Volume 15, Issue 4 (10-2023)                   itrc 2023, 15(4): 41-52 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

sheikhi nejad S, Khadem Zadeh A, Rahmani A M, Broumandnia A. Resource Allocation optimization in fog Architecture Based Software-Defined Networks. itrc 2023; 15 (4) : 42
URL: http://journal.itrc.ac.ir/article-1-543-en.html
1- Department of Computer Engineering, Islamic Azad University South Branch, Tehran, Iran s.sheikhynejad9834@gmail.com
2- Department of Computer Engineering, Research Center ITRC, Tehran, Iran , a.khademzadeh@itrc.ac.ir
3- Future Technology Research Center, National Yunlin University of Science and Technology, Taiwan
4- Department of Computer Engineering, Islamic Azad University South Branch, Tehran, Iran
Abstract:   (1603 Views)
As a growing of IoT devices, new computing paradigms such as fog computing are emerging. Fog computing is more suitable for real-time processing due to the proximity of resources to IoT layer devices. Service providers must dynamically update the hardware and software parameters of the network infrastructure. Software defined network (SDN) proposed as a new network paradigm, whose separate control layer from data layer and provides flexible network management. This paper presents a software-defined fog platform to host real-time applications in IoT. Then, we propose a novel resource allocation method. This method involves scheduling multi-node real-time task graphs over the fog to minimize task execution latency. The proposed method is designed to benefit the centralized structure of SDN. The simulation results show that the proposed method can find near to optimal solutions in a very lower execution time than the brute force method.
Article number: 42
Full-Text [PDF 1015 kb]   (633 Downloads)    
Type of Study: Research | Subject: Network

References
1. [1] F.A.Zaman and J.A.Karmouch,"SDN-based edge cloud resource allocation framework," IEEE Access, vol. 7, pp.10672-10690, 2019. [DOI:10.1109/ACCESS.2018.2889943]
2. [2] "Openfog Reference Architecture for fog computing," Openfog Consortium, Tech. Rep., 2017. [Online]. Available:https://www. openfogconsortium.org
3. [3] N.McKeown,"Software-defined networking, INFOCOM Keynote Talk 17 (2009) 30-32. [DOI:10.1145/1530748.1530749]
4. [4] K. Sood, S. Yu, and Y. Xiang, "Software-Defined Wireless Networking Opportunities and Challenges for Internet-ofThings: A Review," IEEE Internet of Things J., vol. 3, no. 4,pp. 453-463, 2016. [DOI:10.1109/JIOT.2015.2480421]
5. [5] Ch. Bu and J. Wang," computing tasks assignment optimization among edge computing servers via SDN", Springer Peer-to-Peer Networking and Applications,2021. [DOI:10.1007/s12083-021-01081-x]
6. [6] H. Gupta, S. B. Nath, S. Chakraborty, and S. K. Ghosh. (2016) SDfog: A Software-Defined computing Architecture for QoS Aware Service Orchestration over Edge Devices. [Online]. Available: arXiv:1609.01190
7. [7] A. Hakiri, B. Sellami, P. Patil, P. Berthou, and A. Gokhale, "Managing Wireless fog Networks using Software-Defined Networking," in Proc. IEEE/ACS Int. Conf. Computer Systems and Applications, 2017, pp. 1149-1156 [DOI:10.1109/AICCSA.2017.9]
8. [8] S. Tomovic, K. Yoshigoe, I. Maljevic, and I. Radusinovic, "Software-defined fog network architecture for IoT," Springer Wireless Personal Communications, vol. 92, no. 1, pp. 181- 196, 2017. [DOI:10.1007/s11277-016-3845-0]
9. [9] S. Misra and N. Saha, "Detour: dynamic task offloading in software defined fog for IoT applications," IEEE J. on Selected Areas in Communications, vol. 37, no. 5, pp. 1159-1166, May 2019. [DOI:10.1109/JSAC.2019.2906793]
10. [10] S. Misra and S. Bera, "Soft-VAN: Mobility-aware task offloading in software-defined vehicular network," IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 2071-2078, Feb. 2020. [DOI:10.1109/TVT.2019.2958740]
11. [11] Eppstein, D. Subgraph Isomorphism in Planar Graphs and Related Problems. J. Graph. Algorithms Appl. 1999, 3, 1-27. [DOI:10.7155/jgaa.00014]
12. [12] S.K.Sood and K.D.Singh, "SNA Based Resource Optimization in Optical Network using fog and cloud computing, "Optical Switching and Networking.2017.
13. [13] L.Liu,Z.Chang,X.Guo,S.Mao,andT.Ristaniemi,"Multiobjective Optimization for Computation Offloading in fog computing,"IEEE Internet of Things Journal,vol.5,no.1,pp.283-294,2018. [DOI:10.1109/JIOT.2017.2780236]
14. [14] N.Wang, B.Varghese, M.Matthaiou, and D.S.Nikolopoulos, "ENORM: A Framework For Edge Node Resource Management, "IEEE Transactions on Services computing, pp.1-1,2018. [DOI:10.1109/TSC.2017.2753775]
15. [15] M.Shojafar, N.Cordeschi, and E.Baccarelli, "Energy-Efficient Adaptive Resource Management for Real-time Vehicular cloud Services," IEEE Transactions on cloud computing, vol.7, no.1,pp.196-209,2019. [DOI:10.1109/TCC.2016.2551747]
16. [16] D.Zeng, L.Gu, S.Guo, Z.Cheng, and S.Yu, "Joint Optimization of task Scheduling and Image Placement in fog computing Supported Software Defined Embedded System," IEEE Transactions on Computers, vol.65, no.12, pp.3702-3712,2016. [DOI:10.1109/TC.2016.2536019]
17. [17] L.Gu, D.Zeng, S.Guo, A.Barnawi, and Y.Xiang, "Cost Efficient Resource Management in fog computing Supported Medical Cyber-Physical System," IEEE Transactions on Emerging Topics in computing, vol.5, no.1, pp.108-119,2017. [DOI:10.1109/TETC.2015.2508382]
18. [18] Pham-Nguyen, H.N., Tran-Minh, Q., 2019. Dynamic resource provisioning on fog landscapes. Security and Communication Networks 2019. [DOI:10.1155/2019/1798391]
19. [19] S.Bitam, S.Zeadally, and A.Mellouk, "fog computing job scheduling optimization based on bees swarm," Enterprise Information Systems, vol.12, no.4, pp.373-397,2018/04/21 2018 [DOI:10.1080/17517575.2017.1304579]
20. [20] C. Bu, Jinsong Wang. "computing tasks assignment optimization among edge computing servers via SDN," Springer Peer-to-Peer Networking and Applications, vol. 25, no. 3, pp. 1746-1760, 2017.
21. [21] L. Huang, X. Feng, L. Qian, and Y. Wu, "Deep Reinforcement Learning- Based Task Offloading and Resource Allocation for Mobile Edge computing," in EAI Int. Conf. on Machine Learning and Intelligent Communications, 2018, pp. 33-42. [DOI:10.1007/978-3-030-00557-3_4]
22. [22] Y. Cui, J. Song, K. Ren, M. Li, Z. Li, Q. Ren, and Y. Zhang, "Software Defined Cooperative Offloading for Mobile cloudlets," IEEE/ACM Transactions on Networking, vol. 14. pp. 1190-1206, 2021.
23. [23] Mirza, U. M., Arslan, M. A., Cedersjo, G., Sulaman, S. M., and Janneck, J. W. (2014). Mapping and scheduling of dataflow graphs-a systematic map. In Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers page1843-1847. IEEE. [DOI:10.1109/ACSSC.2014.7094787]
24. [24] I. Sugiarto, P. Campos, N. Dahir, G. Tempesti and S. Furber, "Task graph mapping of general purpose applications on a neuromorphic platform", Future Technologies Conference 2017 (FTC 2017 accepted), November 2017.
25. [25] E. Paone, F. Robino, G. Palermo, V. Zaccaria, I. Sander, and C. Silvano, "Customization of OpenCL applications for efficient task mapping under heterogeneous platform constraints," in Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE 2015,Grenoble, France, March 9-13, 2015, pp. 736-741. [DOI:10.7873/DATE.2015.0125]
26. [26] B. Simon, J. Falk, N. Megow, and J.Teich," Energy Minimization in DAG Scheduling on MPSoCs at Run-Time: Theory and Practice" arXiv.1912.09170v1, Dec.2019.
27. [27] K. Taura, A. Chien: A Heuristic Algorithm for Mapping Communicating Tasks on Heterogeneous Resources. 9th Heterogeneous computing Workshop, Cancun, Mexico (May 2000). Of the ACM HotSDN, 2012, pp. 115-120.
28. [28] AHMAD, I. AND KWOK, Y.-K. 1999. On parallelizing the multiprocessor scheduling problem. IEEE Trans. Parallel Distrib. Syst. 10, 4 (Apr.), 414-432. [DOI:10.1109/71.762819]
29. [29] Al-Khawaja M, Baker T, Al-Libawy H, Maamar Z, Aloqaily M, Jararweh Y. Improving fog computing performance via fog2-fog collaboration. Future Generation Comput Syst. 2019;100:266-280. https://doi.org/10.1016/j.future.2019.05.015 [DOI:10.1016/j.future.2019.05.015.]
30. [30] Rahimi, Payam, Chrysostomos Chrysostomou, Haris Pervaiz, Vasos Vassiliou, and Qiang Ni. "dynamic resource allocation for SDN-based virtual Fog-RAN 5G-and-beyond networks." In 2021 IEEE Global Communications Conference (GLOBECOM), pp. 01-06. IEEE, 2021. [DOI:10.1109/GLOBECOM46510.2021.9685458]
31. [31] Alomari, Amirah, Shamala K. Subramaniam, Normalia Samian, Rohaya Latip, and Zuriati Zukarnain. "Resource management in SDN-based cloud and SDN-based fog computing: taxonomy study." Symmetry 13, no. 5 (2021): 734. [DOI:10.3390/sym13050734]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.