEEE Trans. Softw. Eng., vol. 32, no. 3, pp. 193–208, 2006.

[12] A. M. Saeidi, J. Hage, R. Khadka, and S. Jansen, “A search-
based approach to multi-view clustering of software systems,”
in 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), 2015, pp.
429–438.

[13] F. Morsali and M. R. Keyvanpour, “Search-based software
module clustering techniques: A review article,” in 2017 IEEE
4th International Conference on Knowledge-Based
Engineering and Innovation (KBEI), 2017, pp. 977–983.

[14] J. Hwa, S. Yoo, Y.-S. Seo, and D.-H. Bae, “Search-based
approaches for software module clustering based on multiple
relationship factors,” Int. J. Softw. Eng. Knowl. Eng., vol. 27,
no. 07, pp. 1033–1062, 2017.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Junit Java Servlet API DOM 4J

RMMOF HSBRA4 HSBRA3 HSBRA2 HSBRA1

85

90

95

100

Junit Java Servlet API DOM 4J

RMMOF HSBRA4 HSBRA3 HSBRA2 HSBRA1

Volume 16- Number 1 – 2024 (28 -41)

40

[15] J. K. Chhabra and others, “Many-objective artificial bee colony
algorithm for large-scale software module clustering problem,”
Soft Comput., vol. 22, no. 19, pp. 6341–6361, 2018.

[16] K. Praditwong, M. Harman, and X. Yao, “Software module
clustering as a multi-objective search problem,” IEEE Trans.
Softw. Eng., vol. 37, no. 2, pp. 264–282, 2010.

[17] W. Mkaouer et al., “Many-objective software remodularization
using NSGA-III,” ACM Trans. Softw. Eng. Methodol., vol. 24,
no. 3, pp. 1–45, 2015.

[18] G. Scanniello, A. D’Amico, C. D’Amico, and T. D’Amico,
“Using the kleinberg algorithm and vector space model for
software system clustering,” in 2010 IEEE 18th International
Conference on Program Comprehension, 2010, pp. 180–189.

[19] C. Patel, A. Hamou-Lhadj, and J. Rilling, “Software clustering
using dynamic analysis and static dependencies,” in 2009 13th
European Conference on Software Maintenance and
Reengineering, 2009, pp. 27–36.

[20] M. de O. Barros, “An analysis of the effects of composite
objectives in multiobjective software module clustering,” in
Proceedings of the 14th annual conference on Genetic and
evolutionary computation, 2012, pp. 1205–1212.

[21] J. Huang and J. Liu, “A similarity-based modularization quality
measure for software module clustering problems,” Inf. Sci.
(Ny)., vol. 342, pp. 96–110, 2016.

[22] N. Teymourian, H. Izadkhah, and A. Isazadeh, “A fast
clustering algorithm for modularization of large-scale software
systems,” IEEE Trans. Softw. Eng., 2020.

[23] A. Khalilipour and M. Challenger, “Automatic Re-
modularization of Clustered Codes Considering Invocation
Types,” in 2021 7th International Conference on Web Research
(ICWR), 2021, pp. 109–113.

[24] A. Prajapati, “Software Package Restructuring with Improved
Search-based Optimization and Objective Functions,” Arab. J.
Sci. Eng., pp. 1–21, 2021.

[25] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. de
Lucia, “Improving software modularization via automated
analysis of latent topics and dependencies,” ACM Trans.
Softw. Eng. Methodol., vol. 23, no. 1, pp. 1–33, 2014.

[26] R. Naseem, O. Maqbool, and S. Muhammad, “Cooperative
clustering for software modularization,” J. Syst. Softw., vol.
86, no. 8, pp. 2045–2062, 2013.

[27] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Using
structural and semantic measures to improve software
modularization,” Empir. Softw. Eng., vol. 18, no. 5, pp. 901–
932, 2013.

[28] J. K. Chhabra and others, “Improving modular structure of
software system using structural and lexical dependency,” Inf.
Softw. Technol., vol. 82, pp. 96–120, 2017.

[29] “http://www.stan4j.com/.”

[30] “http://www.structure101.com/.”.

[31] H. Abdeen, S. Ducasse, and H. Sahraoui, “Modularization
metrics: Assessing package organization in legacy large object-
oriented software,” in 2011 18th Working Conference on
Reverse Engineering, 2011, pp. 394–398.

[32] F. B. e Abreu, G. Pereira, and P. Sousa, “A coupling-guided
cluster analysis approach to reengineer the modularity of
object-oriented systems,” in Proceedings of the fourth
european conference on software maintenance and
reengineering, 2000, pp. 13–22.

[33] F. B. e Abreu and M. Goulao, “Coupling and cohesion as
modularization drivers: Are we being over-persuaded?,” in
Proceedings Fifth European Conference on Software
Maintenance and Reengineering, 2001, pp. 47–57.

[34] C. Y. Chong and S. P. Lee, “Analyzing maintainability and
reliability of object-oriented software using weighted complex
network,” J. Syst. Softw., vol. 110, pp. 28–53, 2015.

[35] X. Wang, X.-Z. Gao, and K. Zenger, “The overview of
harmony search,” in An introduction to harmony search
optimization method, Springer, 2015, pp. 5–11.

[36] M. Dubey, V. Kumar, M. Kaur, and T.-P. Dao, “A systematic
review on harmony search algorithm: theory, literature, and
applications,” Math. Probl. Eng., vol. 2021, 2021.

[37] M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved
harmony search algorithm for solving optimization problems,”
Appl. Math. Comput., vol. 188, no. 2, pp. 1567–1579, 2007.

[38] U. Erdemir and F. Buzluca, “A learning-based module
extraction method for object-oriented systems,” J. Syst. Softw.,
vol. 97, pp. 156–177, 2014.

[39] J. Wu, A. E. Hassan, and R. C. Holt, “Comparison of clustering
algorithms in the context of software evolution,” in 21st IEEE
International Conference on Software Maintenance
(ICSM’05), 2005, pp. 525–535.

[40] V. Kumar, J. K. Chhabra, and D. Kumar, “Parameter adaptive
harmony search algorithm for unimodal and multimodal
optimization problems,” J. Comput. Sci., vol. 5, no. 2, pp. 144–
155, 2014.

[41] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer,
“Self-adapting control parameters in differential evolution: A
comparative study on numerical benchmark problems,” IEEE
Trans. Evol. Comput., vol. 10, no. 6, pp. 646–657, 2006.

[42] A. Farrugia, “Vertex-partitioning into fixed additive induced-
hereditary properties is NP-hard,” arXiv Prepr. math/0306158,
2003.

Mohammad Reza Keyvanpour is a
Professor at Alzahra University,
Tehran, Iran. He received his B.Sc.
degree in Software Engineering from
Iran University of Science &
Technology, Tehran, Iran. He received
his M.Sc. and Ph.D. degrees in

Software Engineering from Tarbiat Modares
University, Tehran, Iran. His research interests include
Software Engineering and Data Mining.

Zahra Karimi Zandian received her
B.Sc. degree in Software Engineering
from Islamic Azad University, South
Tehran Branch, Tehran, Iran. She also
received her M.Sc. degree in Software
Engineering from Alzahra University,

Tehran, Iran. Her research interests include Data
Mining, Machine Learning, Software Engineering,
Fraud Detection and Social Network Analysis.

Email: z.karimizandian@yahoo.com

Fatemeh Morsali received her M.Sc. in
Software Engineering from Alzahra
University, Tehran, Iran. Her research
interests include Software Engineering,
Machine Learning and Data Mining.

Volume 16- Number 1 – 2024 (28 -41)

41

