1. [11] Kucuk, D., and Can, F. (2022, February). A Tutorial on Stance Detection. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (pp. 1626-1628). [
DOI:10.1145/3488560.3501391]
2. [12] Lai, M., Cignarella, A. T., Farías, D. I. H., Bosco, C., Patti, V., and Rosso, P. (2020). Multilingual stance detection in social media political debates. Computer Speech and Language, 63, 101075. [
DOI:10.1016/j.csl.2020.101075]
3. [13] Zotova, E., Agerri, R., Nuñez, M., and Rigau, G. (2020, May). Multilingual stance detection in tweets: The Catalonia independence corpus. In Proceedings of the 12th Language Resources and Evaluation Conference (pp. 1368-1375).
4. [14] Swami, S., Khandelwal, A., Singh, V., Akhtar, S. S.,and Shrivastava, M. (2018). An english-hindi codemixed corpus: Stance annotation and baseline system. arXiv preprint arXiv:1805.11868.
5. [15] Du, J., Xu, R., He, Y., and Gui, L. (2017, August). Stance classification with target-specific neural attention networks. International Joint Conferences on Artificial Intelligence. [
DOI:10.24963/ijcai.2017/557]
6. [16] Darwish, K., Magdy, W., and Zanouda, T. (2017, September). Trump vs. Hillary: What went viral during the 2016 US presidential election. In International conference on social informatics (pp. 143-161).Springer, Cham. [
DOI:10.1007/978-3-319-67217-5_10]
7. [17] Bar-Haim, R., Bhattacharya, I., Dinuzzo, F., Saha, A., and Slonim, N. (2017, April). Stance classification of context-dependent claims. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers (pp. 251-261). [
DOI:10.18653/v1/E17-1024]
8. [18] Kucuk, D., and Can, F. (2020). Stance detection: A survey. ACM Computing Surveys (CSUR), 53(1), 1-37. [
DOI:10.1145/3369026]
9. [19] Wojatzki, M., and Zesch, T. (2016, June). ltl. uni-due at semeval-2016 task 6: Stance detection in social media using stacked classifiers. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016) (pp. 428-433). [
DOI:10.18653/v1/S16-1069]
10. [20] Cignarella, A. T., Lai, M., Bosco, C., Patti, V., and Paolo, R. (2020). Sardistance@ evalita2020: Overview of the task on stance detection in italian tweets. EVALITA 2020 Seventh Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, 1-10. [
DOI:10.4000/books.aaccademia.7084]
11. [21] Wei, P., Lin, J., and Mao, W. (2018, June). Multi-target stance detection via a dynamic memory-augmented network. In The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1229-1232). [
DOI:10.1145/3209978.3210145]
12. [22] Tutek, M., Sekulić, I., Gombar, P., Paljak, I., Čulinović, F., Boltužić, F., ... and Šnajder, J. (2016, June). Takelab at semeval-2016 task 6: Stance classification in tweets using a genetic algorithm based ensemble. Volume 15- Number 1 - 2023 (63 -71) 70 In Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016) (pp. 464-468). [
DOI:10.18653/v1/S16-1075]
13. [23] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301. 3781.
14. [24] Pennington, J., Socher, R., & Manning, C. D. (2014,October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing [
DOI:10.3115/v1/D14-1162]
15. EMNLP) (pp. 1532-1543).
16. [25] Feng, S. Y., Gangal, V., Wei, J., Chandar, S., Vosoughi,S., Mitamura, T., and Hovy, E. (2021). A survey of data augmentation approaches for NLP. In ACL 2021. [
DOI:10.18653/v1/2021.findings-acl.84]
17. [26] Tidke, P. (2022, February). Text Data Augmentation in Natural Language Processing with Texattack
18. [27] Zhang, X., Zhao, J., and LeCun, Y. (2015). Characterlevel convolutional networks for text classification. Advances in neural information processing systems, 28.
19. [28] Liu, R., Xu, G., Jia, C., Ma, W., Wang, L., and Vosoughi, S. (2020). Data boost: Text data augmentation through reinforcement learning guided conditional generation. In proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) [
DOI:10.18653/v1/2020.emnlp-main.726]
20. [29] Li, B., Hou, Y., and Che, W. (2022). Data augmentation approaches in natural language processing: A survey. AI Open. [30] Beddiar, D. R., Jahan, M. S., and Oussalah, M. (2021). Data expansion using back translation and paraphrasing for hate speech detection. Online Social Networks and Media, 24, 100153. [
DOI:10.1016/j.osnem.2021.100153]
21. [31] Sennrich, R., Haddow, B., and Birch, A. (2015). Improving neural machine translation models with monolingual data. In 54th ACl 2016. [
DOI:10.18653/v1/P16-1009]
22. [32] Yu, A. W., Dohan, D., Le, Q., Luong, T., Zhao, R., and Chen, K. (2018, May). Fast and accurate reading comprehension by combining self-attention and convolution. In International Conference on Learning Representations (Vol. 2, No. 1).
23. [33] d'Sa, A. G., Illina, I., & Fohr, D. (2020, February). Bert and fasttext embeddings for automatic detection of toxic speech. In 2020 International Multi-Conference on:"Organization of Knowledge and Advanced Technologies"(OCTA) (pp. 1-5). IEEE. [
DOI:10.1109/OCTA49274.2020.9151853]
24. [34] Nasiri, H., and Analoui, M. (2022, February). Persian Stance Detection with Transfer Learning and Data Augmentation. In 2022 27th International Computer Conference, Computer Society of Iran (CSICC) (pp. 1-5). IEEE. [
DOI:10.1109/CSICC55295.2022.9780479] [
PMID]
25. [35] Huang, W., and Wang, J. (2016). Character-level convolutional network for text classification applied to chinese corpus. The 3rd international conference on machine learning and machine intelligence (pp. 83-87)
26. [36] Zhang, Y., Jin, R., and Zhou, Z. H. (2010). Understanding bag-of-words model: a statistical framework. International journal of machine learning and cybernetics, 1(1), 43-52. [
DOI:10.1007/s13042-010-0001-0]
27. [37] Qaiser, S., and Ali, R. (2018). Text mining: use of TFIDF to examine the relevance of words to documents. International Journal of Computer Applications, 181(1), 25-29. [
DOI:10.5120/ijca2018917395]
28. [38] Zarharan, M., Ahangar, S., Rezvaninejad, F. S., Bidhendi, M. L., Pilevar, M. T., Minaei, B., and Eetemadi, S. (2019). Persian Stance Classification Data Set. In Conference on Truth and Trust Online [
DOI:10.36370/tto.2019.30]