Volume 15, Issue 3 (9-2023)                   itrc 2023, 15(3): 31-42 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azimzadeh M, Rezaee A, Jafarali Jassbi S, Esnaashari M. An Efficient Application Deployment in Fog. itrc 2023; 15 (3) :31-42
URL: http://journal.itrc.ac.ir/article-1-569-en.html
1- Department of Computer Engineering Science and Research Branch, Islamic Azad University Tehran, Iran
2- Department of Computer Engineering Science and Research Branch, Islamic Azad University Tehran, Iran
3- Faculty of Computer Engineering K. N. Toosi University of Technology University Tehran, Iran , esnaashari@kntu.ac.ir
Abstract:   (1311 Views)
Fog computing emerged to meet to the needs of modern IoT applications, such as low latency, high security, etc. To this end, it brings the network resources closer to the end user. The properties of fog computing, such as heterogeneity, distribution, and resource limitations, have challenged application deployment in this environment. Smart service placement means deploying services of the IoT applications on fog nodes in a way that their service quality requirements are met and fog resources are used effectively. This paper proposes an efficient application deployment method in fog computing using communities. In contrast to previous research, the proposed method uses more factors than topological features to distribute network capacity more evenly between communities. This results in efficient use of network resources and better fulfillment of application requirements. In addition, according to our argument, using multiple criteria to prioritize applications will lead to better deployment and more effective use of resources. For this purpose, we use the number of application requests besides the deadline factor for application prioritization. Extensive simulation results showed that the proposed method significantly outperforms the state-of-the-art methods in terms of meeting deadlines, decreasing delays, increasing resource utilization, and availability by about 17, 33, 7, and 11 percent, respectively.
Full-Text [PDF 1094 kb]   (554 Downloads)    
Type of Study: Research | Subject: Network

References
1. [1] Ayoubi, M., Ramezanpour, M., and Khorsand, R., "An autonomous IoT service placement methodology in fog computing." Software: Practice and Experience 51, no. 5 (2021): p. 1097-1120. [DOI:10.1002/spe.2939]
2. [2] Shooshtarian, L., Lan, D., and Taherkordi, A. "A clusteringbased approach to efficient resource allocation in fog computing." In International Symposium on Pervasive Systems, Algorithms and Networks, p. 207-224. Springer,Cham, 2019. [DOI:10.1007/978-3-030-30143-9_17]
3. [3] Schaub, M.T., Delvenne, J.C., Rosvall, M. and Lambiotte, R.,2017. The many facets of community detection in complex networks. Applied network science, 2(1), p.1-13. [DOI:10.1007/s41109-017-0023-6] [PMID] []
4. [4] Ahuja, M., R. Kaur, and D. Kumar, Trend towards the use of complex networks in cloud computing environment. Int JHybrid Inf Technol, 2015. 8(3): p. 297-306. [DOI:10.14257/ijhit.2015.8.3.26]
5. [5] Cazabet, R. and G. Rossetti, Challenges in community discovery on temporal networks, in Temporal Network Theory. 2019, Springer. p. 181-197. [DOI:10.1007/978-3-030-23495-9_10]
6. [6] [6] Lei, Y. and S.Y. Philip, Cloud service community detection for real-world service networks based on parallel graph computing. IEEE Access, 2019. 7: p. 131355-131362. [DOI:10.1109/ACCESS.2019.2910804]
7. [7] Chandusha, K., Chintalapudi, S.R. and Krishna Prasad, M.H.M., 2019. An empirical study on community detection algorithms. In Smart Intelligent Computing and Applications ,p. 35-44, Springer, Singapore. [DOI:10.1007/978-981-13-1921-1_4]
8. [8] Wang, W., Liu, D., Liu, X. and Pan, L., 2013. Fuzzy overlapping community detection based on local random walk and multidimensional scaling. Physica A: Statistical Mechanics and its Applications, 392(24), p.6578-6586. [DOI:10.1016/j.physa.2013.08.028]
9. [9] Xie, J., Kelley, S. and Szymanski, B.K., 2013. Overlapping community detection in networks: The state-of-the-art and comparative study. Acm computing surveys (csur), 45(4), p.1-35. [DOI:10.1145/2501654.2501657]
10. [10] Skarlat, O., S. Schulte, M. Borkowski and P. Leitner. Resource provisioning for IoT services in the fog. in 2016 IEEE 9th international conference on service-oriented computing and applications (SOCA). 2016. IEEE. [DOI:10.1109/SOCA.2016.10]
11. [11] Elkhatib, Y., et al., On using micro-clouds to deliver the fog. IEEE Internet Computing, 2017. 21(2): p. 8-15. [DOI:10.1109/MIC.2017.35]
12. [12] Skarlat, O., M. Nardelli, S. Schulte, M. Borkowski and P. Leitner, Optimized IoT service placement in the fog. Service Oriented Computing and Applications, 2017. 11(4): p. 427-443. [DOI:10.1007/s11761-017-0219-8]
13. [13] Yousefpour, A., G. Ishigaki, R. Gour, and J. P. Jue, On reducing IoT service delay via fog offloading. IEEE Internet of things Journal, 2018. 5(2): p. 998-1010. [DOI:10.1109/JIOT.2017.2788802]
14. [14] Guerrero, C., I. Lera, and C. Juiz. On the influence of fog colonies partitioning in fog application makespan. in 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). 2018. IEEE. [DOI:10.1109/FiCloud.2018.00061] [PMID]
15. [15] Chunaev, P., Community detection in node-attributed social networks: a survey. Computer Science Review, 2020. 37: p.100286. [DOI:10.1016/j.cosrev.2020.100286]
16. [16] Interdonato, R., et al., Feature-rich networks: going beyond complex network topologies. Applied Network Science, 2019.4(1): p. 1-13. [DOI:10.1007/s41109-019-0111-x]
17. [17] Abbasi, M., E.M. Pasand, and M.R. Khosravi, Workload allocation in iot-fog-cloud architecture using a multi-objective genetic algorithm. Journal of Grid Computing, 2020. 18(1): p.1-14. [DOI:10.1007/s10723-020-09507-1]
18. [18] Reddy, K., AK Luhach , B. Pradhan, JK Dash and DS Roy, A genetic algorithm for energy efficient fog layer resource management in context-aware smart cities. Sustainable Cities and Society, 2020. 63: p. 102428. [DOI:10.1016/j.scs.2020.102428]
19. [19] Natesha, B. and R.M.R. Guddeti, Adopting elitism-based Genetic Algorithm for minimizing multi-objective problems of IoT service placement in fog computing environment. Journal of Network and Computer Applications, 2021. 178: p. 102972. [DOI:10.1016/j.jnca.2020.102972]
20. [20] Al-Tarawneh, M.A., Bi-objective optimization of application placement in fog computing environments. Journal of Ambient Intelligence and Humanized Computing, 2021. 12(2): p. 1-24. [DOI:10.1007/s12652-021-02910-w]
21. [21] Velasquez, K., DP Abreu, L. Paquete, M. Curado, and E. Monteiro. A rank-based mechanism for service placement in the fog. in 2020 IFIP Networking Conference (Networking).2020. IEEE.
22. [22] Kimovski, D., et al. Adaptive nature-inspired fog architecture.in 2018 IEEE 2nd International Conference on Fog and Edge Computing (ICFEC). 2018. IEEE. [DOI:10.1109/CFEC.2018.8358723]
23. [23] Lera, I., C. Guerrero, and C. Juiz, Availability-aware service placement policy in fog computing based on graph partitions. IEEE Internet of Things Journal, 2018. 6(2): p. 3641-3651. [DOI:10.1109/JIOT.2018.2889511]
24. [24] Lera, I., C. Guerrero, and C. Juiz. Comparing centrality indices for network usage optimization of data placement policies in fog devices. in 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC). 2018. IEEE. [DOI:10.1109/FMEC.2018.8364053]
25. [25] Filiposka, S., A. Mishev, and C. Juiz, Community-based VM placement framework. The Journal of Supercomputing, 2015.71(12): p. 4504-4528. [DOI:10.1007/s11227-015-1546-1]
26. [26] Skarlat, O., M. Nardelli, S. Schulte, and S. Dustdar. Towards qos-aware fog service placement. in 2017 IEEE 1st international conference on Fog and Edge Computing (ICFEC). 2017. IEEE. [DOI:10.1109/ICFEC.2017.12]
27. [27] Vijouyeh, L. N., Sabaei, M., Santos, J., Wauters, T., Volckaert, B., & De Turck, F., Efficient application deployment in fogenabled infrastructures. In 2020 16th International Conference on Network and Service Management (CNSM), 2020, p. 1-9.IEEE.Volume 15- Number 3 - 2023 (31 -42) 41 [DOI:10.23919/CNSM50824.2020.9269052]
28. [28] Sriraghavendra, M., Chawla, P., Wu, H., Gill, S.S. and Buyya, R., DoSP: A Deadline-Aware Dynamic Service PlacementAlgorithm for Workflow-Oriented IoT Applications in FogCloud Computing Environments. In Energy Conservation Solutions for Fog-Edge Computing Paradigms, 2022, p. 21-47,Springer, Singapore. [DOI:10.1007/978-981-16-3448-2_2]
29. [29] Baranwal, G. and D.P. Vidyarthi, FONS: a fog orchestrator node selection model to improve application placement in fog computing. The Journal of Supercomputing, 2021: p. 1-28. [DOI:10.1007/s11227-021-03702-x]
30. [30] Baranwal, G. and D.P. Vidyarthi, FONS: a fog orchestrator node selection model to improve application placement in fog computing. The Journal of Supercomputing, 2021: p. 1-28. [DOI:10.1007/s11227-021-03702-x]
31. [31] Gasmi, K., Dilek, S., Tosun, S. and Ozdemir, S., "A survey on computation offloading and service placement in fog computing-based IoT", the Journal of Supercomputing, 78(2),2022, p.1983-2014. [DOI:10.1007/s11227-021-03941-y]
32. [32] Heng L, Yin G, Zhao X. Energy aware cloud‐edge service placement approaches in the Internet of Things communications. International Journal of Communication Systems. 2022 Jan 10;35(1):e4899. [DOI:10.1002/dac.4899]
33. [33] Velasquez, K., DP Abreu, M. Curado and E. Monteiro, Service placement for latency reduction in the internet of things. Annals of Telecommunications, 2017. 72(1-2): p. 105-115. [DOI:10.1007/s12243-016-0524-9]
34. [34] Salaht, F., F. Desprez, A. Lebre, C. Prud'Homme, and M. Abderrahim Service placement in fog computing using constraint programming. in 2019 IEEE International Conference on Services Computing (SCC). 2019. IEEE.
35. [35] Arkian, H.R., A. Diyanat, and A. Pourkhalili, MIST: Fog-based data analytics scheme with cost-efficient resource provisioning for IoT crowdsensing applications. Journal of Network and Computer Applications, 2017. 82: p. 152-165. [DOI:10.1016/j.jnca.2017.01.012]
36. [36] Yang, L., J. Cao, G. Liang, and X. Han, Cost aware service placement and load dispatching in mobile cloud systems. IEEE Transactions on Computers, 2015. 65(5): p. 1440-1452. [DOI:10.1109/TC.2015.2435781]
37. [37] Lera, I.a.C.G., YAFS, Yet Another Fog Simulator.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.