Volume 15, Issue 3 (9-2023)                   itrc 2023, 15(3): 1-10 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi G. Material Characterization Innovations in Microwave Measurement Laboratory of Amirkabir University of Technology. itrc 2023; 15 (3) :1-10
URL: http://journal.itrc.ac.ir/article-1-572-en.html
Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
Abstract:   (1627 Views)
This paper presents some microwave circuits, designed for characterization of materials’ permittivity. These include single and multiple-resonant types, transmission line approaches, radiation structures and planar circuits. They have either theoretical analysis, simulations, behavior analysis, or fabrication results. A simple half-wavelength coaxial system is used for measuring velocity factor or dielectric constant of the cable. This method presents very accurate results. A planar multi-dielectric antenna structure is proposed whose layers comprise the dielectric under test. The near field as well as the radiation performances are influenced by the permittivity, which is the basis for determining this parameter. Also, a planar resonant cavity is designed and optimized to give enhanced coupling performance and gets higher quality factors. It has a small size and its sensitivity is improved employing a chamfer. The values of dielectric constants are extracted from scattering parameters. In another method, a three-section microstrip line is used whose time domain response is employed to retrieve the dielectric constant. This method can be generalized to other planar lines. At last, a simple method for measuring complex conductivity of lossy planar conductors is studied and it is employed for characterization of a graphene oxide layer.


 
Full-Text [PDF 970 kb]   (606 Downloads)    
Type of Study: Research | Subject: Communication Technology

References
1. [1] R.J. Collier, and A.D. Skinner, "Microwave Measurements (Materials, Circuits and Devices)," IET Press, 3rd Edition,2007. [DOI:10.1049/PBEL012E]
2. [2] A. Basu, "Introduction to Microwave Measurements," CRC Press; 2014. [DOI:10.1201/b17964]
3. [3] M. Sucher, J. Fox, and M. Wind, "Handbook of Microwave Measurements," Polytechnic Press, 1963
4. [4] R. F. Harrington, "Time-Harmonic Electromagnetic Fields," Wiley Interscience, 2001. [DOI:10.1109/9780470546710]
5. [5] G. H. Bryant, "Principles of Microwave Measurements," IET Press, 3rd Edition, 1993. [DOI:10.1049/PBEL005E]
6. [6] J. P. Dunsmore, "Handbook of Microwave Component Measurements: With Advanced VNA Techniques," Wiley,2012. [DOI:10.1002/9781118391242]
7. [7] N. Ida, "Microwave NDT," Springer, 1992. [DOI:10.1007/978-94-011-2739-4]
8. [8] L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, Vijay K. Varadan, "Microwave Electronics: Measurement and Materials Characterization," Wiley, 2007.
9. [9] A. E. Bailey, "Microwave Measurements," IEE Press, 1980.
10. [10] L. Changjun, and and P. Yang, "A microstrip resonator with slotted ground plane for complex permittivity measurements of liquids," IEEE Microw. Wireless Compon. Lett, vol. 18, no. 4, 257-259, 2018. [DOI:10.1109/LMWC.2008.918894]
11. [11] A.K. Verma, Nasimuddin and A.S. Omar, "Microstrip resonator sensors for determination of complex permittivity of materials in sheet, liquid and paste forms," IEE Proc. Microw. Antennas Propag. vol. 152, no. 1, 48-54, 2005. [DOI:10.1049/ip-map:20041155]
12. [12] J. Hinojosa, K. Lmimouni, S. Lepilliet, and G. Dambrine, "Very high broadband electromagnetic characterization method of film-shaped materials using coplanar waveguide," Microw. Opt. Technol Lett, vol. 33, 352-355, 2020. [DOI:10.1002/mop.10319]
13. [13] Z. Bao, M. L. Swicord, and C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol," Journal of Chemical Physics, vol. 104, 4441-4450,1996. [DOI:10.1063/1.471197]
14. [14] S. Trabelsi and S. O. Nelson, "Microwave sensing of quality attributes of agricultural and food products," IEEE Instrum. Meas. Mag., vol. 19, no. 1, pp. 36-41, Feb. 2016. [DOI:10.1109/MIM.2016.7384959]
15. [15] Z. Akhter and M. J. Akhtar, "Free-space time domain position insensitive technique for simultaneous measurement of complex permittivity and thickness of lossy dielectric samples," IEEE Trans. Instrum. Meas., vol. 65, no. 10, pp. 2394-2405, Oct. 2016. [DOI:10.1109/TIM.2016.2581398]
16. [16] S. Subbaraj, V. Ramalingam, M. Kanagasabai E. Sundarsingh, Y. Selvam, and, S. Kingsley, "Electromagnetic nondestructive material characterization of dielectrics using EBG based planar transmission line sensor," IEEE Sensor J.,vol. 16, no. 19, pp. 7081-7087, Oct. 2016. [DOI:10.1109/JSEN.2016.2591320]
17. [17] Y. J. Cheng and X. L. Liu, "W-band characterizations of printed circuit board based on substrate integrated waveguide multi-resonator method," IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 599-606, Feb. 2016. [DOI:10.1109/TMTT.2015.2511007]
18. [18] J. Cai, Y. J. Zhou and X. M. Yang, "A metamaterials-loaded quarter mode SIW microfluidic sensor for microliter liquid characterization," J. Electromagn. Wave, vol. 33, no. 3, pp.261-271, Nov. 2018. Volume 15- Number 3 - 2023 (1 -10) 9 [ Downloaded from ijict.itrc.ac.ir on 2024-05-14 ] [DOI:10.1080/09205071.2018.1543058]
19. [19] D. Deslandes and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wireless Compon. Lett., vol. 11, no. 2, pp. 68-70, Feb. 2001. [DOI:10.1109/7260.914305]
20. [20] H. B. Wang and Y. J. Cheng, "Broadband printed-circuit-board characterization using multimode substrate-integratedwaveguide resonator," IEEE Trans. Microw. Theory Techn., vol. 65, no. 6, pp. 2145-2152, Jun. 2017. [DOI:10.1109/TMTT.2017.2650232]
21. [21] N. K. Tiwari, A. Jha and P. Varshney, "Generalized multimode SIW cavity-based sensor for retrieval of complex permittivity of materials," IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 3063-3072, Jun. 2018. [DOI:10.1109/TMTT.2018.2830332]
22. [22] A. K. Jha and M. J. Akhtar, "A generalized rectangular cavity approach for determination of complex permittivity of materials," IEEE Trans. Instrum. Meas., vol. 63, no. 11, pp.2632-2641, Nov. 2014. [DOI:10.1109/TIM.2014.2313415]
23. [23] Harrsion, L., Ravan, M., Tandel, D., Zhang, K., Patel, T., & K. Amineh, R.,"Material Identification Using a Microwave Sensor Array and Machine Learning. Electronics," MDPI, vol. 9(2), 288. doi:10.3390/electronics9020288, 2020. [DOI:10.3390/electronics9020288]
24. [24] P. K. Varshney, N. K. Tiwari and M. J. Akhtar, "SIW cavity based compact RF sensor for testing of dielectrics and composites," IEEE MTTS International Microwave and RF Conference (IMaRC), New Delhi, pp. 1-4, 2016. [DOI:10.1109/IMaRC.2016.7939637]
25. [25] K. Kazemi, G. Moradi and A. Ghorbani, "Employing higher order modes in broadband SIW sensor for permittivity measurement of medium loss materials," Int. J. Microw. Wireless. Technol., pp. 1-13, Oct. 2020. [DOI:10.1017/S1759078720001403]
26. [26] K. Kazemi, and G. Moradi, "Employing Machine Learning Approach in Cavity Resonator Sensors for Characterization of Lossy Dielectrics," International Journal of Information and Communication Technology Research., vol. 13, no. 3, pp. 1-11, September 2021. [DOI:10.52547/ijict.13.3.1]
27. [27] M. Saadat-Safa, V. Nayyeri, A. Ghadimi, M. Soleimani and O. M. Ramahi, "A pixelated microwave near-field sensor for precise characterization of dielectric materials," Sci. Rep., vol.9, no. 1, pp. 1-12, 2019. [DOI:10.1038/s41598-019-49767-w] [PMID] []
28. [28] Z. Wei, J. Huang, J. Li, G. Xu, Z. Ju, X. Lio, and X. Ni., " ,"Sensors, vol. 18, no. 11, pp. 4005, Nov. 2018. [DOI:10.3390/s18114005] [PMID] []
29. [29] X. Yang, L. Xin, X. Jiao, P. Zhou, S. Wu, and K. Huang, "High-sensitivity structure for the measurement of complex permittivity based on SIW," IET Sci. Meas. Technol., vol. 11,no. 5, pp. 532-537, 2017. [DOI:10.1049/iet-smt.2016.0361]
30. [30] F. Majeed, T. Fickenscher, M. Shahpari, D. Thiel, "Measurement of surface conductivity of graphene at Wband," MOTL, 2019. [DOI:10.1002/mop.31826]
31. [31] J. Krupka, W. Strupinski, and N. Kwietniewski, "Microwave Conductivity of Very Thin Graphene and Metal Films," Journal of Nanoscience and Nanotechnology, 11(4):3358-62,April 2011. [DOI:10.1166/jnn.2011.3728] [PMID]
32. [32] M. Liang, M. Tuo, S. Li, Q. Zhu, H. Xin, "Graphene conductivity characterization at microwave and THz frequency," The 8th European Conference on Antennas and Propagation EuCAP, 2014. [DOI:10.1109/EuCAP.2014.6901798]
33. [33] L. Hao, J. Gallop, S. Goniszewski, O. Shaforost, N. Klein, and R. Yakimova," Non-contact method for measurement of the microwave conductivity of graphene," Applied Physics Letters vol. 103, 123103, doi: 10.1063/1.4821268, 2013. [DOI:10.1063/1.4821268]
34. [34] G. Moradi and M. Mosalanejad, "Microstrip patch sensors for complex permittivity measurement of medium loss liquids Using 3D-FDTD," Applied Computational Electromagnetics Society Journal, vol. 32, no. 4, pp. 325-331, 2017.
35. [35] M. Bozzi, A. Georgiadis, and K. Wu, "Review of substrateintegrated waveguide circuits and antennas", IET Microw., Antennas Propag., vol. 5, no. 8, pp. 909-920, 2011. [DOI:10.1049/iet-map.2010.0463]
36. [36] Y. Seo, M. U. Memon and S. Lim, "Microfluidic eighth-mode Substrate Integrated-Waveguide antenna for compact ethanol chemical sensor application," IEEE Trans. Antennas Propag.,vol. 64, no. 7, pp. 3218-3222, Jul. 2016. [DOI:10.1109/TAP.2016.2559581]
37. [37] L. Harrsion, M. Ravan, D. Tandel, K. Zhang, T. Patel and R. Amineh, "Material identification using a microwave sensor array and machine learning," Electronics, vol. 2, no. 8, pp. 288,Feb. 2020. [DOI:10.3390/electronics9020288]
38. [38] C. Liu and F. Tong, "An SIW resonator sensor for liquid permittivity measurements at C band," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 11, pp. 751-753, Nov. 2015. [DOI:10.1109/LMWC.2015.2479851]
39. [39] E. Silavwe, N. Somjit and I. D. Robertson, "A microfluidicintegrated SIW lab-on-substrate sensor for microliter liquid characterization," IEEE Sensors J., vol. 16, no. 21, pp. 7628-7635, Nov. 2016. [DOI:10.1109/JSEN.2016.2599099]
40. [40] H. Sun, T. Tang, and G. Du, "Improved approach using symmetric microstrip sensor for accurate measurement of complex permittivity", Int. J. RF Microw. Comput. Eng., vol.28.5, pp. e21258, 2018. [DOI:10.1002/mmce.21258]
41. [41] D. Deslandes, "Design equations for tapered microstrip-tosubstrate integrated waveguide transitions Proc. IEEE MTT-S Int. Microw. Symp. Digest (MTT), pp. 1-1, May. 2010. [DOI:10.1109/MWSYM.2010.5515088]
42. [42] A. Niembro-Mart'ın, V. Nasserddine, E. Pistono, H. Issa, and P. Ferrari, "Slow-wave substrate integrated waveguide," IEEE Trans. Microw. Theory Techn., vol. 62, no. 8, pp. 1625-1633,Aug. 2014. [DOI:10.1109/TMTT.2014.2328974]
43. [43] A. K. Jha and M. J. Akhtar, "Design of multilayered epsilonnear-zero microwave planar sensor for testing of dispersive materials," IEEE Trans. Microw. Theory Techn., vol. 63, no. 8, pp. 2418-2426, Aug. 2015. [DOI:10.1109/TMTT.2015.2451659]
44. [44] C. C. Aggarwal, "Neural Network and Deep Learning", Springer, 2018. [DOI:10.1007/978-3-319-94463-0]
45. [45] S. Huang, Z. Cao, H. Yang, Z. Shen and X. Deng, "An electromagnetic parameter retrieval method based on deep learning," J. Appl. Phys., vol. 127, no. 22, p. 224902, Jun.2020. [DOI:10.1063/5.0005455]
46. [46] M. A. H. Ansari, A. K. Jha, Z. Akhter and M. J. Akhtar, "Multiband RF planar sensor using complementary split ring resonator for testing of dielectric materials", IEEE Sensors Journal, vol. 18, no. 16, pp. 6596-6606, Aug. 2018. [DOI:10.1109/JSEN.2018.2822877]
47. [47] K. T. M. Shafi, A. K. Jha and M. J. Akhtar, "Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials", IEEE Sensors Journal, vol. 17, no.17, pp. 5479-5486, Sep. 2017. [DOI:10.1109/JSEN.2017.2724942]
48. [48] G. Moradi and A. Abdipour, "Measuring the permittivity of dielectric materials using stdr approach," Progress In Electromagnetics Research, PIER 77, 357-365, 2007. [DOI:10.2528/PIER07080201]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.